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Abstract 55 
 56 
Background: Children are born with a burden of persistent organic pollutants (POPs) which 57 
may have endocrine disrupting properties and have been postulated to contribute to the rise 58 
in childhood obesity. The current evidence is equivocal, which may be because many studies 59 
investigate the effects at one time point during childhood. We assessed associations between 60 
prenatal exposure to POPs and growth during infancy and childhood. 61 
 62 
Methods: We used data from two Belgian cohorts with cord blood measurements of five 63 
organochlorines [(dichlorodiphenyldichloroethylene (p,p’-DDE), hexachlorobenzene (HCB), 64 
polychlorinated biphenyls (PCB-138, -150, -180)] (N = 1,418) and two perfluoroalkyl 65 
substances [perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS)] (N = 66 
346). We assessed infant growth, defined as body mass index (BMI) z-score change between 67 
birth and 2 years, and childhood growth, characterized as BMI trajectory from birth to 8 years. 68 
To evaluate associations between POP exposures and infant growth, we applied a multi-69 
pollutant approach, using penalized elastic net regression with stability selection, controlling 70 
for covariates. To evaluate associations with childhood growth, we used single-pollutant linear 71 
mixed models with random effects for child individual, parametrized using a natural cubic 72 
spline formulation. 73 
 74 
Results: Prenatal exposures to p,p’-DDE and PCB-153 were selected in elastic net models 75 
for infant growth analysis, but the selections were unstable. No clear association between any 76 
of the exposures and longer-term childhood growth trajectories was observed. We did not find 77 
evidence of effect modification by child sex. 78 
 79 
Conclusion: Our results suggest that prenatal exposure to PCB-153 and p,p’-DDE may affect 80 
infant growth in the first two years, with little evidence of more persistent effects. 81 
 82 
Keywords: organochlorines, poly- and perfluoroalkyl substances, infant growth, childhood 83 
growth trajectory, longitudinal study 84 
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1. Introduction 110 
 111 
Childhood obesity has become a serious public health problem (Sahoo et al., 2015). The 112 
prevalence of overweight and obesity among children has risen sharply in both high-income 113 
and low- and middle-income countries over the past 50 years (World Health Organization., 114 
2021). Long-term consequences of childhood obesity include an increased risk of obesity in 115 
adulthood, co-morbidities and premature mortality (Geserick et al., 2018; Reilly and Kelly, 116 
2011). Although elucidating the etiology of obesity has been focused on diet, both overnutrition 117 
and poor quality food, and insufficient physical activity, concerns about widespread exposure 118 
to endocrine disrupting chemicals (EDCs) and their potential effects on fetal and childhood 119 
growth have been increasingly raised (Heindel et al., 2015).  120 
 121 
The term “metabolism disrupting chemicals” (MDCs) was first coined in 2017 and refers to a 122 
subgroup of EDCs that disrupt metabolic functions and can eventually result in obesity, type-123 
2 diabetes, and/or non-alcoholic fatty liver disease (Heindel et al., 2017). A variety of persistent 124 
organic pollutants (POPs) are suspected MDCs, including specific organochlorines (OCs) 125 
[including dichlorodiphenyldichloroethylene (p,p'-DDE), polychlorinated biphenyls (PCBs), 126 
and hexachlorobenzene (HCB)] and poly- and perfluoroalkyl substances (PFAS) [including 127 
perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS)]. Although the use 128 
of these specific POPs has been banned or restricted (Stockholm Convention., 2019), humans 129 
continue to be exposed due to their pervasiveness in the environment and human food chain 130 
and their long half-life in the body (Cooke, 2014; Rovira et al., 2019). These chemicals are 131 
transmitted to the fetus through the placenta of pregnant women (Vizcaino et al., 2014), and 132 
breastfeeding contributes to substantial exposure in early life (Haddad et al., 2015). 133 
  134 
Toxicological studies have identified that MDCs can be obesogenic through various 135 
mechanisms, for example by altering the differentiation and function of white adipose tissue, 136 
leading to modifications in serum levels of insulin, leptin and fatty acids that regulate energy 137 
homeostasis (Heindel et al., 2017). Exposure of rodents to MDCs during the prenatal period 138 
can permanently alter mesenchymal stem cells and cause dysfunction of adipocytes 139 
(Blumberg, 2011; Diamanti-Kandarakis et al., 2009). The fetus is sensitive to MDCs because 140 
of its dependency on hormones for development, and it is important to ascertain if effects 141 
observed in animal studies are translated to humans.  142 
 143 
To date, most epidemiological studies focusing on the impact of POP exposures on obesity 144 
are cross-sectional. Of the limited set of longitudinal studies on prenatal POPs and childhood 145 
obesity, perhaps due to data availability, most have examined only infant growth up to the first 146 
two years of life, which is a well-known risk factor for obesity later in life (Monteiro and Victora, 147 
2005; Ong et al., 2000; Zheng et al., 2018). However, many of these studies implemented 148 
single-pollutant models, hampering the interpretability, and the findings haven been discrepant. 149 
Some studies reported positive associations with OCs (Iszatt et al., 2015; Mendez et al., 2011; 150 
Valvi et al., 2014; Verhulst et al., 2009) and negative associations with PFAS (Andersen et al., 151 
2010; Shoaff et al., 2018), but others reported null associations (Alkhalawi et al., 2016; Chen 152 
et al., 2017; Garced et al., 2012). Furthermore, knowledge about whether the possible 153 
perturbations are persistent across childhood is scarce. 154 
 155 
The European GOLIATH project strives to better understand the role of prenatal exposure to 156 
MDCs in obesity, including underlying mechanisms (Legler et al., 2020). Therefore, in this 157 
study we evaluated Belgian long-term follow-up data to assess the relationship between seven 158 
prenatal POP exposures and child growth by assessing changes in infant growth and 159 
childhood growth trajectories. 160 
 161 

