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Abstract	
Background and Aims 

One of the most important complications of heart transplantation is organ rejection, which is 
diagnosed on endomyocardial biopsies by pathologists. Computer-based systems could assist in the 
diagnostic process and potentially improve reproducibility. Here, we evaluated the feasibility of using 
deep learning in predicting the degree of cellular rejection from pathology slides as defined by the 
International Society for Heart and Lung Transplantation (ISHLT) grading system.  

Methods 

We collected 1079 histopathology slides from 325 patients from three transplant centers in Germany. 
We trained an attention-based deep neural network to predict rejection in the primary cohort and 
evaluated its performance using cross validation and by deploying it to three cohorts.  

Results 

For binary prediction (rejection yes/no) the mean Area Under the Receiver Operating Curve 
(AUROC) was 0.849 in the cross-validated experiment and 0.734, 0.729 and 0.716 in external 
validation cohorts. For a prediction of the ISHLT grade (0R, 1R, 2/3R), AUROCs were 0.835, 0.633 
and 0.905 in the cross-validated experiment and 0.764, 0.597, 0.913, and 0.631, 0.633, 0.682, and 
0.722, 0.601, 0.805 in the validation cohorts, respectively. The predictions of the AI model were 
interpretable by human experts and highlighted plausible morphological patterns.  

Conclusions 

We conclude that artificial intelligence can detect patterns of cellular transplant rejection in routine 
pathology, even when trained on small cohorts. 
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Introduction	
In patients with end-stage heart failure, organ transplantation constitutes the desired curative 
treatment concept [1]. This has been made possible in recent decades, in particular, by the advent 
of new immunosuppressive drugs, which can ensure long-lasting organ preservation. However, 
organ rejection by the host immune system remains one of the major complications in these patients 
[2]. Despite the increasing importance of noninvasive methods in the detection of graft rejection, 
endomyocardial biopsy remains the gold standard for detecting rejection, especially in the first year 
after transplantation [3,4]. The pathological assessment of such specimens is reserved for highly 
specialized pathologists and has massive clinical consequences. In 1990 the International Society 
for Heart and Lung Transplantation (ISHLT) published a guideline for histopathologic diagnosis of 
acute cellular rejection to standardize this assessment, which has been revised in 2004 [5]. 
Nevertheless, the purely subjective assessment of pathological sections has certain disadvantages, 
such as the dependency on appropriately trained experts, as well as remaining inter- and intra-
observer variability [6]. In addition, endomyocardial biopsies are obtained either as routine 
surveillance protocol diagnostics or as a diagnostic investigation in patients with allograft dysfunction 
and clinically suspected rejection.  
 
Computer-based image analysis programs can potentially support pathology experts in performing 
diagnostics. In several histopathological applications, it could be shown that such computer-based 
image analysis programs can show a high level of concordance with human observers, and in some 
cases the combination with the human experts can improve the consistency of the findings.[7] In 
particular, the technology of artificial neural networks has brought very good results in many clinically 
relevant prediction tasks in recent years [8,9]. A recent extension of this technology is the so-called 
attention-based multiple instance learning [10], in which the artificial neural network can learn which 
areas of the whole slide image are more relevant than other areas [11,12]. 
 
In contrast to solid tumors, in which many studies have examined computer-based prediction of 
clinically relevant biomarkers in the last three years [9], there are only comparatively few studies in 
the context of transplantation medicine. Precedent cases exist in the prediction of organ rejection 
after kidney transplantation [13], as well as applications of simple, handcrafted feature based image 
analysis methods to cardiac biopsies after transplantation [14,15]. A recent study by Lipkova et al. 
used the Deep Learning pipeline “CRANE” to predict cardiac allograft transplantation, yielding a very 
high and clinical-grade performance [16,17]. 
 
