1	Triglyceride-glucose index and the risk of heart failure: evidence from two large
2	cohorts and a Mendelian randomization analysis
3	Short Title: Triglyceride-glucose index and the risk of heart failure
4	Xintao Li, MD ^{1,2†} , Jeffrey Shi Kai Chan, MBChB ^{2†} , Bo Guan, MD ³ , Shi Peng, MD,
5	PhD ¹ , Xiaoyu Wu, MD ¹ , Jiandong Zhou, PhD ^{2,5} , Jeremy Man Ho Hui ² , Yan Hiu
6	Athena Lee ² , Danish Iltaf Satti ² , Shek Long Tsang MBBS ² , Shouling Wu, MD, PhD
7	⁴ , Songwen Chen, MD, PhD ^{1*} , Gary Tse, MD, PhD ^{2,6,7*} , Shaowen Liu, MD, PhD ^{1*} .
8	
9	¹ Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai
10	Jiao Tong University, Shanghai, China
11	² Cardiovascular Analytics Group, Hong Kong – United Kingdom – China
12	collaboration
13	³ Geriatric Cardiology Department of the Second Medical Center and National Clinical
14	Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
15	⁴ Department of Cardiology, Kailuan General Hospital, Tangshan 063000, China.
16	⁵ Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
17	⁶ Kent and Medway Medical School, Canterbury, Kent, CT2 7NT, United Kingdom.
18	⁷ Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease,
19	Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin
20	Medical University, Tianjin 300211, China.
21	

22

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

23 [†] 1	These authors	have contributed	equally to	this work a	and share	first authorsh	ip
-------------------	---------------	------------------	------------	-------------	-----------	----------------	----

24

25	Corres	ponding	author:

- 26 Professor Shaowen Liu, MD, PhD, Department of Cardiology, Shanghai General
- 27 Hospital, School of Medicine, Shanghai Jiao Tong University, 200080 Shanghai, China
- 28 Email: shaowen.liu@hotmail.com

29

- 30 Co-corresponding author:
- 31 Professor Gary Tse, MD, PhD, Kent and Medway Medical School, Canterbury, Kent,
- 32 CT2 7NT, United Kingdom. Email: garytse86@gmail.com
- 33 Dr. Songwen Chen, MD, PhD, Department of Cardiology, Shanghai General Hospital,
- 34 School of Medicine, Shanghai Jiao Tong University, 200080 Shanghai, China
- 35 Email: chensongwen@hotmail.com
- 36
- 37 Total word count of the manuscript:

39 Abstract

40	Background : The relationship between triglyceride-glucose (TyG) index, an emerging
41	marker of insulin resistance, and the risk of incident heart failure (HF) was unclear. This
42	study thus aimed to investigate this relationship.

43

Methods: Subjects without prevalent cardiovascular diseases from the prospective 44 Kailuan cohort (recruited during 2006-2007) and a retrospective cohort of family 45 medicine patients from Hong Kong (recruited during 2000-2003) were followed up 46 47 until December 31st, 2019 for the outcome of incident HF. Separate adjusted hazard ratios (aHRs) summarizing the relationship between TyG index and HF risk in the two 48 cohorts were combined using a random-effect meta-analysis. Additionally, a two-49 50 sample Mendelian randomization (MR) of published genome-wide association study data was performed to assess the causality of observed associations. 51

52

53 **Results**: In total, 95,996 and 19,345 subjects from the Kailuan and Hong Kong cohorts were analyzed, respectively, with 2,726 cases (2.8%) of incident HF in the former and 54 1,709 (7.0%) in the latter. Subjects in the highest quartile of TyG index had the highest 55 risk of incident HF in both cohorts (Kailuan: aHR 1.23 (95% confidence interval: 1.09-56 1.39), *P_{Trend}* <0.001; Hong Kong: aHR 1.21 (1.04-1.40), *P_{Trend}* =0.007; both compared 57 with the lowest quartile). Meta-analysis showed similar results (highest versus lowest 58 quartile: HR 1.22(1.11-1.34), P<0.0001). Findings from MR analysis, which included 59 47,309 cases and 930,014 controls, supported a causal relationship between higher TyG 60

61 index and increased risk of HF (odds ratio 1.27(1.15-1.40), P < 0.001).

62

- 63 **Conclusion**: A higher TyG index is an independent and causal risk factor for incident
- 64 HF in the general population.

65

- 66 Keywords: Heart failure; Triglyceride-glucose index; Risk stratification; Mendelian
- 67 Randomization; Insulin resistance.

69 Clinical Perspective:

70 What is new?

- In 115,341 subjects from two large cohorts in China, an elevated triglyceride-
- 72 glucose (TyG) index was independently associated with an increased risk of
- 73 incident heart failure (HF).
- Two-sample Mendelian randomization analysis based on published genome-wide
- 75 association studies found significant association between genetically determined
- 76 TyG index and the risk of HF.
- Together, these findings suggest that a higher TyG index is an independent and
- causal risk factor of incident HF in the general population.
- 79 What are the clinical implications?
- The TyG index may facilitate recognition of individuals at elevated risk of incident
- 81 HF and allow early preventive interventions.
- The demonstrated causal effect of TyG index on incident HF warrants further
 research to fully understand the underlying mechanisms.

85 Introduction

Heart failure (HF) is associated with significant morbidity and mortality, with contemporary five-year survival rates of less than 50%¹. The prevalence of HF has been estimated to be 1-2% in developed countries and is projected to double by 2060^{2, 3}. Given the enormous public health and socioeconomic burden caused by HF, it is critically important to identify individuals at high risk of HF and to implement preventive interventions as early as possible⁴.

92

Recently, the role of metabolic disorders in the development of HF has been 93 increasingly investigated⁵. Insulin resistance, a hallmark of type II diabetes mellitus and 94 metabolic syndrome, has been observed to be associated with adverse cardiac 95 remodeling and dysfunction⁶. Molecular studies have provided ample evidence for the 96 etiological role of insulin resistance in the development of HF^{7, 8}. However, the gold 97 standard method for measuring insulin sensitivity, the hyperinsulinaemic-euglycaemic 98 clamp test, is time-consuming and invasive⁹, which has impeded its widespread use in 99 clinical practice. 100

101

102 The triglyceride-glucose (TyG) index, a simple, dimensionless marker derived from 103 fasting blood triglyceride and glucose levels as measured in routine biochemical tests, 104 has been proposed and validated as a surrogate marker of insulin resistance¹⁰. Previous 105 studies have found a positive association between TyG index and the risk of various 106 metabolic and atherosclerotic cardiovascular diseases^{11, 12}. However, few studies have

107	been conducted to investigate the association between TyG index and the risk of
108	incident HF, and whether the association is causal remains undetermined.
109	
110	Mendelian randomization (MR) makes use of genetic variants as instrumental variables
111	(IVs) to generate causal estimates of the long-term effects of risk factors on outcomes ¹³ .
112	MR analysis can overcome the limitations of residual confounding and reverse
113	causation in conventional observational studies ^{13, 14} . With the development of genome-
114	wide association studies (GWAS), MR is highly suited and has been used for
115	investigating the causal association between TyG index and HF ^{15, 16} .
116	
117	As such, the present study aimed to assess the association between the TyG index and
118	the risk of incident HF, as well as using a two-sample MR study to determine whether
119	such associations were causal in nature.
120	
121	Methods
122	Study design and population
123	Study subjects were identified from two Chinese studies, the Kailuan cohort in northern
124	China and a territory-wide cohort in Hong Kong. The protocol for this study was in
125	accordance with the guidelines of the Helsinki Declaration and this study was approved
126	by the Ethics Committee at the Kailuan General Hospital and the Institutional Review
127	Board of the University of Hong Kong / Hospital Authority Hong Kong West Cluster.

129	The Kailuan Study is a prospective cohort that based on a community in the Tangshan
130	City. Details of the study has been published elsewhere ¹⁷ . In brief, a total of 101,510
131	subjects (aged 18 - 98 years; 81,110 males) were enrolled in the Kailuan Study at
132	baseline (2006-2007), and received an interview of standardized questionnaires and
133	clinical examinations at 11 hospitals responsible for health care of the community. The
134	subjects were then followed up with repeat questionnaires, clinical and laboratory
135	examinations every two years. All subjects gave informed consent to their enrolment in
136	this study. Subjects with prevalent cancer and cardiovascular diseases, including HF,
137	atrial fibrillation (AF), myocardial infarction (MI), and ischemic stroke were excluded,
138	as well as those with missing baseline levels of triglyceride (TG) or fasting blood
139	glucose (FBG).

140

Data for the Hong Kong cohort were extracted retrospectively from the Clinical Data 141 Analysis and Reporting System (CDARS), an administrative electronic medical records 142 database that records the basic demographics, diagnoses, selected procedures, 143 medication prescriptions, and selected laboratory measurements of all patients that 144 attended public healthcare institutions in Hong Kong which serve an estimated 90% of 145 the population¹⁸. Diagnoses in CDARS were recorded using International Classification 146 of Diseases, Ninth revision (ICD-9) codes regardless of the time of data entry, as ICD-147 10 has not been implemented in CDARS to date. The ICD-9 codes used for identifying 148 comorbid conditions and the outcome (HF) were summarized in Table S1. CDARS has 149 been extensively used in prior studies and has been shown to have good diagnostic 150

151	coding accuracy ^{19, 20} . As only retrospective, deidentified data were used, the
152	requirement for individual patient consent has been waived. For this study, adult
153	patients (18 years old or above) attending a family medicine clinic in Hong Kong during
154	the years 2000-2003 with at least one set of paired FBG and fasting TG levels at
155	baseline were included. Patients with a history of ischemic heart disease, stroke, HF,
156	AF, or cancer were excluded, as well as those who were pregnant at the time of inclusion,
157	and those with missing baseline low-density lipoprotein cholesterol (LDL-C), high-
158	density lipoprotein cholesterol (HDL-C), and total cholesterol levels.
159	
160	Data collection and definitions
161	The data collected and definitions used in this study were detailed in Supplementary
162	Methods ^{17, 21, 22} . The TyG index was calculated as ln [fasting TG (mg/dl)×FBG (mg/dl)
163	/ 2] ²³ .
164	
165	Outcomes and follow-up
166	In the Kailuan cohort, all subjects were followed from the baseline examination until
167	the date of onset of HF, date of death, or end of follow-up (December 31st, 2019),
168	whichever came first. HF was diagnosed by experienced cardiologists in accordance
169	with the guidelines of the European Society of Cardiology ²⁴ . Incident HF cases were
170	derived from the Municipal Social Insurance Institutions, hospital discharge register,

171 and death certificates.