2. Methods 162 
 163 

2.1. Study design and population 164 
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We used data from two birth cohorts of the Flemish Environment and Health Studies 165 
(FLEHS). The two cohorts (FLEHS I: 2002-2004, FLEHS II: 2008-2009) enrolled 1196 and 166 
255 mother-child pairs from Flanders, Belgium, respectively. Details of recruitment 167 
protocols have been reported elsewhere (Den Hond et al., 2009; Schoeters et al., 2012). 168 
Briefly, in FLEHS I, participants were recruited from eight geographical areas, including 169 
urban, industrial, fruit-growing, and rural areas, covering 20% of the Flemish population. 170 
In FLEHS II, participants were recruited from the general population in all five Flemish 171 
provinces using a two-stage sampling procedure, with province as the primary sampling 172 
unit and maternity unit as the secondary sampling unit. The distribution of participants 173 
across provinces was proportional to the number of residents in that province. The human 174 
biomonitoring studies were approved by the Ethics Committee of the University of Antwerp 175 
and participating maternity units. The present study was restricted to singletons for whom 176 
cord blood samples were available, resulting in a total of 1171 (FLEHS I) and 247 (FLEHS 177 
II) mother-child pairs available for the analysis. PFAS were not originally assessed in 178 
FLEHS I, but in 2020 PFAS levels were assessed in 99 subjects that were randomly 179 
selected from 182 participants whose biobank samples were retained. We pooled data 180 
from two cohorts and created an OCs-specific pooled dataset (FLEHS_OCs, N = 1418) 181 
and a PFAS-specific pooled dataset (FLEHS_PFAS,N = 346). 182 

 183 
2.2. Exposure assessment 184 

POPs measured in cord blood with more than 50% of measurements above the limits of 185 
quantification (LOQs) were included in the analysis, i.e. five OCs (p,p’-DDE, HCB, PCB-138, 186 
PCB-153, PCB-180) and two PFAS (PFOA, PFOS) (Table S1). The measurement and quality 187 
control methods for OCs in both cohorts as well as for PFAS in FLEHS II were described in 188 
detail in previous studies (Colles et al., 2020; Govarts et al., 2020). PFAS in FLEHS I were 189 
measured in 15-year stored biobank samples by ultra-performance liquid chromatography-190 
tandem mass spectrometry (UPLC-MS/MS) using Waters Acquity UPLC H-class system 191 
(Waters, Milford, MA, USA).  192 
 193 
POP concentrations which were lower than the LOQs were singly imputed per cohort using 194 
maximum likelihood estimation, assuming a censored log-normal distribution for values over 195 
the LOQ conditional on the observed values for other biomarkers (Lubin et al., 2004; Ottenbros 196 
et al., 2021). Considering that the concentrations of lipophilic biomarkers vary depending on 197 
lipid levels, the concentrations of OCs after lipid standardization was calculated and expressed 198 
in ng/g lipid for subsequent analyses. 199 
 200 