However, several open questions remain regarding the data requirements to train such systems, as 
Lipkova et al. trained their system on thousands of patient samples, but this large number of samples 
is rarely available. Additional questions remain open regarding the generalizability of such systems, 
and the biological interpretability which can be drawn from their predictions. Finally, new technical 
approaches such as self-supervised learning (SSL) to pre-train pathology Deep Learning models 
could yield an improved performance [18], but this has not yet been evaluated in prediction of cardiac 
allograft rejection. 
 
In the present study, we collected four cohorts from three hospitals of cardiac transplant patients 
undergoing cardiac biopsy routinely and based on clinically relevant changes. We trained our own 
SSL-attention-based Deep Learning pipeline as well as CRANE on these data and evaluated the 
predictive performance regarding the presence of cellular transplant rejection. 
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Materials	and	Methods	
Patient cohorts and experimental design 

In this study we included four case series (“patient cohorts”) from three different medical centers in 
Germany. The first cohort was obtained from the pathological archive of the University Hospital 
Regensburg and contained 393 pathological sections from 107 patients from the period 2016 to 
2018. The second cohort also originated from the pathological archive of the University Hospital 
Regensburg and contained 356 pathological sections from 95 patients from the period 2019 to 2021. 
The third cohort was obtained from the pathological archive of the University Medical Center 
Hamburg-Eppendorf. This cohort contained 189 pathological sections from 86 patients from the 
period 2019 to 2021. The fourth cohort was obtained from the pathological archive of the University 
Hospital Aachen containing 141 pathological sections from 37 patients from the period 1999 to 2014. 
Cohorts were consecutive retrospective case series. We pragmatically aimed to maximize the 
sample size of training and testing cohorts. The ground truth was obtained by two expert pathologists 
during routine work-up at each participating center, grading the degree of rejection in consensus, 
following the 2004 revision of the ISHLT grading system.[5] All patient samples without information 
on ISHLT grading were not eligible for inclusion. A detailed presentation of the clinical characteristics 
of all patients in the corresponding cohorts can be found in Table 1. We used two categorizations of 
the ISHLT 2004 grading system as our prediction target. The first is a binarized target (“ISHLT 2004 
rejection “yes/no”), summarizing slides with ISHLT 0R on the one hand (class “no”) and all signs of 
rejection on the other hand (ISHLT 1R, 2R, 3R; class “yes”). For the second target (“ISHLT 2004 
rejection grade”) we aimed for a more granular classification splitting the second class giving three 
classes comprising ISHLT 0R, ISHLT 1R and ISHLT 2R & 3R. We combined the higher order 
rejection due to shortage of ISHLT 3R cases in the training set (Table 1). Our study adheres to the 
STARD guidelines (Suppl. Table 1). [19]  

Sample processing and image preprocessing 

Routine tissue sections were obtained from the pathology archives at the above-mentioned 
institutions. All slides were stained with hematoxylin and eosin (H&E) according to standard clinical 
protocols at each center. Pen marks were removed from the slides of the training cohort. All images 
were digitized at 40x magnification with an Aperio AT2 Slide scanner (Aperio, Leica Camera AG, 
Wetzlar, Germany) centrally at the University Hospital Düsseldorf (Figure 1a). All images were 
available in ScanScope Virtual Slide (SVS) format and were tessellated in tissue patches of 512x512 
pixels size using https://github.com/KatherLab/preprocessing-ng according to the “The Aachen 
Protocol for Deep Learning Histopathology: A hands-on guide for data preprocessing” (Figure 1b) 
[20]. 