173	In the Hong Kong cohort, all patients were followed up from inclusion until the first
174	recorded diagnosis of HF, death, or the end of follow-up (December 31st, 2019),
175	whichever came first. HF was identified using ICD-9 codes as summarized in Table S1.
176	

177 Two-sample MR analysis

Mendelian randomization is built upon three main assumptions²⁵. First, singlenucleotide polymorphisms (SNPs) selected as instrumental variables should be robustly associated with the risk factor. Second, no association should exist between genetic variants and confounders. Third, genetic variants should affect outcome only through the risk factor.

183

TyG index-associated variants that reached genome-wide significance ($P < 5 \times 10^{-8}$) 184 were retrieved from a previous GWAS¹⁶. In brief, the identified GWAS included 185 273,368 subjects from the United Kingdom Biobank, who were aged 40-69 and free 186 from diabetes mellitus and lipid metabolism disorders¹⁶. These SNPs were further 187 pruned by linkage disequilibrium with $R^2 < 0.01$ and those that were significantly 188 associated with TG or glucose were also excluded. In total, 192 IVs were selected for 189 TyG index initially. Summary statistics data for the associations of TyG index-190 associated SNPs with HF were extracted from the published GWAS performed by the 191 Heart Failure Molecular Epidemiology for Therapeutic Targets (HERMES) Consortium 192 on 47,309 cases and 930,014 controls of European ancestry²⁶. HF cases from 26 cohorts 193 of the HERMES Consortium were identified based on the clinical diagnosis of HF of 194

any etiology with no specific criteria for left ventricular ejection fraction. Details of
 subject selection were published elsewhere²⁶.

197

198 Statistical analysis

Continuous variables were presented as mean ± standard deviation (SD) or median with
 interquartile range (IQR) depending on their distribution. Categorical variables were
 presented as frequencies and percentages.

202

203 Kaplan-Meier curves were used to visualize the cumulative incidence of HF across quartiles of the TyG index. The association between baseline TyG index and the risk of 204 incident HF was analyzed using the Cox proportional hazards model, with hazard ratios 205 206 (HR) with 95% confidence intervals (CI) as the summary statistics. The Cox regression was performed with a staged approach, as detailed in Supplementary Methods. The 207 association between the risks of HF and the observed spectrum of TyG index was also 208 modelled and visualized using fractional polynomial curves with full multivariable 209 adjustments. Furthermore, competing risk regression using the Fine and Gray sub-210 distribution model was performed to address the potentially confounding issue of 211 competing risk, with death from any cause as the competing event. Sub-hazard ratios 212 (SHR) with 95% CI were used as the summary statistics. Sensitivity analyses were 213 conducted by excluding subjects with less than two-year follow-up time, and, separately, 214 215 those with medications at baseline.

216

217	A priori subgroup analyses were performed for age (<65 vs \geq 65), gender (male vs
218	female), diabetes (yes vs no), hypertension (yes vs no), dyslipidemia (yes vs no) for
219	both cohorts, and, for the Kailuan cohort, for obesity (yes vs no), and hs-CRP level (<1
220	$mg/dl vs \ge 1 mg/dl$).

221

To combine the results from the two cohorts, we extracted hazard ratios from the fully adjusted model and performed a meta-analysis using the inverse variance method with random effects to estimate the association between TyG index, both as categorical and continuous variables, and the risk of incident HF.

226

In the MR analysis, the summary exposure and outcome data were first harmonized, and SNPs significantly associated with incident HF were excluded. Causal effects of TyG index on HF were estimated by the inverse-variance weighted (IVW) method. Weighted median, MR-Egger, and pleiotropy residual sum and outlier (MR-PRESSO) methods were used for supplementary analyses. Directional pleiotropy was assessed by MR-Egger intercepts and heterogeneity among genetic variants was evaluated by Cochran's *Q* test.

234

To test the validity of causal effects estimates, multivariable MR (MVMR) using the IVW method was conducted to further investigate the direct causal effect of TyG index on HF after adjusting for confounders including BMI²⁷, SBP²⁸, DBP²⁸, LDL-c²⁹, and HDL-c²⁹. An additional sensitivity analysis was performed by excluding any SNP

239 significantly associated with those confounders.

241	All statistical analyses for the Kailuan and Hong Kong cohorts were conducted using
242	SAS version 9.4 (SAS Institute, Inc., Cary, NC), Stata 16.1 software (StataCorp,
243	College Station, TX), and/or RevMan (Version 5.1; Cochrane Collaboration, Oxford,
244	UK). The MR analyses were performed by the TwoSampleMR, MR-PRESSO and
245	MVMR packages with R version 4.0.2. All p values were two-sided, with $p < 0.05$
246	considered statistically significant.
247	
248	Results
249	Of the 101,510 subjects who took part in the Kailuan study, 95,996 subjects were
250	analyzed after applying the exclusion criteria (Figure S1). For the Hong Kong cohort,
251	24,338 patients were identified for inclusion, and 19,345 patients were analyzed after
252	applying the exclusion criteria (Figure S2). Table 1 and Table 2 shows the baseline
253	characteristics of subjects according to the baseline TyG index quartiles of two cohorts.
254	
255	In the Kailuan cohort, there were 2,726 cases (2.8%) of incident HF over a mean follow-
256	up of 12.3±2.2 years, with an overall incidence rate of 2.3 (95% CI 2.2-2.4) cases per
257	1000 person years. In the Hong Kong cohort, there were 1,709 cases (7.0%) of incident
258	HF over a mean follow-up of 16.2 \pm 4.3 years, with an overall incidence rate of 5.5 (95%)
259	CI 5.3-5.8) cases per 1000 person years. Over the study duration, 10,825 subjects
260	(11.3%) in the Kailuan cohort died (9,985 (10.1%) without developing HF), while 6,372

261 patients (32.9%) in the Hong Kong cohort died (4,996 (25.8%) without developing HF).

262

263 Associations between the TyG index and the risk of incident HF

Table 3 and Table 4 show the associations between the TyG index, assessed both as a 264 categorial and continuous variable, with the respective risks of incident HF in the 265 Kailuan and Hong Kong cohorts. The cumulative incidence of incident HF for the 266 Kailuan and the Hong Kong cohort is shown in Figures 1A and 1B, respectively. After 267 fully adjusting for potential confounders, patients in the highest quartile of the TyG 268 index had significantly higher risks of incident HF than those in the lowest quartile in 269 both the Kailuan (HR 1.23 (95% CI 1.09-1.39), P < 0.001) and Hong Kong (HR 1.21) 270 (95% CI 1.04-1.40), P = 0.007) cohorts. Similarly, every unit increment in the TyG 271 272 index was associated with a 17% and a 13% increase in the risk of HF in the Kailuan (HR 1.17 (95% CI 1.10-1.24), P < 0.001) and Hong Kong (HR 1.13 (95% CI 1.05-1.22), 273 P < 0.001) cohorts, respectively. Fractional polynomial curves with full multivariable 274 275 adjustment (Figure S3) showed a possible threshold effect in the prognostic value of the TyG index, with a lower TyG index showing no significant association with the risk 276 of incident HF, and a higher TyG index showing a grossly linear relationship with the 277 said risk. This was consistent with the multivariable Cox regression analysis as shown 278 in Tables 3 and 4 with TyG index analyzed as quartiles. Competing risk regression 279 using the Fine and Gray sub-distribution model with death from any cause as the 280 competing event also showed positive associations between a higher TyG index and a 281 high risk of incident HF (Tables 3 and 4). Sensitivity analyses produced consistent and 282

similar results (Tables 3 and 4).

284

285	Results of subgroup analyses are shown in Figure 2A and Figure 2B for the Kailuan
286	and Hong Kong cohorts, respectively. Generally, the TyG index, analyzed as a
287	continuous variable, was positively associated with the risk of HF across various
288	subgroups. There was significant interaction between gender and the TyG index in the
289	Kailuan cohort (P for interaction = 0.02), but not in the Hong Kong cohort (P for
290	interaction = 0.11). The association between TyG index and the risk of incident HF was
291	more prominent in female subjects than in male subjects in both cohorts [HR 1.21 (95%
292	CI 1.02 -1.47) for female vs. 1.15 (95% CI 1.08 - 1.23) for male in the Kailuan cohort,
293	and 1.22 (95% CI 1.10 -1.64) vs. 1.05 (95% CI 0.94 - 1.17) in the Hong Kong cohort].
294	
205	A random-effect meta-analysis combining the results from the two cohorts showed that

A random-effect meta-analysis combining the results from the two cohorts showed that the risk of incident HF of subjects in the highest quartile of the TyG index was 22% higher (95% CI 11% - 34%, P<0.0001; **Figure 3A**) than those in the lowest quartile, with every unit increment of the TyG index being associated with a 15% increase in the risk of incident HF (95% CI 10% - 21%, P<0.00001; **Figure 3B**). Similarly, subjects in the highest quartile of the TyG index had a 25% (95% CI 13% - 37%) increase in the sub-hazard of incident HF.

302

303 Two-Sample MR analysis

304	The associations between genetically determined TyG index and the risk of incident HF
305	as estimated by two-sample MR are presented in Figure 4. Analysis using the IVW
306	method demonstrated that genetic predisposition to increased TyG index was
307	significantly associated with an increased risk of incident HF (OR 1.27, 95% CI 1.15 -
308	1.40, $P < 0.001$). The Cochran's Q statistic indicated significant heterogeneity across
309	SNPs, while no indication of directional pleiotropy was found by MR-Egger intercept
310	(Table S3). The association remained consistent when using complementary methods
311	for analysis, including weighted median, MR-Egger and MRPRESSO (Figure 4).
312	
313	To verify the causal effect of TyG index on HF, we performed multivariable MR
	To verify the causal effect of TyG index on HF, we performed multivariable MR analysis by adjusting for HF risk factors, including BMI, blood pressure, and lipids.
313	
313 314	analysis by adjusting for HF risk factors, including BMI, blood pressure, and lipids.
313 314 315	analysis by adjusting for HF risk factors, including BMI, blood pressure, and lipids. The association remained stable after adjusting for single risk factors (Table S4) and in
313314315316	analysis by adjusting for HF risk factors, including BMI, blood pressure, and lipids. The association remained stable after adjusting for single risk factors (Table S4) and in a fully adjusted model (OR 1.20, 95% CI 1.02-1.41, P =0.03; Figure 4). Furthermore,
313314315316317	analysis by adjusting for HF risk factors, including BMI, blood pressure, and lipids. The association remained stable after adjusting for single risk factors (Table S4) and in a fully adjusted model (OR 1.20, 95% CI 1.02-1.41, P =0.03; Figure 4). Furthermore, results of the sensitivity analysis, in which 32 SNPs with potential pleiotropy were

321 Discussion

Utilizing observational data from two large Chinese cohorts and a two-sample MR analysis based on a public GWAS dataset, this study demonstrated that a high TyG index was an independent and causal risk factor for incident HF in the general population.