2.3. Outcome assessment 201 
Anthropometric data of children at birth were collected from maternity medical records. Data 202 
for the next three years were obtained from child and family registration records (Kind en Gezin, 203 
2022), followed by data for ages 4 to 8 years through school physical examination (CLB, 2022). 204 
Based on weight (kg) and height (m2) we calculated the body mass index (BMI) (kg/m2). There 205 
were a total of 7,666 BMI measurements (P25-P75: 14.4-16.9 kg/m2) for 1,418 children from 206 
birth to 8 years of age in the pooled dataset FLEHS_OCs (on average 5 measurements per 207 
child) and 2,281 BMI measurements (P25-P75: 14.7-16.9 kg/m2) for 346 children in the pooled 208 
dataset FLEHS_PFAS (on average 7 measurements per child) (Figure S1). In this study, we 209 
analyzed two outcomes, i.e., infant growth and childhood growth. First, we estimated BMI at 210 
birth and exactly 2 years using data from birth to 3 years by fitting sex-specific linear mixed 211 
models with a natural cubic spline basis expansion term for child age (noted as “s[age]”) and 212 
the spline was included as both fixed and random effects (Iszatt et al., 2015; Mendez et al., 213 
2011). We then calculated sex-specific BMI z-scores at birth and 2 years, respectively, 214 
according to internal standardization. Subsequently, the change in BMI z-scores was defined 215 
as infant growth. Second, the BMI trajectory was characterized as childhood growth based on 216 
repeated measurements of BMI from birth up to 8 years, prior to possible growth acceleration 217 
due to early puberty (Papadopoulou et al., 2021). 218 
 219 
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2.4. Covariates 220 
We identified the minimally sufficient adjustment set of covariates using a directed acyclic 221 
graph (DAG) (Figure S2): maternal education (low, median, high), maternal age at delivery 222 
(years), maternal pre-pregnancy BMI (kg/m2), parity (0, 1, ≥2), maternal smoking during 223 
pregnancy (non-smoking, smoking), cohort (FLEHS I, II; representing multiple unknown, 224 
potential confounding factors), child sex (boy, girl). We also included blood lipid (g/L) as a 225 
covariate in the OCs-specific regression models to further control for residual confounding, as 226 
this approach of combining lipid standardization with covariate adjustment for lipid levels has 227 
been recommended for such an exposure-outcome association assessment (O’Brien et al., 228 
2016; Schisterman et al., 2005), and included s[age] as a control variable in the childhood 229 
growth trajectory models to enhance the precision of effect estimates. Information on all these 230 
covariates was retrieved from maternity medical records and questionnaires completed by the 231 
mothers. 232 
 233 

