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ABSTRACT 

Adolescence is a stage of fast growth and development. Exposures during puberty can have 

long-term effects on health in later life. This study aims to investigate the role of adolescent 

lifestyle in biological aging. The study participants originated from the longitudinal 

FinnTwin12 study (n = 5114). Adolescent lifestyle-related factors, including body mass index 

(BMI), leisure-time physical activity, smoking and alcohol use, were based on self-reports 

and measured at ages 12, 14 and 17 years. For a subsample, blood-based DNA methylation 

(DNAm) was used to assess biological aging with six epigenetic aging measures in young 

adulthood (21–25 years, n = 824). A latent class analysis was conducted to identify patterns 

of lifestyle behaviors in adolescence, and differences between the subgroups in later 

biological aging were studied. Genetic and environmental influences on biological aging 

shared with lifestyle behavior patterns were estimated using quantitative genetic modelling. 

We identified five subgroups of participants with different adolescent lifestyle behavior 

patterns. When DNAm GrimAge, DunedinPoAm and DunedinPACE estimators were used, 

the class with the unhealthiest lifestyle and the class of participants with high BMI were 

biologically older than the classes with healthier lifestyle habits. The differences in lifestyle-

related factors were maintained into young adulthood. Most of the variation in biological 

aging shared with adolescent lifestyle was explained by common genetic factors. These 

findings suggest that an unhealthy lifestyle during pubertal years is associated with 

accelerated biological aging in young adulthood. Genetic pleiotropy can largely explain the 

observed associations. 
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INTRODUCTION 

Epidemiological studies of life course have indicated that exposures during early life has 

long-term effects on later health (Kuh et al., 2003). Unhealthy environments and lifestyle 

habits during rapid cell division can affect the structure or functions of organs, tissues or 

body systems, and these changes can subsequently affect health and disease in later life 

(Power et al., 2013). For example, lower birth weight and fast growth during childhood 

predispose individuals to coronary heart disease and increased blood pressure in adulthood 

(Osmond & Barker, 2000). In addition to infancy and childhood, adolescence is also a critical 

period of growth.  

Adolescence is characterised by pubertal maturation and growth spurts. Early pubertal 

development is linked to worse health conditions, such as obesity and cardiometabolic risk 

factors in adulthood (Prentice & Viner, 2013). However, childhood obesity can lead to early 

onset of puberty, especially among girls (Li et al., 2017; Richardson et al., 2020) and, 

therefore, can confound the observed associations between early pubertal development and 

worse later health. Moreover, early pubertal development is linked to substance use and other 

risky behaviors in adolescence (Hartman et al., 2017; Savage et al., 2018), but the 

associations are partly explained by familial factors (Savage et al., 2018).  

Many unhealthy lifestyle choices, such as smoking initiation, alcohol use and a physically 

inactive lifestyle, are already made in adolescence and increase the risk of developing several 

non-communicable diseases over the following decades (Lopez et al., 2006). Once initiated, 

unhealthy habits are likely to persist into adulthood (Latvala et al., 2014; Maggs & 

Schulenberg, 2005; Rovio et al., 2018; Salin et al., 2019). A recent systematic review showed 

that healthy habits tend to cluster during childhood and adolescence (Whitaker et al., 2021). 

Typically, about half of the adolescents fall into subgroups characterised by healthy lifestyle 

habits. However, small minorities of adolescents are classified as heavy substance users or as 

having multiple other risk behaviors. The long-term consequences of the accumulation of 

unhealthy adolescent behaviors on health in later life have been rarely studied.  

An unhealthy lifestyle in adolescence can affect biological mechanisms of aging at the 

molecular level and, subsequently, morbidity. Epigenetic alterations, including age-related 

changes in DNA methylation (DNAm), constitute a primary hallmark of biological aging 

(López-Otín et al., 2013). Epigenetic clocks are algorithms that aim to quantify biological 
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aging using DNAm levels within specific CpG sites. The first-generation clocks, Horvath’s 

and Hannum’s clocks, were trained to predict chronological age (Hannum et al., 2013; 

Horvath, 2013), whereas the second-generation clocks, such as DNAm PhenoAge and 

GrimAge, are better predictors of health span and lifespan (Levine et al., 2018; Lu et al., 