326

327	Previous studies have found independent associations between TyG index and risks of
328	atherosclerotic cardiovascular diseases, including myocardial infarction and ischemic
329	stroke ^{23, 30} . In a recent analysis of data from the Atherosclerosis Risk in Communities
330	(ARIC) study, Huang et al. also reported an association between higher TyG index and
331	higher risk of incident HF in an American population, with every standard deviation's
332	increase in TyG index (corresponding to a TyG index of 0.6) associated with a 15%
333	increase in risk ³¹ . Our study confirmed these findings in two larger cohorts from distinct
334	geographical regions in China. Unlike the ARIC study which was restricted to subjects
335	between the ages of 45-64 years old, our study included adult patients across the full
336	age range. As such, our study more closely reflects real-life practice, and our findings
337	are thus more directly generalizable.

338

Importantly, utilizing MR of GWAS data, we demonstrated that the association between 339 TyG and HF was causal by nature. Although the exact underlying mechanism for the 340 association between TyG index and HF remains to be confirmed by further molecular 341 studies, the well-established relationship between TyG index and insulin resistance 342 suggests that insulin resistance may at least be an important driver of such association¹⁰. 343 This was further reinforced by the results from the Kailuan cohort showing that the 344 association between TyG index and HF was independent of chronic inflammation, as 345 well as previous studies observing associations between insulin resistance and higher 346 risks of incident HF independent of myocardial ischaemia³²⁻³⁴. Insulin resistance may 347

lead to excessive circulating free fatty acids and triglycerides, which induces cardiac 348 lipotoxicity by generating toxic lipid intermediates, and decreases cardiac efficiency by 349 increasing fatty acid oxidation^{35, 36}. Insulin resistance is also associated with 350 disturbances of the systemic metabolic and inflammatory milieu, including increased 351 concentrations of proinflammatory cytokines, adipokines, and catecholamines, which 352 may trigger low-grade inflammation and chronic hypercatecholaminemia that result in 353 detrimental effects on cardiac function³⁷. Furthermore, insulin resistance is involved in 354 the maladaptive activation of the renin-angiotensin-aldosterone system, with chronic 355 356 hyperinsulinaemia inducing increased release of angiotensinogen from adipose tissue and upregulation of angiotensin II receptor expression, eventually resulting in adverse 357 cardiac remodeling and dysfunction³⁸. Nonetheless, the mechanisms between insulin 358 359 resistance and HF are incompletely understood to date, and remain an important area of further research. 360

361

Another major finding of the present study is that the association between TyG index 362 and the risk of HF was stronger in females than in males. Between-gender differences 363 are common in cardiovascular medicine. Previous studies have shown that women with 364 disorders of glucose metabolism have a greater risk of coronary heart disease than 365 men^{30, 39}. HF caused by obesity, diabetes, or metabolic syndrome was also found to be 366 more common in women⁴⁰. These suggest that between-gender differences in molecular 367 mechanisms, particularly those in hormonal axes, may not only influence glucose and 368 lipid metabolism, but also energy metabolism in the heart and, thereby, cardiac function. 369

Females are known to be less likely than males to develop insulin resistance⁴¹ but are 370 at higher risk of diabetic cardiomyopathy⁴², implying that females may be more 371 susceptible to cardiac damage induced by insulin resistance. Gender differences in 372 nitric oxide synthase (NOS) activity and signaling, which are critical in metabolic 373 regulation and in modulating responses to insulin resistance, are thought to be central 374 to these observations⁴³. The higher baseline levels of NOS in females predisposes to 375 higher levels of uncoupled NOS on exposure to oxidative stress, which exacerbates the 376 effects of insulin resistance, such as myocardial fibrosis and hypertrophy⁴³. 377 Additionally, considering that the mean age of subjects in this study implied that the 378 female subjects were mostly postmenopausal, the postmenopausal decline in the 379 protective effects of estrogen may contribute to gender differences in the susceptibility 380 to insulin resistance-induced cardiac damage⁴⁰. Notwithstanding the existing evidence 381 as discussed above, further studies exploring the gender differences in susceptibility to 382 insulin resistance-induced cardiac damage should provide important insights and better 383 understanding of diabetic cardiomyopathy. 384

385

Having derived consistent findings from two geographically distinct regions in China, our results suggest that the TyG index, as a surrogate marker of insulin resistance, may be widely applicable and prognostically useful regardless of geographical region and ethnicity. As subjects with prevalent major cardiovascular diseases were excluded from the present study, the analyzed cohorts had relatively low cardiovascular risks. Our results supported the TyG index as a potentially viable and effective tool for

cardiovascular risk stratification in the general population. Of note, insulin resistance 392 in many previous studies was measured by the Homeostatic Model Assessment for 393 Insulin Resistance (HOMA-IR) which requires measurements of fasting insulin and 394 glucose^{32, 33}. However, measuring insulin levels is expensive, and the HOMA-IR has 395 been mostly confined to research uses with low clinical utilization. In contrast, the TyG 396 index is simple to measure, has been validated against the euglycemic-397 hyperinsulinemic clamp test which is considered the gold standard for measuring 398 insulin resistance¹⁰, and may outperform the HOMA-IR in identifying insulin 399 resistance⁴⁴. It has also been shown to be excellent at detecting insulin resistance in 400 non-diabetic patients⁴⁵, which is important as insulin resistance and its associated 401 cardiovascular damage precedes overt type II diabetes mellitus⁴⁶. The TyG index may 402 403 therefore facilitate recognition of patients at elevated risk of incident HF, for which efficacious measures for primary prevention exist⁴. 404

405

406 *Strengths and limitations*

The strengths of our study included the large sample size, long follow-up time, and having demonstrated reproducible results across two independent observational cohorts and MR analysis. Our findings were further strengthened by multiple subgroup and sensitivity analyses yielding largely consistent results. To the best of the authors' knowledge, this was one of the first studies demonstrating causality between higher TyG index and higher risk of incident HF. Nonetheless, some limitations must be noted. First, we were unable to compare the predictive power of different methods for

assessing insulin resistance in our observational study, since fasting insulin levels were 414 unavailable for most subjects. Second, inherent to all observational studies, there may 415 be residual or unmeasured confounders that we were not able to address. Nonetheless, 416 we have included multiple important risk factors for incident HF in the multivariable 417 regression models, and the numerous sensitivity analyses yielded consistent results 418 which reinforced the validity of our findings. Third, the MR analysis was restricted to 419 patients of European descent to reduce bias from population stratification, which may 420 limit extrapolation of our MR results to other populations. Nevertheless, given that 421 422 associations between TyG index and the risk of incident HF observed in a recent report in an American cohort (the ARIC study) were comparable to our findings as observed 423 in Chinese cohorts, the causality established by our MR analysis is likely true in 424 425 Chinese patients as well. Fourth, no information was available about the subtype of incident HF. Given the different metabolic mechanisms contributing to the pathogenesis 426 of different types of HF⁴⁷, further research in this regard is warranted. Fifth, diagnoses 427 of the Hong Kong cohort were identified using ICD-9 codes and could not be 428 individually adjudicated due to the retrospective, deidentified nature of the database, as 429 well as the large sample size. Regardless, all diagnostic codes were entered by treating 430 clinicians, who were completely independent of the authors. CDARS has also been 431 shown to have good coding accuracy, specifically for cardiovascular outcomes²⁰. 432

433

434 Conclusion

435 As observed from two large, geographically distinct Chinese cohorts, a higher TyG

436	index was independently associated with higher risk of incident HF. MR analysis
437	demonstrated that the association was likely causal in nature. Further studies are
438	warranted to confirm our findings and fully elucidate the underlying biological
439	mechanisms.
440	
441	Acknowledgements
442	The authors appreciate all the subjects involved in this study, their families, and the
443	members of the survey team from the Kailuan community.
444	
445	Author contributions
446	Xintao Li and Jeffrey Shi Kai Chan designed this study, conducted the main analysis,
447	visualized the results, and wrote the first draft of the manuscript. Bo Guan, Shi Peng,
448	Xiaoyu Wu, Yan Hiu Athena Lee, Jeremy Man Ho Hui, Danish Iltaf Satti, Shek Long
449	Tsang, Shouling Wu, Jiandong Zhou, Songwen Chen, Gary Tse, and Shaowen Liu
450	reviewed and edited the article. All authors contributed to the article significantly and
451	approved the submitted version.
452	
453	Funding Sources
454	This work was supported by the National Natural Science Foundation of China (Grant
455	No. 81970273).
456	

457 **Disclosures:**

458 None.

459 **References**

- 460 1. Ziaeian B and Fonarow GC. Epidemiology and aetiology of heart failure. *Nat*461 *Rev Cardiol.* 2016;13:368-78.
- 2. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri 462 H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, 463 464 Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, 465 Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F and Kathrine Skibelund 466 467 A. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42:3599-3726. 468 3. de Boer RA, Nayor M, deFilippi CR, Enserro D, Bhambhani V, Kizer JR, Blaha 469
- 470 MJ, Brouwers FP, Cushman M, Lima JAC, Bahrami H, van der Harst P, Wang TJ,
- 471 Gansevoort RT, Fox CS, Gaggin HK, Kop WJ, Liu K, Vasan RS, Psaty BM, Lee DS,
- 472 Hillege HL, Bartz TM, Benjamin EJ, Chan C, Allison M, Gardin JM, Januzzi JL, Jr.,
- 473 Shah SJ, Levy D, Herrington DM, Larson MG, van Gilst WH, Gottdiener JS, Bertoni
- 474 AG and Ho JE. Association of Cardiovascular Biomarkers With Incident Heart
- 475 Failure With Preserved and Reduced Ejection Fraction. JAMA Cardiol. 2018;3:215-
- 476 224.
- 477 4. Greene SJ and Butler J. Primary Prevention of Heart Failure in Patients With
 478 Type 2 Diabetes Mellitus. *Circulation*. 2019;139:152-154.
- 479 5. Ho KL, Karwi QG, Connolly D, Pherwani S, Ketema EB, Ussher JR and
 480 Lopaschuk GD. Metabolic, structural and biochemical changes in diabetes and the

481 development of heart failure. *Diabetologia*. 2022;65:411-423.