2.5. Statistical analysis 234 
Missing values of exposures and covariates were multiply imputed with 100 imputed datasets 235 
using multivariate imputation by chained equations as implemented in R package mice 236 
(Buuren and Groothuis-Oudshoorn, 2011). The procedure of multiple imputation is further 237 
described in Table S2.  238 
 239 
For the analysis of infant growth, we excluded 385 and 139 subjects who had only one BMI 240 
measurement, resulting in a final study population of 1033 and 207 subjects in FLEHS_OCs 241 
and FLEHS_PFAS, respectively. We performed single-pollutant analyses using linear 242 
regression models adjusted for covariates maternal education, maternal age at delivery, 243 
maternal pre-pregnancy BMI, parity, maternal smoking during pregnancy, cohort, child sex 244 
and blood lipid (only for OCs-specific models) to examine the associations between each POP 245 
and BMI z-score change. We evaluated potential interactions between sex and POPs by 246 
introducing an interaction term of [exposure x child sex] in the models (Zou, 2008), along with 247 
sex-stratified analyses. The exposures were scaled to interquartile range (IQR) and the effect 248 
estimates were expressed per IQR of exposure. To minimize the potential co-exposure 249 
confounding, we also performed multi-pollutant analyses using elastic net (ENET) (Zou and 250 
Hastie, 2005) in the R package glmnet (Friedman et al., 2010), a variable selection technique 251 
that more effectively in tackles multicollinearity than single-pollutant models (Agier et al., 2016; 252 
Govarts et al., 2020; Lenters et al., 2018). We conducted ENET modelling separately for OCs 253 
and PFAS across 100 imputed datasets. The optimal degree of penalization, within each 254 
imputed dataset was determined by minimization of 10-fold cross-validation error. To address 255 
the variability arising from imputation and instability inherent to penalization models, we took 256 
the mean of ENET effect estimates fitted on 100 imputed datasets for those exposures 257 
selected (β ≠ 0) in more than half of the 100 models (Cadiou and Slama, 2021; Lenters et al., 258 
2019). Subsequently, we conducted stability selection (Meinshausen and Bühlmann, 2010) to 259 
control false selection rate using routines from R package stabsel (Shah and Samworth, 2013) 260 
that were modified to allow subsampling from different imputed datasets. 261 
 262 
For the analysis of childhood growth, we used the R packages lme4 (Bates et al., 2015) and 263 
splines (Friedman et al., 2010) to fit linear mixed models with fixed effects of s[age] with child-264 
specific random intercepts and random coefficients for s[age] (Elhakeem et al., 2021), to 265 
account for the non-linear child age-BMI relation and repeated BMI measurements for each 266 
child. The number and location of knots were selected based on the AICs of models fitted 267 
across a grid of one to four knots. The selected model included three knots located at 1 month, 268 
6 months and 2 years. Associations between prenatal POP exposures and childhood BMI 269 
trajectories were examined by including an additive interaction term of [exposure x s[age]] and 270 
adjusted for covariates maternal education, maternal age at delivery, maternal pre-pregnancy 271 
BMI, parity, maternal smoking during pregnancy, cohort, child sex and blood lipid (only for 272 
OCs-specific models). To visualize the shapes of trajectories and to aid the interpretation of 273 
the results, we compared BMI trajectories modelled at the P10 and P90 of prenatal POPs 274 
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levels. Effect modification by sex was examined by introducing a three-way interaction term of 275 
[exposure x s[age] x child sex]. 276 
 277 
As a sensitivity analysis, we conducted analyses excluding preterm children, as preterm is a 278 
potential mediator of the effects of chemical exposures on child growth. Preterm children have 279 
been shown to be at higher risk of developing childhood obesity compared to term children (Li 280 
et al., 2012). Lastly, complete case analyses were also performed to compare the results with 281 
those obtained with imputed data. 282 
 283 
All of the statistical analyses were performed in R version 4.1.0 (R CoreTeam, 2021). 284 
 285 