2019). For epigenetic clocks, the difference between an individual’s epigenetic age estimate 

and chronological age provides a measure of age acceleration (AA). The DunedinPoAm 

estimator differs from its predecessors in that it has been developed to predict the pace of 

aging (Belsky et al., 2020). The pace of aging describes longitudinal changes over time in 

several biomarkers of organ-system integrity among same-aged individuals. Recently, the 

DunedinPACE estimator, which constitutes an advance on the original DunedinPoAm, was 

published (Belsky et al., 2022). DunedinPACE measures the pace of aging more precisely 

and has better test-retest reliability. From the life course perspective, epigenetic aging 

measures are useful tools to assess biological aging at all ages and detect changes induced by 

lifetime exposures. 

Previous studies have linked several lifestyle-related factors, such as higher body mass index 

(BMI), smoking, alcohol use and lower leisure-time physical activity (LTPA), with 

accelerated biological aging measured using epigenetic clocks (Oblak et al., 2021). However, 

most of these studies were based on cross-sectional data on older adults. The first studies on 

the associations of adolescent lifestyle-related exposures with biological aging assessed with 

epigenetic aging measures indicated that advanced pubertal development, higher BMI and 

smoking are associated with accelerated biological aging in adolescence (Etzel et al., 2021; 

Raffington et al., 2021; Simpkin et al., 2017).  

The few previous studies conducted on this topic have focused on single lifestyle factors, and 

a comprehensive understanding of the role of adolescent lifestyle in later biological aging 

remains unclear. Our first aim is to define the types of lifestyle behavior patterns that can be 

identified in adolescence using data-driven latent class analysis (LCA). The second aim is to 

investigate whether the identified behavioral subgroups differ in biological aging in young 

adulthood and whether the associations are independent of baseline pubertal development. 

The third aim is to assess the genetic and environmental influences shared between biological 

aging and adolescent lifestyle behavior patterns. 
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MATERIALS AND METHODS 

The participants were members of the longitudinal FinnTwin12 study (born during 1983–87) 

(Kaprio, 2013; Rose et al., 2019). A total of 5,600 twins and their families initially enrolled in 

the study. At the baseline, the twins filled out the questionnaires regarding their lifestyle-

related habits at 11–12 years of age, and follow-up assessments were conducted at ages 14 

and 17.5 years. The response rates were high for each assessment (85%–90%). In young 

adulthood, at an average age of 22 years, blood samples for DNA analyses (n = 824) were 

collected during in-person clinical studies after written informed consent was signed. The 

data on health-related behaviors were collected with questionnaires and interviews. A total of 

1,295 twins of the FinnTwin12 cohort were examined and measured, either in-person or 

through telephonic interviews. Data collection was conducted in accordance with the 

Declaration of Helsinki. The Indiana University IRB and the ethics committees of the 

University of Helsinki and Helsinki University Central Hospital approved the study protocol.  

 

DNAm and assessment of biological age  

DNAm profiles were obtained using Illumina’s Infinium HumanMethylation450 BeadChip or 

the Infinium MethylationEPIC BeadChip (Illumina, San Diego, CA, USA). A detailed 

description of the pre-processing and normalizing of the DNAm data is provided in the 

Appendix (Supplementary text).  

We utilized six epigenetic clocks. The first four clocks, namely Horvath’s and Hannum’s 

epigenetic clocks (Hannum et al., 2013; Horvath, 2013) and DNAm PhenoAge and DNAm 

GrimAge estimators (Levine et al., 2018; Lu et al., 2019), produced DNAm-based epigenetic 

age estimates in years by using a publicly available online calculator 

(https://dnamage.genetics.ucla.edu/new). For these measures, AA was defined as the residual 

obtained from regressing the estimated epigenetic age on chronological age (AAHorvath, 

AAHannum, AAPheno and AAGrim, respectively). The fifth and sixth clocks, namely 

DunedinPoAm and DunedinPACE estimators, provided an estimate for the pace of biological 

aging in years per calendar year (Belsky et al., 2020, 2022). DunedinPoAm and 

DunedinPACE were calculated using publicly available R packages 

(https://github.com/danbelsky/DunedinPoAm38 and 

https://github.com/danbelsky/DunedinPACE, respectively). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 31, 2022. ; https://doi.org/10.1101/2022.05.30.22275761doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.30.22275761


The components of DNAm GrimAge (adjusted for age) were also obtained, including 

DNAm-based smoking pack-years and the surrogates for plasma proteins (DNAm-based 

plasma proteins): DNAm adrenomedullin (ADM), DNAm beta-2-microglobulin (B2M), 

DNAm cystatin C, DNAm growth differentiation factor 15 (GDF15), DNAm leptin, DNAm 

plasminogen activator inhibitor 1 (PAI-1), and DNAm tissue inhibitor metalloproteinases 1 

(TIMP-1). 