482	6. Kishi S, Gidding SS, Reis JP, Colangelo LA, Venkatesh BA, Armstrong AC,
483	Isogawa A, Lewis CE, Wu C, Jacobs DR, Jr., Liu K and Lima JA. Association of Insulin
484	Resistance and Glycemic Metabolic Abnormalities With LV Structure and Function
485	in Middle Age: The CARDIA Study. JACC Cardiovasc Imaging. 2017;10:105-114.
486	7. Riehle C and Abel ED. Insulin Signaling and Heart Failure. <i>Circ Res.</i>
487	2016;118:1151-69.
488	8. Velez M, Kohli S and Sabbah HN. Animal models of insulin resistance and
489	heart failure. Heart Fail Rev. 2014;19:1-13.
490	9. Antuna-Puente B, Disse E, Rabasa-Lhoret R, Laville M, Capeau J and Bastard
491	JP. How can we measure insulin sensitivity/resistance? <i>Diabetes Metab</i> .
492	2011;37:179-88.
493	10. Guerrero-Romero F, Simental-Mendía LE, González-Ortiz M, Martínez-
494	Abundis E, Ramos-Zavala MG, Hernández-González SO, Jacques-Camarena O
495	and Rodríguez-Morán M. The product of triglycerides and glucose, a simple
496	measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic
497	clamp. J Clin Endocrinol Metab. 2010;95:3347-51.
498	11. Ding X, Wang X, Wu J, Zhang M and Cui M. Triglyceride-glucose index and
499	the incidence of atherosclerotic cardiovascular diseases: a meta-analysis of cohort

- 500 studies. *Cardiovasc Diabetol*. 2021;20:76.
- 501 12. Zou S, Yang C, Shen R, Wei X, Gong J, Pan Y, Lv Y and Xu Y. Association
- 502 Between the Triglyceride-Glucose Index and the Incidence of Diabetes in People

503 With Different Phenotypes of Obesity: A Retrospective Study. *Front Endocrinol*504 (*Lausanne*). 2021;12:784616.

505 13. Smith GD and Ebrahim S. 'Mendelian randomization': can genetic 506 epidemiology contribute to understanding environmental determinants of 507 disease? *Int J Epidemiol.* 2003;32:1-22.

508 14. Larsson SC, Burgess S and Michaëlsson K. Association of Genetic Variants

509 Related to Serum Calcium Levels With Coronary Artery Disease and Myocardial

510 Infarction. Jama. 2017;318:371-380.

15. Li X, Peng S, Guan B, Chen S, Zhou G, Wei Y, Gong C, Xu J, Lu X, Zhang X and

512 Liu S. Genetically Determined Inflammatory Biomarkers and the Risk of Heart

513 Failure: A Mendelian Randomization Study. *Front Cardiovasc Med.* 2021;8:734400.

16. Si S, Li J, Li Y, Li W, Chen X, Yuan T, Liu C, Li H, Hou L, Wang B and Xue F.

515 Causal Effect of the Triglyceride-Glucose Index and the Joint Exposure of Higher

516 Glucose and Triglyceride With Extensive Cardio-Cerebrovascular Metabolic

517 Outcomes in the UK Biobank: A Mendelian Randomization Study. Front

518 *Cardiovasc Med.* 2020;7:583473.

17. Wu S, Huang Z, Yang X, Zhou Y, Wang A, Chen L, Zhao H, Ruan C, Wu Y, Xin

520 A, Li K, Jin C and Cai J. Prevalence of ideal cardiovascular health and its relationship

- 521 with the 4-year cardiovascular events in a northern Chinese industrial city. *Circ*
- 522 *Cardiovasc Qual Outcomes*. 2012;5:487-93.

18. Kong X, Yang Y, Gao J, Guan J, Liu Y, Wang R, Xing B, Li Y and Ma W. Overview

of the health care system in Hong Kong and its referential significance to mainland

525 China. J Chin Med Assoc. 2015;78:569-73.

19. Chan JSK, Satti DI, Lee YHA, Hui JMH, Lee TTL, Chou OHI, Wai AKC, Ciobanu 526 A, Liu Y, Liu T, Roever L, Biondi-Zoccai G, Zhang Q, Cheung BMY, Zhou J and Tse 527 G. High visit-to-visit cholesterol variability predicts heart failure and adverse 528 cardiovascular events: a population-based cohort study. Eur J Prev Cardiol. 2022. 529 530 20. Wong AY, Root A, Douglas IJ, Chui CS, Chan EW, Ghebremichael-Weldeselassie Y, Siu CW, Smeeth L and Wong IC. Cardiovascular outcomes 531 associated with use of clarithromycin: population based 532 studv. Bmi. 2016;352:h6926. 533 21. Inker LA, Astor BC, Fox CH, Isakova T, Lash JP, Peralta CA, Kurella Tamura M 534 and Feldman HI. KDOQI US commentary on the 2012 KDIGO clinical practice 535 536 guideline for the evaluation and management of CKD. Am J Kidney Dis. 2014;63:713-35. 537 22. Inker LA, Eneanya ND, Coresh J, Tighiouart H, Wang D, Sang Y, Crews DC, 538 Doria A, Estrella MM, Froissart M, Grams ME, Greene T, Grubb A, Gudnason V, 539 540 Gutiérrez OM, Kalil R, Karger AB, Mauer M, Navis G, Nelson RG, Poggio ED, Rodby R, Rossing P, Rule AD, Selvin E, Seegmiller JC, Shlipak MG, Torres VE, Yang W, 541

543 Based Equations to Estimate GFR without Race. *N Engl J Med*. 2021;385:1737-

Ballew SH, Couture SJ, Powe NR and Levey AS. New Creatinine- and Cystatin C-

544 1749.

542

S, Wang Y and Wang Y. Triglyceride-glucose index and the risk of stroke and its

subtypes in the general population: an 11-year follow-up. *Cardiovasc Diabetol.*2021;20:46.

- 549 24. Swedberg K, Cleland J, Dargie H, Drexler H, Follath F, Komajda M, Tavazzi L,
- 550 Smiseth OA, Gavazzi A, Haverich A, Hoes A, Jaarsma T, Korewicki J, Lévy S, Linde
- 551 C, Lopez-Sendon JL, Nieminen MS, Piérard L and Remme WJ. Guidelines for the
- 552 diagnosis and treatment of chronic heart failure: executive summary (update
- 553 2005): The Task Force for the Diagnosis and Treatment of Chronic Heart Failure
- of the European Society of Cardiology. *Eur Heart J.* 2005;26:1115-40.
- 555 25. Burgess S, Scott RA, Timpson NJ, Davey Smith G and Thompson SG. Using
- published data in Mendelian randomization: a blueprint for efficient identification
 of causal risk factors. *Eur J Epidemiol.* 2015;30:543-52.
- 26. Shah S, Henry A, Roselli C, Lin H, Sveinbjörnsson G, Fatemifar G, Hedman Å K,
- 559 Wilk JB, Morley MP, Chaffin MD, Helgadottir A, Verweij N, Dehghan A, Almgren P,
- 560 Andersson C, Aragam KG, Ärnlöv J, Backman JD, Biggs ML, Bloom HL, Brandimarto
- J, Brown MR, Buckbinder L, Carey DJ, Chasman DI, Chen X, Chen X, Chung J,
- 562 Chutkow W, Cook JP, Delgado GE, Denaxas S, Doney AS, Dörr M, Dudley SC, Dunn
- 563 ME, Engström G, Esko T, Felix SB, Finan C, Ford I, Ghanbari M, Ghasemi S, Giedraitis
- V, Giulianini F, Gottdiener JS, Gross S, Guðbjartsson DF, Gutmann R, Haggerty CM,
- van der Harst P, Hyde CL, Ingelsson E, Jukema JW, Kavousi M, Khaw KT, Kleber
- 566 ME, Køber L, Koekemoer A, Langenberg C, Lind L, Lindgren CM, London B, Lotta
- 567 LA, Lovering RC, Luan J, Magnusson P, Mahajan A, Margulies KB, März W,
- 568 Melander O, Mordi IR, Morgan T, Morris AD, Morris AP, Morrison AC, Nagle MW,

569	Nelson CP, Niessner A, Niiranen T, O'Donoghue ML, Owens AT, Palmer CNA, Parry
570	HM, Perola M, Portilla-Fernandez E, Psaty BM, Rice KM, Ridker PM, Romaine SPR,
571	Rotter JI, Salo P, Salomaa V, van Setten J, Shalaby AA, Smelser DT, Smith NL,
572	Stender S, Stott DJ, Svensson P, Tammesoo ML, Taylor KD, Teder-Laving M,
573	Teumer A, Thorgeirsson G, Thorsteinsdottir U, Torp-Pedersen C, Trompet S, Tyl B,
574	Uitterlinden AG, Veluchamy A, Völker U, Voors AA, Wang X, Wareham NJ,
575	Waterworth D, Weeke PE, Weiss R, Wiggins KL, Xing H, Yerges-Armstrong LM, Yu
576	B, Zannad F, Zhao JH, Hemingway H, Samani NJ, McMurray JJV, Yang J, Visscher
577	PM, Newton-Cheh C, Malarstig A, Holm H, Lubitz SA, Sattar N, Holmes MV,
578	Cappola TP, Asselbergs FW, Hingorani AD, Kuchenbaecker K, Ellinor PT, Lang CC,
579	Stefansson K, Smith JG, Vasan RS, Swerdlow DI and Lumbers RT. Genome-wide
580	association and Mendelian randomisation analysis provide insights into the
581	pathogenesis of heart failure. Nature communications. 2020;11:163.
582	27. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, Powell C, Vedantam
583	S, Buchkovich ML, Yang J, Croteau-Chonka DC, Esko T, Fall T, Ferreira T,
584	Gustafsson S, Kutalik Z, Luan J, Mägi R, Randall JC, Winkler TW, Wood AR,
585	Workalemahu T, Faul JD, Smith JA, Zhao JH, Zhao W, Chen J, Fehrmann R, Hedman
586	Å K, Karjalainen J, Schmidt EM, Absher D, Amin N, Anderson D, Beekman M, Bolton
587	JL, Bragg-Gresham JL, Buyske S, Demirkan A, Deng G, Ehret GB, Feenstra B, Feitosa
588	MF, Fischer K, Goel A, Gong J, Jackson AU, Kanoni S, Kleber ME, Kristiansson K,
589	Lim U, Lotay V, Mangino M, Leach IM, Medina-Gomez C, Medland SE, Nalls MA,
590	Palmer CD, Pasko D, Pechlivanis S, Peters MJ, Prokopenko I, Shungin D, Stančákov