Deep Learning workflow 

For all Deep Learning experiments, we used our in-house pipeline “Marugoto”, which is publicly 
available at https://github.com/KatherLab/marugoto and has been previously used for analysis of 
images obtained from cancer tissue [21]. In this approach, each image tile was translated into a 
2048-dimensional feature vector by a pre-trained histology-specific encoder RetCCL 
(https://github.com/Xiyue-Wang/RetCCL). We used attention-based multiple instance learning [22], 
in which all feature vectors obtained from all tiles from one whole slide image constitute a “bag” which 
is processed by the neural network (Figure 1b). The multiple instance learning network is structured 
as follows: The feature vectors of each of the bag’s tiles are first projected into a length 256 feature 
space using a fully connected layer. Based on these, an attention module consisting of two fully 
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connected layers calculates an attention score for each of the tiles. All of a bag’s attention scores 
are then normalized using softmax. We then calculate a bag-level feature vector by taking the sum 
of the tiles’ feature projections weighted by their respective attention scores. The final classification 
is then done with an additional fully connected layer (Figure 1c). During training, we limited our bag 
size to a maximum of 512 tiles from each slide, resampled in each epoch (median number of tiles = 
403, interquartile range = 468). We stopped the training of our model if no reduction in the validation 
loss was present for 16 following epochs while training for a maximum of 32 epochs. For deployment, 
we used all of the slides’ tiles. We compared our approach to CRANE as presented by Lipkova et 
al. [16]. To do so, we followed the workflow of the CRANE study, preprocessing the slides with the 
CLAM repository and performed 10-fold Monte-Carlo cross validation on our training cohort, 
deploying the best performing model on our test cohorts [23]. 
 

Experimental design and hardware 

We pre-specified the following experimental design. First we trained and evaluated our system in the 
first cohort via three-fold cross validation and repeated this experiment five times. Subsequently, we 
evaluated the performance of the best performing model on the second, third and fourth cohort 
(Figure 1d). All ground truth labels were available on the level of slides. All statistics were calculated 
on the level of slides. The primary evaluation metric was the Area Under the Receiver Operating 
Curve (AUROC). We calculated the mean performance as the mean of all AUROCs from all folds of 
all repetitions, together with the 95% confidence interval (95% CI) calculated by assuming a 
normalized distribution of AUROCs and using its standard error of the mean to identify the 
boundaries. For the multiclass prediction we used micro-averaging to obtain an overall AUROC of 
the experiments. We calculated p-values for each class in each experiment using a two sided t-test 
and averaged these values over folds and repetitions of the experiments. For visualization 
approaches, we deployed the best performing model on the test cohorts. All experiments were run 
on local desktop workstations with Nvidia RTX Quadro 8000 graphics processing units (GPUs).  

Visualization and explainability 

We plotted three tiles for the four slides of each validation cohort giving the highest bag label scores 
for the binarized prediction of (true) rejection when deploying the best performing model. Additionally 
we generated Grad-CAM images for these tiles to get a better understanding of the models 
attention.[24] To gain further insight into our model’s decisions, we generated heatmaps showing the 
attention, as well as the attention multiplied by the prediction scores. 

Code availability 

All source codes for preprocessing are available at https://github.com/KatherLab/preprocessing-ng. 
All source codes for Deep Learning are available at https://github.com/KatherLab/marugoto.  
 

Results	
Deep learning can predict rejection and rejection grade from pathology images 

We trained an attention-based multiple-instance deep learning algorithm on bags of features, 
extracted from patches of whole slide images. In the cross-validated experiment carried out on cohort 
1, we found a mean AUROC of 0.849 (95% CI 0.822 - 0.877) for binary prediction (rejection yes/no) 
(Figure 2a, see Suppl. Table 2 for individual results). The best fold’s AUROC was 0.910 with a p-
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value of <0.001. For prediction of the ISHLT grades 0R, 1R and 2/3R, the mean AUROCs were 
0.835 (95% CI 0.807 - 0.862), 0.633 (95% CI 0.582 - 0.684) and 0.905 (95% CI 0.874 - 0.937), 
respectively (Figure 2b, see Suppl. Table 3 for individual results). The micro-averaged AUROC for 
this task was 0.814 (95% CI 0.773 - 0.854). The best-fold’s AUROCs for this task were 0.890, 0.808 
and 0.968, respectively, with a p-value <0.001 and a micro-averaged AUROC of 0.885. These results 
show the capacity of our network to predict rejection and rejection grade directly from histopathology 
images. 