3. Results 286 
 287 
Participant characteristics differed slightly across the two study populations (Table 1). Mothers 288 
were a median of 30 years of age at delivery, and reported a median BMI of 22 kg/m2 prior to 289 
their pregnancy. The majority were nulliparous, highly educated, and did not smoke during 290 
pregnancy. More than 95% children were full-term. The distributions of BMI measurements by 291 
child age are presented in Table S3. Registered BMI data of more than half of study population 292 
were available during the first three years, followed by less BMI data collected at the start of 293 
the school period (4-6 years of age), and then more data available at the later period (6-8 294 
years of age). POP levels decreased over time between FLEHS I and II (Table S1). In the 295 
pooled datasets, p,p’-DDE (102.8 ng/g lipid) exhibited the highest median level among OCs, 296 
while the median level of PFOA (1500 ng/L) was much lower than PFOS (2700 ng/L). Pearson 297 
correlations ranged from moderate to high within OCs (0.24-0.89) and between PFAS (0.60), 298 
while the correlations between OCs and PFAS (0.08-0.31) were relatively low (Figure S3). 299 
 300 
In the analysis of infant growth, PCB-153 showed a positive association in the single-pollutant 301 
model, with an increase of 0.11 (95% CI: 0.01, 0.22) in BMI z-score change per IQR of PCB-302 
153 (33.6 ng/g lipid) (Table 2). This association was consistent in the multi-pollutant approach 303 
that PCB-153 was selected in 99 of the 100 OCs-specific ENET models (Table 2). p,p’-DDE 304 
was selected in 84 out of the 100 penalized ENET models with a decrease of 0.05 in BMI z-305 
score change per IQR of exposure (123.5 ng/g lipid); however, the effect estimate for p,p’-306 
DDE was imprecise in the single-pollutant model (Table 2). In the ENET-based stability 307 
selection analysis, no exposure met the threshold of stability selection testing with a per-family 308 
error rate (PFER) value of 0.50 and a selection probability of 0.80 (Figure S4). We did not 309 
observe a statistically significant association with either PFAS, either in single-pollutant 310 
models or multi-pollutant models. There was no evidence of effect modification by sex with p-311 
values for the interaction estimated from single-pollutant models ranging from 0.21 to 0.72 for 312 
PCBs and PFAS, although for PCB-153 we observed a stronger increase in BMI z-score 313 
change for girls (β = 0.15, 95% CI: 0.02, 0.23) than boys (β = 0.07, 95% CI: -0.07, 0.21) (Table 314 
S4). There were significant interactions between child sex and p,p’-DDE (P-interaction = 0.01), 315 
and child sex and HCB (P-interaction = 0.03), however, we did not observe any significant 316 
association for either boys (p,p’-DDE: β = -0.07, 95% CI: -0.14, 0.01; HCB: β = -0.05, 95% CI: 317 
-0.18, 0.08) or girls (p,p’-DDE: β = -0.03, 95% CI: -0.05, 0.12; HCB: β = 0.12, 95% CI: -0.02, 318 
0.26) (Table S4). 319 
 320 
In the analysis of childhood growth trajectories, we did not observe any clear differences in 321 
growth by exposure levels, as reflected by the non-significant interaction terms between 322 
exposures and child age, and the largely overlapping 95% confidence interval (CI) bands for 323 
the mean BMI as function of child age at P10 and P90 of exposure levels (Figure 1). No effect 324 
modification by child sex was observed (p-values for three-way interactions ranged from 0.28 325 
to 0.84). 326 
 327 
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In the sensitivity analyses, the results after excluding preterm children were consistent with 328 
the main analyses (data not shown). The results of complete case analysis were mostly in line 329 
with those using multiply imputed data (Table S4 and S5; Figure S5 and S6). 330 
 331 