591	á A, Strawbridge RJ, Sung YJ, Tanaka T, Teumer A, Trompet S, van der Laan SW,
592	van Setten J, Van Vliet-Ostaptchouk JV, Wang Z, Yengo L, Zhang W, Isaacs A,
593	Albrecht E, Ärnlöv J, Arscott GM, Attwood AP, Bandinelli S, Barrett A, Bas IN, Bellis
594	C, Bennett AJ, Berne C, Blagieva R, Blüher M, Böhringer S, Bonnycastle LL, Böttcher
595	Y, Boyd HA, Bruinenberg M, Caspersen IH, Chen YI, Clarke R, Daw EW, de Craen
596	AJM, Delgado G, Dimitriou M, Doney ASF, Eklund N, Estrada K, Eury E, Folkersen
597	L, Fraser RM, Garcia ME, Geller F, Giedraitis V, Gigante B, Go AS, Golay A, Goodall
598	AH, Gordon SD, Gorski M, Grabe HJ, Grallert H, Grammer TB, Gräßler J, Grönberg
599	H, Groves CJ, Gusto G, Haessler J, Hall P, Haller T, Hallmans G, Hartman CA,
600	Hassinen M, Hayward C, Heard-Costa NL, Helmer Q, Hengstenberg C, Holmen O,
601	Hottenga JJ, James AL, Jeff JM, Johansson Å, Jolley J, Juliusdottir T, Kinnunen L,
602	Koenig W, Koskenvuo M, Kratzer W, Laitinen J, Lamina C, Leander K, Lee NR,
603	Lichtner P, Lind L, Lindström J, Lo KS, Lobbens S, Lorbeer R, Lu Y, Mach F,
604	Magnusson PKE, Mahajan A, McArdle WL, McLachlan S, Menni C, Merger S,
605	Mihailov E, Milani L, Moayyeri A, Monda KL, Morken MA, Mulas A, Müller G,
606	Müller-Nurasyid M, Musk AW, Nagaraja R, Nöthen MM, Nolte IM, Pilz S, Rayner
607	NW, Renstrom F, Rettig R, Ried JS, Ripke S, Robertson NR, Rose LM, Sanna S,
608	Scharnagl H, Scholtens S, Schumacher FR, Scott WR, Seufferlein T, Shi J, Smith AV,
609	Smolonska J, Stanton AV, Steinthorsdottir V, Stirrups K, Stringham HM, Sundström
610	J, Swertz MA, Swift AJ, Syvänen AC, Tan ST, Tayo BO, Thorand B, Thorleifsson G,
611	Tyrer JP, Uh HW, Vandenput L, Verhulst FC, Vermeulen SH, Verweij N, Vonk JM,
612	Waite LL, Warren HR, Waterworth D, Weedon MN, Wilkens LR, Willenborg C,

613	Wilsgaard T, Wojczynski MK, Wong A, Wright AF, Zhang Q, Brennan EP, Choi M,
614	Dastani Z, Drong AW, Eriksson P, Franco-Cereceda A, Gådin JR, Gharavi AG,
615	Goddard ME, Handsaker RE, Huang J, Karpe F, Kathiresan S, Keildson S, Kiryluk K,
616	Kubo M, Lee JY, Liang L, Lifton RP, Ma B, McCarroll SA, McKnight AJ, Min JL,
617	Moffatt MF, Montgomery GW, Murabito JM, Nicholson G, Nyholt DR, Okada Y,
618	Perry JRB, Dorajoo R, Reinmaa E, Salem RM, Sandholm N, Scott RA, Stolk L,
619	Takahashi A, Tanaka T, van 't Hooft FM, Vinkhuyzen AAE, Westra HJ, Zheng W,
620	Zondervan KT, Heath AC, Arveiler D, Bakker SJL, Beilby J, Bergman RN, Blangero
621	J, Bovet P, Campbell H, Caulfield MJ, Cesana G, Chakravarti A, Chasman DI, Chines
622	PS, Collins FS, Crawford DC, Cupples LA, Cusi D, Danesh J, de Faire U, den Ruijter
623	HM, Dominiczak AF, Erbel R, Erdmann J, Eriksson JG, Farrall M, Felix SB, Ferrannini
624	E, Ferrières J, Ford I, Forouhi NG, Forrester T, Franco OH, Gansevoort RT, Gejman
625	PV, Gieger C, Gottesman O, Gudnason V, Gyllensten U, Hall AS, Harris TB,
626	Hattersley AT, Hicks AA, Hindorff LA, Hingorani AD, Hofman A, Homuth G,
627	Hovingh GK, Humphries SE, Hunt SC, Hyppönen E, Illig T, Jacobs KB, Jarvelin MR,
628	Jöckel KH, Johansen B, Jousilahti P, Jukema JW, Jula AM, Kaprio J, Kastelein JJP,
629	Keinanen-Kiukaanniemi SM, Kiemeney LA, Knekt P, Kooner JS, Kooperberg C,
630	Kovacs P, Kraja AT, Kumari M, Kuusisto J, Lakka TA, Langenberg C, Marchand LL,
631	Lehtimäki T, Lyssenko V, Männistö S, Marette A, Matise TC, McKenzie CA,
632	McKnight B, Moll FL, Morris AD, Morris AP, Murray JC, Nelis M, Ohlsson C,
633	Oldehinkel AJ, Ong KK, Madden PAF, Pasterkamp G, Peden JF, Peters A, Postma
634	DS, Pramstaller PP, Price JF, Qi L, Raitakari OT, Rankinen T, Rao DC, Rice TK, Ridker

635	PM, Rioux JD, Ritchie MD, Rudan I, Salomaa V, Samani NJ, Saramies J, Sarzynski
636	MA, Schunkert H, Schwarz PEH, Sever P, Shuldiner AR, Sinisalo J, Stolk RP, Strauch
637	K, Tönjes A, Trégouët DA, Tremblay A, Tremoli E, Virtamo J, Vohl MC, Völker U,
638	Waeber G, Willemsen G, Witteman JC, Zillikens MC, Adair LS, Amouyel P,
639	Asselbergs FW, Assimes TL, Bochud M, Boehm BO, Boerwinkle E, Bornstein SR,
640	Bottinger EP, Bouchard C, Cauchi S, Chambers JC, Chanock SJ, Cooper RS, de
641	Bakker PIW, Dedoussis G, Ferrucci L, Franks PW, Froguel P, Groop LC, Haiman CA,
642	Hamsten A, Hui J, Hunter DJ, Hveem K, Kaplan RC, Kivimaki M, Kuh D, Laakso M,
643	Liu Y, Martin NG, März W, Melbye M, Metspalu A, Moebus S, Munroe PB, Njølstad
644	I, Oostra BA, Palmer CNA, Pedersen NL, Perola M, Pérusse L, Peters U, Power C,
645	Quertermous T, Rauramaa R, Rivadeneira F, Saaristo TE, Saleheen D, Sattar N,
646	Schadt EE, Schlessinger D, Slagboom PE, Snieder H, Spector TD, Thorsteinsdottir
647	U, Stumvoll M, Tuomilehto J, Uitterlinden AG, Uusitupa M, van der Harst P, Walker
648	M, Wallaschofski H, Wareham NJ, Watkins H, Weir DR, Wichmann HE, Wilson JF,
649	Zanen P, Borecki IB, Deloukas P, Fox CS, Heid IM, O'Connell JR, Strachan DP,
650	Stefansson K, van Duijn CM, Abecasis GR, Franke L, Frayling TM, McCarthy MI,
651	Visscher PM, Scherag A, Willer CJ, Boehnke M, Mohlke KL, Lindgren CM,
652	Beckmann JS, Barroso I, North KE, Ingelsson E, Hirschhorn JN, Loos RJF and
653	Speliotes EK. Genetic studies of body mass index yield new insights for obesity
654	biology. <i>Nature</i> . 2015;518:197-206.

655 28. Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H,

656 Ntritsos G, Dimou N, Cabrera CP, Karaman I, Ng FL, Evangelou M, Witkowska K,

657	Tzanis E, Hellwege JN, Giri A, Velez Edwards DR, Sun YV, Cho K, Gaziano JM,
658	Wilson PWF, Tsao PS, Kovesdy CP, Esko T, Mägi R, Milani L, Almgren P, Boutin T,
659	Debette S, Ding J, Giulianini F, Holliday EG, Jackson AU, Li-Gao R, Lin WY, Luan J,
660	Mangino M, Oldmeadow C, Prins BP, Qian Y, Sargurupremraj M, Shah N,
661	Surendran P, Thériault S, Verweij N, Willems SM, Zhao JH, Amouyel P, Connell J,
662	de Mutsert R, Doney ASF, Farrall M, Menni C, Morris AD, Noordam R, Paré G,
663	Poulter NR, Shields DC, Stanton A, Thom S, Abecasis G, Amin N, Arking DE, Ayers
664	KL, Barbieri CM, Batini C, Bis JC, Blake T, Bochud M, Boehnke M, Boerwinkle E,
665	Boomsma DI, Bottinger EP, Braund PS, Brumat M, Campbell A, Campbell H,
666	Chakravarti A, Chambers JC, Chauhan G, Ciullo M, Cocca M, Collins F, Cordell HJ,
667	Davies G, de Borst MH, de Geus EJ, Deary IJ, Deelen J, Del Greco MF, Demirkale
668	CY, Dörr M, Ehret GB, Elosua R, Enroth S, Erzurumluoglu AM, Ferreira T, Frånberg
669	M, Franco OH, Gandin I, Gasparini P, Giedraitis V, Gieger C, Girotto G, Goel A, Gow
670	AJ, Gudnason V, Guo X, Gyllensten U, Hamsten A, Harris TB, Harris SE, Hartman
671	CA, Havulinna AS, Hicks AA, Hofer E, Hofman A, Hottenga JJ, Huffman JE, Hwang
672	SJ, Ingelsson E, James A, Jansen R, Jarvelin MR, Joehanes R, Johansson Å, Johnson
673	AD, Joshi PK, Jousilahti P, Jukema JW, Jula A, Kähönen M, Kathiresan S, Keavney
674	BD, Khaw KT, Knekt P, Knight J, Kolcic I, Kooner JS, Koskinen S, Kristiansson K,
675	Kutalik Z, Laan M, Larson M, Launer LJ, Lehne B, Lehtimäki T, Liewald DCM, Lin L,
676	Lind L, Lindgren CM, Liu Y, Loos RJF, Lopez LM, Lu Y, Lyytikäinen LP, Mahajan A,
677	Mamasoula C, Marrugat J, Marten J, Milaneschi Y, Morgan A, Morris AP, Morrison
678	AC, Munson PJ, Nalls MA, Nandakumar P, Nelson CP, Niiranen T, Nolte IM, Nutile