Deep learning classifiers generalize to held-out and external patient cohorts 

To further validate the performance of our network, we deployed the best performing model for each 
target on three validation cohorts. The validation experiments for cohort 2 yielded an AUROC of 
0.734 (p-value <0.001) for binary prediction (rejection yes/no) (Figure 2c). For prediction of the 
ISHLT grades 0R, 1R and 2/3R, the AUROCs were 0.764 (p-value <0.001), 0.597 (p-value 0.099) 
and 0.913 (p-value <0.001) (Suppl. Figure 1a), respectively. The micro-averaged AUROC was 
0.731 (p-value 0.021). For external validation on cohort 3 we obtained an AUROC of 0.729 (p-value 
of <0.001) (Figure 2d). For prediction of the ISHLT grades 0R, 1R and 2/3R, the AUROCs were 
0.631 (p-value <0.013), 0.595 (p-value 0.048) and 0.682 (p-value 0.082), respectively (Suppl. 
Figure 1b). The micro-averaged AUROC was 0.659 (p-value 0.025). The external validation on 
cohort 4 yielded an AUROC of 0.716 (p-value <0.001) on the binary task (rejection yes/no) (Figure 
2e). For prediction of the ISHLT grades 0R, 1R and 2/3R, the AUROCs were 0.722 (p-value <0.001), 
0.601 (p-value 0.247) and 0.805 (p-value <0.001), respectively (Suppl. Figure 1c). The micro-
averaged AUROC was 0.737 (p-value 0.042). Our findings show that our models are in principle 
generalizable to external patient cohorts. 

Comparison of the deep learning classifier with CRANE 

We compared our method to CRANE, the current state of the art in rejection prediction of heart 
transplant tissue slides [16]. In the training cohort, the cross-validated mean AUROC of the CRANE 
models for the binarized target (rejection yes/no) was 0.776 (95% CI 0.717 - 0.835) (Figure 2f, see 
Suppl. Table 4 for individual results), lower than the performance obtained by our attention-MIL 
pipeline (0.849). The best performing CRANE model yielded an AUROC of 0.882, which was again 
slightly lower than the performance achieved by our in-house attention-MIL pipeline (0.910). When 
deploying the CRANE model to our test cohorts we received AUROCs of 0.831, 0.616, and 0.483 
for cohorts 2, 3 and 4, respectively (Figure 2g), overall underperforming compared to our SSL-
attention model (which reached 0.734, 0.729 and 0.716, respectively). In summary, our findings 
show that SSL-attention-MIL outperforms CRANE.  

Attention-based predictions are explainable 

To make the model’s prediction explainable and to identify reasons for failure cases, we performed 
a reverse engineering task to see the spatial distribution of the network’s attention layer for the most 
confident true classification of binary prediction. First of all our attention maps show that our model 
is concentrating only on tissue regions and not on the background or artifacts (See Figure 3c and 
3g). This means that the presence of such artifacts (e.g., pen marks) in the test set is not problematic, 
and that only a simple quality control algorithm might be sufficient for clinical implementation. 
Analyzing whole slide attention and prediction maps on a higher resolution, we found that our model’s 
focus lies mainly on regions with a high lymphocyte density. Yet it seems to focus more on the 
interface of lymphocyte aggregations with the neighboring myocardium than on these dense regions 
themselves (see Figure 3). We also found evidence that our model apparently was confused by the 
presence of a Quilty lesion [25], which was observed in a misclassified patient (Suppl. Figure 2). 
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When analyzing the top tiles and the corresponding Grad-CAM images of the external validation 
cohorts, it seems that the model is concentrating on lymphocytes, confirming the findings made in 
heatmaps at another spatial scale (Figure 4). These findings show that despite being trained on only 
a few hundred patients, the model has learned clinically relevant morphological patterns from whole 
slide images.  
 