4. Discussion 332 
 333 
In this study of mother-child pairs from Flanders, Belgium, the relationship between prenatal 334 
exposure to POPs and childhood growth in the intervals of 0-2 years and of 0-8 years was 335 
examined. We found indications that PCB-153 was associated with increased infant growth in 336 
the first 2 years and that p,p’-DDE was associated with decreased infant growth, although 337 
these associations were imprecise and unstable. Findings do not support that prenatal POP 338 
exposures led to persistent perturbations of childhood growth trajectories up to 8 years of age. 339 
 340 
Our observation that exposure to PCB-153 may contribute to increased infant growth is 341 
consistent with one study also using data from FLEHS I cohort but with smaller sample size, 342 
which has reported increased BMI-score through 3 years of age in Flemish children was 343 
associated with higher concentrations of PCBs (congeners 118, 138, 153, 170, 180) in cord 344 
blood (Verhulst et al., 2009). However, in some other studies (Iszatt et al., 2015; Mendez et 345 
al., 2011; Valvi et al., 2014) which have either pooled data from several cohorts across Europe 346 
with very different exposure levels or had smaller sample size, PCB-153 was not found to be 347 
a risk factor for obesity in the very first years of life. The observed possible association 348 
between p,p’-DDE and decreased infant growth is consistent with the results from a recent 349 
study of 1039 children at 6 months (Yang et al., 2021). However, a few other studies 350 
concerning prenatal p,p’-DDE exposure found either positive (Iszatt et al., 2015; Valvi et al., 351 
2014) or null (Cupul-Uicab et al., 2010; Garced et al., 2012) associations with child growth 352 
during infancy. Interestingly, the studies that reported null associations had much higher 353 
concentrations (median > 700 ng/g lipid) of p,p’-DDE, whereas studies that reported positive 354 
or negative associations had lower concentrations. The disparity in findings across studies 355 
may be explained by possible non-monotonic dose-response relationship between EDCs and 356 
adverse health effects (Vandenberg et al., 2012), and the differences in the exposure levels. 357 
Two studies have reported inverse associations between prenatal PFAS and anthropometric 358 
measurements in the first 2 years of infancy, one from 1,010 Danish mother-child pairs and 359 
the other from 334 U.S. pairs (Andersen et al., 2010; Shoaff et al., 2018), however, these 360 
associations were not found to be significant in our study.  361 
 362 
Overall, different POP levels, growth stages and growth outcome definitions made the 363 
interpretations and conclusions among previous studies on infant growth rather mixed and 364 
difficult to compare. In addition, most studies mentioned above only assessed single-pollutant 365 
models, which could suffer from some degree of co-exposure confounding bias from other 366 
chemical exposures (Cohen and Jefferies, 2019). Therefore, additional studies with different 367 
exposure and outcome windows and multi-pollutant approaches are needed to validate our 368 
results and more comprehensively assess the research question. 369 
 370 
We did not observe differences in BMI trajectories associated with prenatal POP levels and 371 
therefore the present study did not provide evidence on the persistence of effects of early-life 372 
POP exposures. Despite having BMI measurements over 8 years, the distribution of 373 
measurements was unbalanced as data was collected through different resources during 374 
three time periods, and this may have hampered the statistical power to detect perturbations 375 
caused by POP exposures. To our knowledge, no previous study has reported the influence 376 
of OCs on long-term childhood growth trajectories and additional studies are needed to verify 377 
our results. In a recent study of 345 U.S. mother-child pairs (Braun et al., 2021), prenatal 378 
PFOA was associated with alterations in BMI trajectories over the first 12 years of life, which 379 
differs from our results; this may be due to relatively lower levels of PFOA in our study 380 
population. In concordance with our study, prenatal PFOS was not found to affect BMI 381 
trajectory throughout childhood (Braun et al., 2021), although the median concentration of 382 
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PFOS in that study is five times higher than ours. We did not evaluate multi-pollutant models 383 
for growth trajectories because our data did not provide enough statistical power to perform 384 
these models, coupled with the fact that no association was observed in the single-pollutant 385 
models. 386 
 387 
Although the mechanisms underlying POP exposures and obesity are not entirely clear, p,p’-388 
DDE has been suggested to disrupt fatty acid compositions in rats (Rodríguez-Alcalá et al., 389 
2015) and have effects on regulators of adipogenesis in mice and human cells (Cano-Sancho 390 
et al., 2017). PCBs have been found to interfere with thyroid hormones (Dirinck et al., 2011; 391 
Koppe et al., 2006) and glucose metabolism (Lee et al., 2007; Wu et al., 2017).  392 
 393 
There are several strengths of the present study worth highlighting. One of the major strengths 394 
is the repeated anthropometric measurements of children over a long period, allowing us to 395 
explore the relationships between prenatal exposure to POPs and childhood growth at 396 
different stages (i.e., infant growth from birth to age 2 and childhood growth trajectories from 397 
birth to age 8). The sample size of the study was enhanced by pooling data from two cohorts 398 
and imputing missing values. In addition, the prospective longitudinal study design with long-399 
term follow-up and detailed information on confounders are also advantages of our study. 400 
Health risk assessment of chemical exposures was improved by accounting for multiple 401 
pollutants simultaneously. 402 
 403 
There are also some limitations of the present study. First, information on breastfeeding that 404 
contributes to exposure in early life was not available, thus we could not evaluate other 405 
sensitive time windows of exposure. However, in practice prenatal and postnatal exposures 406 
to OCs are highly correlated even with differences in breastfeeding duration, limiting the power 407 
to disentangle sensitive exposure windows related to breastfeeding duration (Lenters et al., 408 
2019; Verner et al., 2015); as for PFAS, they are less carried in breast milk as they are not 409 
lipophilic. Second, BMI measurements were not assessed at fixed timepoints, but rather at 410 
irregular intervals, so that we had to conduct comprehensive models to estimate BMI at birth 411 
and age 2 for the infant growth analysis. Lastly, residual confounding bias may exist due to 412 
uncontrolled unmeasured confounders, although we expect this to be minimal as we did 413 
account for a wide range of covariates that have been shown to be important. 414 
 415 