679	T, Oldehinkel AJ, Oostra BA, O'Reilly PF, Org E, Padmanabhan S, Palmas W, Palotie
680	A, Pattie A, Penninx B, Perola M, Peters A, Polasek O, Pramstaller PP, Nguyen QT,
681	Raitakari OT, Ren M, Rettig R, Rice K, Ridker PM, Ried JS, Riese H, Ripatti S, Robino
682	A, Rose LM, Rotter JI, Rudan I, Ruggiero D, Saba Y, Sala CF, Salomaa V, Samani NJ,
683	Sarin AP, Schmidt R, Schmidt H, Shrine N, Siscovick D, Smith AV, Snieder H, Sõber
684	S, Sorice R, Starr JM, Stott DJ, Strachan DP, Strawbridge RJ, Sundström J, Swertz
685	MA, Taylor KD, Teumer A, Tobin MD, Tomaszewski M, Toniolo D, Traglia M,
686	Trompet S, Tuomilehto J, Tzourio C, Uitterlinden AG, Vaez A, van der Most PJ, van
687	Duijn CM, Vergnaud AC, Verwoert GC, Vitart V, Völker U, Vollenweider P, Vuckovic
688	D, Watkins H, Wild SH, Willemsen G, Wilson JF, Wright AF, Yao J, Zemunik T, Zhang
689	W, Attia JR, Butterworth AS, Chasman DI, Conen D, Cucca F, Danesh J, Hayward C,
690	Howson JMM, Laakso M, Lakatta EG, Langenberg C, Melander O, Mook-Kanamori
691	DO, Palmer CNA, Risch L, Scott RA, Scott RJ, Sever P, Spector TD, van der Harst P,
692	Wareham NJ, Zeggini E, Levy D, Munroe PB, Newton-Cheh C, Brown MJ, Metspalu
693	A, Hung AM, O'Donnell CJ, Edwards TL, Psaty BM, Tzoulaki I, Barnes MR, Wain LV,
694	Elliott P and Caulfield MJ. Genetic analysis of over 1 million people identifies 535
695	new loci associated with blood pressure traits. Nat Genet. 2018;50:1412-1425.
696	29. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, Ganna
697	A, Chen J, Buchkovich ML, Mora S, Beckmann JS, Bragg-Gresham JL, Chang HY,
698	Demirkan A, Den Hertog HM, Do R, Donnelly LA, Ehret GB, Esko T, Feitosa MF,
699	Ferreira T, Fischer K, Fontanillas P, Fraser RM, Freitag DF, Gurdasani D, Heikkilä K,
700	Hyppönen E, Isaacs A, Jackson AU, Johansson Å, Johnson T, Kaakinen M, Kettunen

701	J, Kleber ME, Li X, Luan J, Lyytikäinen LP, Magnusson PKE, Mangino M, Mihailov E,
702	Montasser ME, Müller-Nurasyid M, Nolte IM, O'Connell JR, Palmer CD, Perola M,
703	Petersen AK, Sanna S, Saxena R, Service SK, Shah S, Shungin D, Sidore C, Song C,
704	Strawbridge RJ, Surakka I, Tanaka T, Teslovich TM, Thorleifsson G, Van den Herik
705	EG, Voight BF, Volcik KA, Waite LL, Wong A, Wu Y, Zhang W, Absher D, Asiki G,
706	Barroso I, Been LF, Bolton JL, Bonnycastle LL, Brambilla P, Burnett MS, Cesana G,
707	Dimitriou M, Doney ASF, Döring A, Elliott P, Epstein SE, Ingi Eyjolfsson G, Gigante
708	B, Goodarzi MO, Grallert H, Gravito ML, Groves CJ, Hallmans G, Hartikainen AL,
709	Hayward C, Hernandez D, Hicks AA, Holm H, Hung YJ, Illig T, Jones MR, Kaleebu
710	P, Kastelein JJP, Khaw KT, Kim E, Klopp N, Komulainen P, Kumari M, Langenberg
711	C, Lehtimäki T, Lin SY, Lindström J, Loos RJF, Mach F, McArdle WL, Meisinger C,
712	Mitchell BD, Müller G, Nagaraja R, Narisu N, Nieminen TVM, Nsubuga RN,
713	Olafsson I, Ong KK, Palotie A, Papamarkou T, Pomilla C, Pouta A, Rader DJ, Reilly
714	MP, Ridker PM, Rivadeneira F, Rudan I, Ruokonen A, Samani N, Scharnagl H,
715	Seeley J, Silander K, Stančáková A, Stirrups K, Swift AJ, Tiret L, Uitterlinden AG, van
716	Pelt LJ, Vedantam S, Wainwright N, Wijmenga C, Wild SH, Willemsen G, Wilsgaard
717	T, Wilson JF, Young EH, Zhao JH, Adair LS, Arveiler D, Assimes TL, Bandinelli S,
718	Bennett F, Bochud M, Boehm BO, Boomsma DI, Borecki IB, Bornstein SR, Bovet P,
719	Burnier M, Campbell H, Chakravarti A, Chambers JC, Chen YI, Collins FS, Cooper
720	RS, Danesh J, Dedoussis G, de Faire U, Feranil AB, Ferrières J, Ferrucci L, Freimer
721	NB, Gieger C, Groop LC, Gudnason V, Gyllensten U, Hamsten A, Harris TB,
722	Hingorani A, Hirschhorn JN, Hofman A, Hovingh GK, Hsiung CA, Humphries SE,

723	Hunt SC, Hveem K, Iribarren C, Järvelin MR, Jula A, Kähönen M, Kaprio J, Kesäniemi
724	A, Kivimaki M, Kooner JS, Koudstaal PJ, Krauss RM, Kuh D, Kuusisto J, Kyvik KO,
725	Laakso M, Lakka TA, Lind L, Lindgren CM, Martin NG, März W, McCarthy MI,
726	McKenzie CA, Meneton P, Metspalu A, Moilanen L, Morris AD, Munroe PB,
727	Njølstad I, Pedersen NL, Power C, Pramstaller PP, Price JF, Psaty BM, Quertermous
728	T, Rauramaa R, Saleheen D, Salomaa V, Sanghera DK, Saramies J, Schwarz PEH,
729	Sheu WH, Shuldiner AR, Siegbahn A, Spector TD, Stefansson K, Strachan DP, Tayo
730	BO, Tremoli E, Tuomilehto J, Uusitupa M, van Duijn CM, Vollenweider P, Wallentin
731	L, Wareham NJ, Whitfield JB, Wolffenbuttel BHR, Ordovas JM, Boerwinkle E,
732	Palmer CNA, Thorsteinsdottir U, Chasman DI, Rotter JI, Franks PW, Ripatti S,
733	Cupples LA, Sandhu MS, Rich SS, Boehnke M, Deloukas P, Kathiresan S, Mohlke
734	KL, Ingelsson E and Abecasis GR. Discovery and refinement of loci associated with
735	lipid levels. <i>Nat Genet</i> . 2013;45:1274-1283.
736	30. Tian X, Zuo Y, Chen S, Liu Q, Tao B, Wu S and Wang A. Triglyceride-glucose
737	index is associated with the risk of myocardial infarction: an 11-year prospective
738	study in the Kailuan cohort. Cardiovasc Diabetol. 2021;20:19.
739	31. Huang R, Lin Y, Ye X, Zhong X, Xie P, Li M, Zhuang X and Liao X. Triglyceride-
740	glucose index in the development of heart failure and left ventricular dysfunction:
741	analysis of the ARIC study. Eur J Prev Cardiol. 2022.

- 32. Banerjee D, Biggs ML, Mercer L, Mukamal K, Kaplan R, Barzilay J, Kuller L, Kizer
- 743 JR, Djousse L, Tracy R, Zieman S, Lloyd-Jones D, Siscovick D and Carnethon M.
- 744 Insulin resistance and risk of incident heart failure: Cardiovascular Health Study.

745 *Circ Heart Fail*. 2013;6:364-70.