Discussion	
Heart transplantation remains the gold standard therapy for end-stage heart failure [26]. Due to this 
pronounced shortage of donor organs, there is not only a need for risk adjustment tools to optimize 
recipient selection [27,28]. In addition, a particularly good risk stratification and early adjustment of 
immunosuppression therapy is necessary in organ recipients because the possibility of re-
transplantation is very limited. New diagnostic methods based on artificial intelligence (AI) could 
change and improve medical decision making in transplantation medicine in the future.[17] A 
potential key benefit would be to reduce diagnostic uncertainty, and hence reduce the need for 
frequent re-biopsies in the first year after transplantation, which represents a burden for healthcare 
systems and patients alike.  
 
In the present study, we trained an AI method to evaluate the recognition and grading of cardiac 
transplantation using routine biopsies. We found high performance in the training set (by cross-
validation). When deploying our model at the external validation cohorts, we found a stable, but 
moderate performance. A few other studies have addressed similar problems in recent years. 
Peyster et al. used handcrafted features to grade cellular rejection reporting good performance, 
already in 2021 [15]. Most prominently, Lipkova et al. presented the CRANE method, which yielded 
very high AUROCs in their study, after being trained on thousands of patients [16]. Lipkova et al. 
report an external validation AUROC of around 0.83, which is better than the AUROCs of around 
0.72 which we report in the validation cohorts [16]. However, our training dataset comprised 10 times 
fewer patients, and in a head-to-head comparison of CRANE and our SSL-attention, our method 
outperforms CRANE, pointing to a higher data efficiency. Our findings are in line with other recent 
studies showing the usefulness of pre-training feature extractors with SSL, boosting classification 
performance in computational pathology [18]. Our classifier also outperforms other studies which 
date back to the year 2017, when Tong et al. constructed a shallow neural network based on 
handcrafted features derived from 43 WSIs (Children’s Healthcare of Atlanta cohort). This dataset 
has been used several times afterwards improving the performance of the cross validated model 
while adopting newer methodology but remains limited due to the very small dataset size [14,29–
31]. 
 
A fundamental limitation affecting all published studies is the limitation of the gold standard. The 
ISHLT classification itself is an imperfect predictor of clinical outcome, and future studies should train 
AI models directly on outcome data to overcome these limitations. This is further supported by the 
observation that detection and grading of heart transplant rejection can suffer from a suboptimal 
concordance among pathologists in the assignment of ISHLT 2004 grading of 71%, with most 
agreement coming from the class 0R [32]. While our study does not directly show that AI can improve 
objectivity and concordance, future studies should investigate the performance of pathologists who 
are guided by the AI model, especially non-expert pathologists. 
 
In summary, our study is a proof of concept that shows the potential of AI systems in transplantation 
medicine. In particular, our study sets a new technical state of the art, which however requires 
validation in larger cohorts. On the other hand, our study is also a reminder that larger training 
cohorts of a few thousand patients are probably required for clinical-grade AI biomarkers [33,34]. 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 30, 2022. ; https://doi.org/10.1101/2022.09.29.22279995doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.29.22279995
http://creativecommons.org/licenses/by/4.0/


 

8 

Future studies should compare our technical approach on larger cohorts, which could be efficiently 
assembled with federated or Swarm Learning [35,36]. Our study adds to the growing evidence of AI 
models being capable of recognizing heart transplant rejection which might in the future help 
pathologists with prescreening slides or standardize grading across different centers. We also 
believe that further development of our approach harbors the potential to ultimately reduce costs and 
time in this sector of the healthcare system. 
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Tables	
 
 
 Cohort 1 Cohort 2 Cohort 3 Cohort 4 
Contributing centre Regensburg Regensburg Hamburg Aachen 
Use in this study Train Test Test Test 
N patients 107 95 86 37 
N slides 393 356 189 141 
Recruitment years 2016 - 2018 2019 - 2021 2019 - 2021 1999 - 2014 
Age in years (median, 
IQR) 