5. Conclusion 416 
 417 
This study provides some support for effect of prenatal PCB-153 on elevated infant growth. 418 
Prenatal p,p’-DDE may be associated with reduced infant growth. No persistent effects of 419 
prenatal POP exposures across childhood were observed. 420 
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Table 1. Study population characteristics of mother-child pairs in FLEHS cohorts, Flanders, Belgium. 694 
 695 

Characteristics 
[N (%a) or median (P25-P75)] 

FLEHS I 
(2002-2004) 
(N = 1,171) 

FLEHS Ib 
(2002-2004) 

(N = 99) 

FLEHS II 
(2008-2009) 

(N = 247) 

Pooled 
FLEHS_OCs  
(N = 1,418) 

Pooled 
FLEHS_PFAS 

(N = 346) 

 
Maternal education 

Low 
Median 

High 
Missing 

 
 

129 (11) 
440 (38) 
559 (48) 

43 (4) 

 
 

5 (5) 
24 (24) 
69 (70) 

1 (1) 

 
 

22 (9) 
73 (30) 

149 (60) 
3 (1) 

 
 

151 (11) 
513 (36) 
708 (50) 

46 (3) 

 
 

27 (8) 
97 (28) 

218 (63) 
4 (1) 

 
Parity 

0 
1 
≥2 

Missing 

 
 

717 (61) 
312 (27) 
142 (12) 

0 (0) 

 
 

56 (57) 
29 (29) 
14 (14) 

0 (0) 

 
 

100 (40) 
80 (32) 
66 (27) 

1 (0) 

 
 

817 (58) 
392 (28) 
208 (15) 

1 (0) 

 
 

156 (45) 
109 (32) 
80 (23) 

1 (0) 
 

Smoking during pregnancy 
Non-smoking 

Smoking 
Missing 

 
 

966 (82) 
185 (16) 

20 (2) 

 
 

94 (95) 
4 (4) 
1 (1) 

 
 

212 (86) 
29 (12) 

6 (2) 

 
 

1,178 (83) 
214 (15) 

26 (2) 

 
 

306 (88) 
33 (10) 

7 (2) 
 

Infant’s sex 
Boy 
Girl 

 
 

559 (48) 
612 (52) 

 
 

47 (47) 
52 (53) 

 
 

120 (49) 
127 (51) 

 
 

679 (48) 
739 (52) 

 
 

167 (48) 
179 (52) 

 
Pre-pregnancy BMI (kg/m2) 

Missing, N (%) 

 
22.4 (20.3-25.1) 

47 (4) 

 
22.0 (20.3-24.7) 

1 (1) 

 
22.3 (20.4-24.8) 

2 (1) 

 
22.3 (20.3-25.0) 

49 (3) 

 
22.2 (20.4-24.8) 

3 (1) 
 

Maternal age at delivery 
(years) 

Missing, N (%) 

 
30.0 (27.0-32.0) 

20 (2) 

 
30.5 (28.0-33.0) 

1 (1) 

 
30.0 (28.0-33.0) 

0 (0) 

 
30.0 (27.0-32.0) 

20 (1) 

 
30.0 (28.0-33.0) 

1 (0) 

 
Gestational age 

Preterm 
Full-term 
Missing 

 
 

38 (3) 
1,121 (96) 

12 (1) 

 
 

2 (2) 
96 (97) 

1 (1) 

 
 

5 (2) 
237 (96) 

5 (2) 

 
 

43 (3) 
1,358 (96) 

17 (1) 

 
 

7 (2) 
333 (96) 