- 33. Vardeny O, Gupta DK, Claggett B, Burke S, Shah A, Loehr L, Rasmussen-Torvik 746 L, Selvin E, Chang PP, Aguilar D and Solomon SD. Insulin resistance and incident 747 heart failure the ARIC study (Atherosclerosis Risk in Communities). JACC Heart Fail. 748 2013;1:531-6. 749 750 34. Wamil M, Coleman RL, Adler Al, McMurray JJV and Holman RR. Increased Risk of Incident Heart Failure and Death Is Associated With Insulin Resistance in People 751 With Newly Diagnosed Type 2 Diabetes: UKPDS 89. Diabetes Care. 2021;44:1877-752 753 1884. 35. Kolwicz SC, Jr., Purohit S and Tian R. Cardiac metabolism and its interactions 754 with contraction, growth, and survival of cardiomyocytes. Circ Res. 2013;113:603-755 756 16. 36. Yazıcı D and Sezer H. Insulin Resistance, Obesity and Lipotoxicity. Adv Exp 757 Med Biol. 2017;960:277-304. 758 37. Nishida K and Otsu K. Inflammation and metabolic cardiomyopathy. 759
- 760 *Cardiovasc Res*. 2017;113:389-398.
- 761 38. Samuelsson AM, Bollano E, Mobini R, Larsson BM, Omerovic E, Fu M,
- 762 Waagstein F and Holmäng A. Hyperinsulinemia: effect on cardiac mass/function,
- angiotensin II receptor expression, and insulin signaling pathways. Am J Physiol
- 764 *Heart Circ Physiol*. 2006;291:H787-96.
- 39. Peters SA, Huxley RR and Woodward M. Diabetes as risk factor for incident
- coronary heart disease in women compared with men: a systematic review and

767 meta-analysis of 64 cohorts including 858,507 individuals and 28,203 coronary

- 768 events. *Diabetologia*. 2014;57:1542-51.
- 40. Gerdts E and Regitz-Zagrosek V. Sex differences in cardiometabolic disorders.
- 770 *Nat Med*. 2019;25:1657-1666.
- 41. Tramunt B, Smati S, Grandgeorge N, Lenfant F, Arnal JF, Montagner A and
- Gourdy P. Sex differences in metabolic regulation and diabetes susceptibility.
- 773 *Diabetologia*. 2020;63:453-461.
- 42. Toedebusch R, Belenchia A and Pulakat L. Diabetic Cardiomyopathy: Impact
- of Biological Sex on Disease Development and Molecular Signatures. *Front Physiol*.
- 776 2018;9:453.
- 43. Murphy E, Amanakis G, Fillmore N, Parks RJ and Sun J. Sex Differences in
 Metabolic Cardiomyopathy. *Cardiovasc Res.* 2017;113:370-377.
- 44. Vasques AC, Novaes FS, de Oliveira Mda S, Souza JR, Yamanaka A, Pareja JC,
- 780 Tambascia MA, Saad MJ and Geloneze B. TyG index performs better than HOMA
- in a Brazilian population: a hyperglycemic clamp validated study. *Diabetes Res*
- 782 *Clin Pract*. 2011;93:e98-e100.
- 45. Toro-Huamanchumo CJ, Urrunaga-Pastor D, Guarnizo-Poma M, Lazaro-
- 784 Alcantara H, Paico-Palacios S, Pantoja-Torres B, Ranilla-Seguin VDC and Benites-
- 785 Zapata VA. Triglycerides and glucose index as an insulin resistance marker in a
- sample of healthy adults. *Diabetes Metab Syndr*. 2019;13:272-277.
- 787 46. Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C and Zuñiga FA.
- 788 Association between insulin resistance and the development of cardiovascular

- 789 disease. *Cardiovasc Diabetol*. 2018;17:122.
- 47. Lakhani I, Leung KSK, Tse G and Lee APW. Novel Mechanisms in Heart Failure
- 791 With Preserved, Midrange, and Reduced Ejection Fraction. Front Physiol.
- 792 2019;10:874.

793

794

		TyG index					
		Q1	Q2	Q3	Q4		
Characteristics	Total	3.60-8.18	8.18-8.57	8.57-9.05	9.05-12.51		
Subjects (n)	95,996	23,997	24,000	24,001	23,998		
TyG index	8.65±0.69	7.85±0.27	8.38±0.11	8.79±0.14	9.58±0.46		
Age, years	51.4±12.5	50.2±13.7	51.4±12.7	52.1±12.2	52.0±11.4		
Male, n (%)	76,364(79.6)	17,655(73.6)	18,994(79.1)	19,501(81.3)	20,214(84.2)		
Height (cm)	167.4±7.0	166.7±7.0	167.5±7.0	167.6±7.0	167.9±6.9		
BMI (kg/m ²)	25.0±3.5	23.4±3.2	24.6±3.3	25.6±3.3	26.4±3.4		
Completed high school, n	18,746(19.5)	5673(23.6)	4483(18.7)	4448(18.5)	4142(17.3)		
(%)							
Income≥800¥, n (%)	13,133(13.7)	3563(14.9)	3093(12.9)	3234(13.5)	3243(13.5)		
Daily Smoker, n (%)	28,675(29.9)	6902(28.8)	6741(28.1)	7173(29.9)	7859(32.8)		
Daily alcohol user, n (%)	16,725(17.4)	3891(16.2)	3834(16.0)	4125(17.2)	4875(20.3)		
Activity physical activity,	13,935(14.5)	3654(15.2)	3356(14.0)	3535(14.7)	3390(14.1)		
n (%)							
Systolic BP, mmHg	131±21	124±20	129±20	132±21	136±21		
Diastolic BP, mmHg	83±12	80±11	83±11	85±1	87±12		
FBG, mmol/L	5.47±1.67	4.80±0.68	5.09±0.76	5.44±1.11	6.54±2.66		
TC, mg/dL	190.9±44.1	179.3±35.6	190.2±37.3	197.9±39.0	196.4±58.1		

795 **Table 1. The baseline characteristics of subjects in the Kailuan Cohort.**

9.0±16.3 45.1
15.1
92.9-346.0)
02
0.40-2.61)
).5±27.2
944(24.8)
3258(55.3)
384(14.1)
30(1.4)
273(5.3)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Abbreviations: BMI: body mass index; BP: blood pressure; FBG: fasting blood glucose;

797 TC: total cholesterol; LDL-c: low density lipoprotein cholesterol; HDL-c: low density

798 lipoprotein cholesterol; TG: triglyceride; eGFR: estimated glomerular filtration rate;

799 hs-CRP: high sensitivity C-reactive protein.

800

		TyG index					
Characteristics	T 4.1	Q1	Q2	Q3	Q4		
	Total	4.78-6.89	6.90-7.31	7.32-7.80	7.81-11.38		
Subjects (n)	19,345	4,861	4,859	4,812	4,813		
TyG index	7.36±0.68	6.54±0.27	7.10±0.12	7.54±0.14	8.26±0.42		
Age, years	60.1±12.9	58.1±13.9	60.6±12.9	60.6±12.3	61.3±12.2		
Male, n (%)	7738 (40.0)	1780 (36.6)	1971 (40.6)	1935 (40.2)	2052 (42.6)		
Systolic BP, mmHg	139±21	136±21	139±20	140±20	142±20		
Diastolic BP, mmHg	76±11	75±12	76±11	77±11	77±11		
FBG, mmol/L	6.79±3.18	5.35±0.97	5.96±1.41	6.72±2.19	9.16±4.94		
TC, mg/dL	208.4±42.0	197.0±39.8	207.4±40.9	212.4±41.1	217.2±43.5		
LDL-c, mg/dL	124.7±37.4	119.6±35.5	128.3±37.2	128.5±37.3	122.4±38.9		
HDL-c, mg/dL	52.6±14.6	61.0±15.7	53.9±14.0	49.5±12.1	46.0±11.7		
TG, mg/dL	124.0	743.5	115.1	160.3	221.4		
ro, ingut	(88.6-179.8)	(60.2-88.6)	(98.3-132.0)	(127.5-189.5)	(159.4-292.3)		
Dyslipidemia, n (%)	9099 (47.0)	1930 (39.7)	2273 (46.8)	2446 (50.8)	2450 (50.9)		
Diabetes Mellitus, n (%)	6524(33.7)	559 (11.5)	1138 (23.4)	1816 (37.7)	3011 (62.6)		
Hypertension, n (%)	11,809 (61.0)	2591 (53.3)	2974 (61.2)	3037 (63.1)	3207 (66.6)		
Chronic kidney disease, n	2930 (15.2)	543 (11.2)	730 (15.0)	744 (15.5)	913 (19.0)		

801 **Table 2. The baseline characteristics of subjects in the cohort from Hong Kong.**

(%)

Anti-hypertensive drugs,	3834 (19.8)	755 (15.5)	990 (20.4)	1011 (21.0)	1078 (22.4)
n (%)					
Lipid-lowering drugs, n	1586 (8.2)	303 (6.2)	373 (7.7)	419 (8.7)	491 (10.2)
(%)					
Diabetes drugs, n (%)	995 (5.1)	110 (2.3)	194 (4.0)	246 (5.1)	445 (9.3)
Antiplatelets, n (%)	814 (4.2)	159 (3.3)	191 (3.9)	216 (4.5)	248 (5.2)

802

803

	Q1	Q2	Q3	Q4	<i>P</i> for trend	Per unit increment	<i>P</i> value
Number of patients	23,997	24,000	24,001	23,998			
HF cases	497	576	729	924			
Persons	23997	24000	24001	23998			
Person-years	297098	295908	294857	292552			
HF incidence ¹	1.67(1.53-1.83)	1.95(1.79-2.11)	2.47(2.30-2.66)	3.16(2.96-3.37)			
Model 1 ²	1	1.16(1.03-1.31)	1.48(1.32-1.66)	1.90(1.70-2.11)	< 0.001	1.44(1.37-1.51)	< 0.001
Model 2 ³	1	1.12(1.00-1.27)	1.41(1.26-1.58)	1.90(1.70-2.12)	< 0.001	1.47(1.40-1.55)	< 0.001
Model 3 ⁴	1	1.00(0.88-1.12)	1.12(1.00-1.26)	1.23(1.09-1.39)	< 0.001	1.17(1.10-1.24)	< 0.001
Sensitivity analysis							
Sensitivity analysis 1 ⁵	1	1.00(0.88-1.13)	1.14(1.01-1.28)	1.23(1.10-1.41)	< 0.001	1.18(1.10-1.25)	< 0.001

Table 3. Association between baseline TyG and incident heart failure in the Kailuan cohort.

Sensitivity analysis 2 ⁶	1	0.97(0.84-1.11)	1.11(0.98-1.27)	1.17(1.02-1.34)	0.006	1.13(1.06-1.22)	< 0.001
Competing risk regression ⁷	1	1.01(0.90-1.14)	1.14(1.02-1.29)	1.25(1.10-1.41)	< 0.001	1.18(1.10-1.25)	< 0.001

¹HF incidence; The incidence rates per 1000 person years with the corresponding 95% confidence intervals are shown

²Model 1: Unadjusted. The hazard ratios with the corresponding 95% confidence intervals are shown.

³Model 2: Age-sex adjusted. The hazard ratios with the corresponding 95% confidence intervals are shown.

⁴ Model 3: Adjusted for age, gender, education, income, physical activity, smoking status, alcohol intake, diabetes, LDL-c, HDL-c, SBP, DBP, BMI, eGFR, hs-CRP, anti-hypertensive drugs, anti-diabetes drugs, and lipid-lowering drugs. The hazard ratios with the corresponding 95% confidence intervals are shown.

⁵ Sensitivity analysis 1: exclude follow-up time less than 2 years, remained 95,275 subjects with 2,497 HF cases. The hazard ratios with the corresponding 95% confidence intervals are shown.