N/A 61 (10) 52 (17) 55 (12) 

Gender (F:M) N/A N/A 70:121 47:94 
ISHLT rejection  
no 
yes 

 
312 
81 

 
271 
85 

 
130 
59 

 
84 
57 

ISHLT 0R  
ISHLT 1R 
ISHLT 2/3R  

312 
51 
30 

271 
77 
8 

130 
51 
8 

57 
24 
60 

Table 1: Clinical characteristics of all cohorts. N/A Not available	 	
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Figures	
 

 
Figure 1: Outline of the study procedures. a) Routine endomyocardial biopsies of the right 
interventricular septum were taken from heart transplanted patients. These biopsies were then 
prepared into H&E stained histopathology slides, before being digitized and turned into whole slide 
images (WSIs) by use of a slide scanner. (Icon from smart.servier.com) b) To make these WSIs 
processable for our attention-based deep learning models, in a first step they need to be cut into 
smaller tiles while the background and artifacts are removed (tessellation). In the next step feature 
maps are extracted from all tiles from all slides using a publicly available neural network, which has 
been pre-trained by self-supervised learning with thousands of histopathology images. c) The 
resulting bags of feature maps per slide, together with expert pathologists’ opinion on the occurrence 
of rejection on a slide level as target label, are then used as training input for an attention-based 
deep learning model. d) In a first experiment, three-fold cross-validation is performed within Cohort 
1 and repeated 5 times. In a second experiment the best performing model from experiment 1 is 
externally validated on Cohorts 2, 3 and 4. 
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Figure 2: Deep learning can predict rejection and rejection grade from pathology images. 
Receiver operator characteristic curves (ROC) and mean area under the receiver operator curve. as 
measure of performance of the classifier for heart transplant rejection following 2004 revision of the 
International Society for Heart and Lung Transplantation (ISHLT) grading system. Showing binarized 
prediction (ISHLT rejection yes/no) (a, c, d, and e) and rejection grade (ISHLT 0R, 1R, 2/3R) (b) for 
cross-validation (a and b) and external validation (c, d, and e) experiments, as well as cross 
validation (i) and external validation (j) for binarized prediction (ISHLT rejection yes/no) using 
CRANE algorithm.  
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Figure 3: Explaining the models' decisions by visualizing the model’s high attention regions. 
Different zoom levels of areas of the whole-slide-images (b and f) containing one patch of the 
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endomyocardial biopsy of two different slides (a and e) together with the attention-based heatmap 
of the corresponding slide region (c and g) and a heatmap showing the attention scores multiplied 
by the prediction scores (d and h). In attention-based heatmaps dark red indicates regions with a 
high attention, while dark blue indicates regions with a low attention [see scale in c) and g]. The 
network is focussing on areas of the whole slide image containing tissue, ignoring artefacts, like air 
bubbles and pen marks (d and h). The network was trained on cohort 1 for the binarized target 
(rejection yes/no) and deployed on cohort 2. For those two slides, the network was the “the most 
confident” about its decision (reflected by highest attention and prediction scores). The network is 
highlighting regions with a high number of lymphocytes between heart muscle tissue. 
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Figure 4: Explaining the models' decisions by visualizing the model’s high attention 512x512 
tiles. The three tiles (columns) with the highest average attention and prediction scores (attention = 
a, prediction score = s) for the four slides(rows) with the highest average prediction scores when 
deploying the best performing model to detect rejection (rejection yes/no) on the three test cohorts 
(a,b, and c). Together with the corresponding Grad-CAM images showing the network’s spatial 
attention for each of the tiles. Regions with higher attention are yellow, while regions with low 
attention are in dark purple. The top tiles contain many lymphocytes infiltrating the myocytes, while 
the network’s attention also appears to be lying on these immune cells.  
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