6 (2) 
 

Lipid (g/L) 
Missing, N (%) 

 
2.0 (1.6-2.5) 

60 (5) 

 
- 
 

 
2.0 (1.7-2.3) 

3 (1) 

 
2.0 (1.7-2.4) 

63 (4) 

 
- 
 

 
Birth weight 

 
 

 
 
 

 
 

 
 

<2500 g 
≥2500 g 

Missing, N (%) 

21 (2) 
1,143 (98) 

7 (1) 

0 (0) 
99 (100) 

0 (0) 

5 (2) 
242 (98) 

0 (0) 

26 (2) 
1,385 (98) 

7 (0) 

5 (1) 
341 (99) 

0 (0) 

 696 
Note:  697 
a Percentages may not add up to 100 due to rounding.  698 
b The subgroup of FLEHS I where PFAS data was available. 699 
Abbreviations: OC, organochlorines; PFAS, poly- and perfluoroalkyl substances; BMI, body mass index; 700 
P, percentile. 701 
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Table 2.  Associations between prenatal exposures and infant growth. 702 
 703 

Exposure 
Single-pollutant models Multi-pollutant ENET modelsb 

βa (95% CI) P-value Freqc./100 Mean βa, d 

OCs, N = 1,033     

p,p’-DDE (IQR: 123.5 ng/g lipid) -0.02 (-0.08, 0.03) 0.42 84 -0.05 
HCB (IQR: 20.8 ng/g lipid) 0.03 (-0.06, 0.13) 0.49 29  

PCB-138 (IQR: 18.9 ng/g lipid) 0.03 (-0.06, 0.12) 0.54 5  
PCB-153 (IQR: 33.6 ng/g lipid) 0.11 (0.01, 0.22) 0.03 99 0.21 
PCB-180 (IQR: 19.3 ng/g lipid) 0.08 (-0.02, 0.19) 0.11 34  

PFAS, N = 207     

PFOA (IQR: 1000 ng/L) 0.05 (-0.17, 0.26) 0.66 14  
PFOS (IQR: 2300 ng/L) -0.11 (-0.30, 0.07) 0.22 14  

 704 
Note:  705 
a βs are expressed as change in child BMI z-score from 0 to 2 years per IQR of exposure, adjusted for 706 
maternal education, parity, maternal smoking during the pregnancy, maternal BMI pre-pregnancy, 707 
maternal age at delivery, cohort, child sex and blood lipid (only included in OCs-specific models). 708 
b OCs- and PFAS-penalized ENET models were run separately across 100 multiply imputed datasets 709 
and were fitted across a grid of the α (0.6-0.9) and λ values. The optimal degrees of penalization were 710 
determined based on the minimum mean cross-validation error. 711 
c Freq. represents the number of ENET models selected among 100 ENET models (using 100 multiply 712 
imputed datasets). 713 
d Mean βs represent the mean across the 100 ENET models (using 100 multiply imputed datasets). 714 
Abbreviations: OC, organochlorines; PFAS, poly- and perfluoroalkyl substances; BMI, body mass index; 715 
IQR, interquartile range; CI, confidence interval; ENET, elastic net. 716 
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Figure 1. 8-year BMI trajectories according to prenatal exposure levels (P10, P90). 751 
 752 
Note: Derived using linear mixed models with natural cubic splines, with an interaction term between 753 
the child age spline and exposure (continuous). Adjusted for maternal education, parity, maternal 754 
smoking during the pregnancy, maternal BMI pre-pregnancy, maternal age at delivery, cohort, child sex 755 
and blood lipid (only included in OCs-specific models). Solid lines with shaded bands describe mean 756 
BMI and 95% CI. Fringes along x-axis of each plot indicate child age and number of BMI measurements. 757 
Analyses were performed using multiply imputed data, of which 1,418 children with 7,666 observations 758 
for OCs-specific growth trajectories; 346 children with 2,281 observations for PFAS-specific growth 759 
trajectories. 760 
Abbreviations: BMI, body mass index; P, percentile; CI, confidence interval; OC, organochlorines; PFAS, 761 
poly- and perfluoroalkyl substances. 762 
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