⁶ Sensitivity analysis 2: exclude subjects with medication at baseline (anti-hypertension drugs, lipid lower drugs, anti-diabetes drugs), remained

85,118 subjects with 2,118 HF cases. The hazard ratios with the corresponding 95% confidence intervals are shown.

⁷Competing risk regression: sub-hazard ratios with the corresponding 95% confidence intervals are shown.

	Q1	Q2	Q3	Q4	<i>P</i> for trend	Per unit increment	P value
Number of patients	4,861	4,859	4,812	4,813			
HF cases	342	404	454	509			
Persons	4861	4859	4812	4813			
Person-years	79,353	77,644	77,335	75,360			
HF incidence ¹	4.31(3.88-4.79)	5.20(4.72-5.74)	5.87(5.34-6.42)	6.75(6.19-7.37)			
Model 1 ²	1	1.21(1.05-1.40)	1.36(1.19-1.57)	1.58(1.38-1.82)	< 0.001	1.30(1.22-1.39)	< 0.001
Model 2 ³	1	1.09(0.94-1.26)	1.23(1.07-1.42)	1.39(1.21-1.59)	< 0.001	1.23(1.14-1.31)	<0.001
Model 3 ⁴	1	1.07(0.92-1.23)	1.17(1.01-1.35)	1.21(1.04-1.40)	0.007	1.13(1.05-1.22)	0.001
Sensitivity analysis							
Sensitivity analysis 1 ⁵	1	1.07(0.92-1.23)	1.17(1.01-1.35)	1.22(1.05-1.41)	0.005	1.14(1.05-1.23)	0.001

Table 4. Association between baseline TyG index and incident heart failure in the cohort from Hong Kong.

Sensitivity analysis 2 ⁶	1	1.16(0.98-1.37)	1.22(1.03-1.45)	1.29(1.08-1.53)	0.005	1.16(1.06-1.27)	0.001
Competing risk regression ⁷	1	1.06(0.91-1.22)	1.21(1.04-1.40)	1.24(1.07-1.44)	0.001	1.15(1.06-1.24)	< 0.001

¹HF incidence; The incidence rates per 1000 person years with the corresponding 95% confidence intervals are shown

²Model 1: Unadjusted. The hazard ratios with the corresponding 95% confidence intervals are shown.

³Model 2: Age-sex adjusted. The hazard ratios with the corresponding 95% confidence intervals are shown.

⁴ Model 3: Adjusted for age, sex, hypertension, diabetes mellitus, chronic kidney disease, dyslipidemia, antihypertensives, anti-diabetic drugs, antiplatelets, lipid-lowering drugs. The hazard ratios with the corresponding 95% confidence intervals are shown.

⁵ Sensitivity 1: exclude follow-up time less than 2 years, remained 19,227 subjects with 1,709 HF cases. The hazard ratios with the corresponding

95% confidence intervals are shown.

⁶ Sensitivity 2: exclude those with medications at baseline, remained 14,842 subjects with 1,223 HF cases. The hazard ratios with the corresponding 95% confidence intervals are shown.

⁷Competing risk regression: sub-hazard ratios with the corresponding 95% confidence intervals are shown.

Figure legends.

Figure 1. Kaplan-Meier curve of the cumulative incidence of incident heart failure for the (A) Kailuan cohort and (B) Hong Kong cohort, stratifying

by quartiles of the triglyceride-glucose index.

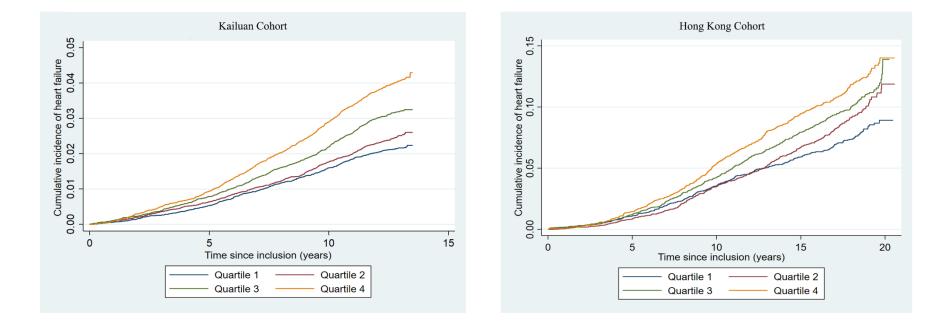


Figure 2. Subgroup analysis of the association between TyG index and incident HF for the (A) Kailuan cohort and (B) Hong Kong cohort. HR:

hazard ratio; CI: confidence interval.

Dylslipidemia

Yes

No

Subgoups	Case/Total	HR (95% CI)	P value		P for interaction
Age, years				1	
< 65	1662/82362	1.15 (1.06-1.24)	< 0.001		0.08
≥ 65	1064/13634	1.16 (1.05-1.29)	0.004		
Gender					
Male	2322/76364	1.15 (1.08-1.23)	< 0.001		0.02
Female	404/19632	1.21 (1.02-1.42)	0.027	_	
BMI, kg/m ²					
< 25	1145/50179	1.15 (1.05-1.27)	0.004		0.46
≥ 25	1581/45817	1.17 (1.08-1.26)	< 0.001		
Diabetes Mellitus					
Yes	541/8408	1.26 (1.12-1.42)	< 0.001		0.13
No	2185/87588	1.13 (1.05-1.21)	0.001		
Hypertension					
Yes	1758/41072	1.17 (1.08-1.26)	< 0.001		0.53
No	968/54924	1.21 (1.01-1.24)	0.029		
Dylslipidemia					
Yes	1077/30732	1.10 (1.00-1.21)	0.05		0.08
No	1649/65264	1.10 (0.98-1.23)	0.10		
hs-CRP mg/dL				_	
<1	1207/54207	1.16 (1.06-1.28)	0.001		0.25
≥ 1	1519/41789	1.16 (1.07-1.26)	< 0.001		
			-		
			0.8	1.0 1.0	6
(B)					
Subgoups	Case/Total	HR (95% CI)	P value		P for interactio
Age, years	Case/Total	TIK (9576 CI)	1 value		1 Ioi Interactio
< 65	567/11607	1,14 (0,98-1,33)	0.06		0.47
≥ 65	1142/7738	1.14 (0.98-1.33)	0.00		0.47
i ∉ 65 Gender	1142/7736	1.15 (1.05-1.24)	0.01		
Male	763/7738	1.05 (0.94-1.17)	0.34		0.11
Female	946/11607	1.03 (0.94-1.17)	< 0.001		0.11
Diabetes Mellitus	940/1100/	1.22 (1.10-1.04)	~0.001		
Yes	719/6524	1,21 (1,07-1,35)	0.001		0.11
Yes No					0,11
	990/12821	1.05 (0.93-1.18)	0.21	+	
Hypertension	1100/11900	1.12/1.02.1.24)	0.01		0.91
Hypertension Yes No	1199/11809 510/7536	1.13 (1.02-1.24) 1.12 (0.96-1.31)	0.01 0.04		0.81

0.01

0.8

1.0

625/9099 1.17 (1.01-1.34) 0.05

1084/10246 1.10 (0.99-1.22)

0.73

1.6

Figure 3. Forest plots for the meta-analysis of the association between TyG index with HF risk. (A) TyG index analyzed as a categorical variable.

(B) TyG index analyzed as a continuous variable.

(A)

-)				Hazard Ratio		Haza	rd Ratio		
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% CI		IV, Rand	<u>lom, 95%</u>	CI	
Hong Kong	0.1906	0.0772	39.0%	1.21 [1.04, 1.41]				-	-
Kailuan	0.207	0.0617	61.0%	1.23 [1.09, 1.39]			-		-
Гotal (95% СІ)			100.0%	1.22 [1.11, 1.34]					
Heterogeneity: Tau ² = 0	.00; Chi² = 0.03, df =	= 1 (P = 0.	.87); l ² = (<u> </u>	+	
Test for overall effect: Z		•	,,		0.7	0.85		1.2	1.5
					Lowest o	uartile of TyG	Highes	t quartile	of TyC
					Lonoorq		riigiics	r quai no	UTYG
3)	(Hazard Ratio	Lonoorq		ard Ratio	·	or ryg
	, , ,		SE We	Hazard Ratio ight IV, Random, 95		Haza	0)	or ryg
3)	p log[Hazard R				% CI	Haza	ard Ratio)	UTYG
3) <u>Study or Subgrou</u>	p <u>log[Hazard R</u> 0.1	atio]	375 41	ight IV, Random, 95	<mark>% Cl</mark>	Haza	ard Ratio)	
3) <u>Study or Subgrou</u> Hong Kong	p <u>log[Hazard R</u> 0.1	<u>atio]</u> 1222 0.03	375 41 315 58	ight IV, Random, 95 .4% 1.13 [1.05, 1	<mark>% CI</mark> .22] .24]	Haza	ard Ratio	6 % CI	
3) <u>Study or Subgrou</u> Hong Kong Kailuan Total (95% CI)	p <u>log[Hazard R</u> 0.1	atio] 1222 0.03 .157 0.03	375 41 315 58 100	ight IV, Random, 95 .4% 1.13 [1.05, 1 .6% 1.17 [1.10, 1 .0% 1.15 [1.10, 1	<mark>% CI</mark> .22] .24]	Haza	ard Ratio	6 % CI	

Figure 4. Mendelian randomization (MR) association between genetically determined TyG index and HF. Sensitivity analysis 1: multivariable MR through IVW method after adjusting for cofounders including BMI, SBP, DBP, LDL-c, and HDL-c. Sensitivity analysis 2: MR analysis through IVW after excluding any SNPs significantly associated with those confounders, including BMI, SBP, DBP, LDL-c, and HDL-c. SNPs: single-nucleotide polymorphisms; OR: odds ratio; IVW: inverse-variance weighted.

Methods	SNP	5	1		OR (95% CI)	P value
Main analysis						
IVW	183				1.27 (1.15-1.40)	< 0.001
Weighted Median	183				1.37 (1.19-1.58)	< 0.001
MR Egger	183			-	1.29 (1.10-1.51)	< 0.001
MR PRESSO	181				1.31 (1.19-1.45)	< 0.001
Sensitvity analysis 1						
IVW	183				1.20 (1.02-1.41)	0.03
Sensitvity analysis 2	2					
IVW	151				1.19 (1.05-1.35)	0.01
		0.8	1.0	1.6		