 

Lifestyle-related factors in adolescence 

Body mass index (BMI) at ages 12, 14 and 17 years. BMI (kg/m2) was calculated based on 

self-reported height and weight.  

Leisure-time physical activity (LTPA) at ages 12, 14 and 17 years. The frequency of 

LTPA at the age of 12 years was assessed with the question ‘How often do you engage in 

sports (i.e. team sports and training)?’ The answers were classified as 0 = less than once a 

week, 1 = once a week and 2 = every day. At ages 14 and 17 years, the question differed 

slightly: ‘How often do you engage in physical activity or sports during your leisure time 

(excluding physical education)?’ The answers were classified as 0 = less than once a week, 1 

= once a week, 2 = 2–5 times a week and 3 = every day. 

Smoking status at ages 14 and 17 years was determined using the self-reported frequency 

of smoking and classified as 0 = never smoker, 1 = former smoker, 2 = occasional smoker 

and 3 = daily smoker. 

Alcohol use (binge drinking) at ages 14 and 17 years. The frequency of drinking to 

intoxication had the following classes: ‘How often do you get really drunk?’ 0 = never, 1 = 

less than once a month, 2 = approximately once or twice a month and 3 = once a week or 

more.  

Pubertal development at age 12 years. Baseline pubertal development was assessed using a 

five-item Pubertal Development Scale (PDS) questionnaire (Petersen et al., 1988). Both sexes 

answered three questions each concerning growth in height, body hair and skin changes. 

Moreover, boys were asked questions about the development of facial hair and voice change, 

while girls were asked about breast development and menarche. Each question had response 

categories 1 = growth/change has not begun, 2 = growth/change has barely started and 3 = 

growth/change is definitely underway, except for menarche, which was dichotomous 1 = has 
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not occurred or 3 = has occurred (see also Wehkalampi et al., 2008). The highest response 

category of the original questionnaire (development completed) was omitted for all items, 

except for menarche, because completing the development was assumed to be very rare by 

the age of 12. PDS was calculated as the mean score of the five items, and higher values 

indicated more advanced pubertal development at age 12 years.  

 

Lifestyle-related factors in young adulthood at age 21–25 years 

BMI (kg/m2) was calculated based on the measured height and weight.  

LTPA was assessed using the Baecke questionnaire (Baecke et al., 1982). A sport index was 

based on the mean scores of four questions on sports activity described by Baecke et al. 

(1982) and Mustelin et al. (2012) for the FinnTwin12 study. The sport index is a reliable and 

valid instrument to measure high-intensity physical activity (Richardson et al., 1995). 

Smoking was self-reported and classified as never, former or current smoker. 

Alcohol use (100% alcohol grams/day) was derived from the Semi-Structured Assessment 

for the Genetics of Alcoholism (Bucholz et al., 1994) and based on quantity and frequency of 

use and the content of alcoholic beverages, assessed by trained interviewers.  

 

Statistical analysis 

Patterns of lifestyle behaviors in adolescence 

To identify the patterns of lifestyle behaviors in adolescence, a latent class analysis (LCA) 

was conducted, which is a data-driven approach to identify homogenous subgroups in a 

heterogeneous population. The classification was based on BMI and LTPA at ages 12, 14 and 

17 years and smoking status and alcohol use at ages 14 and 17 years (10 indicator variables). 

All variables were treated as ordinal variables, except for continuous BMI. The classification 

was based on the thresholds of the ordinal variables and the means and variances of BMI.  

An LCA model with 1 to 8 classes was fitted. The following fit indices were used to evaluate 

the goodness of fit: Akaike’s information criterion, Bayesian information criterion and 

sample size-adjusted Bayesian information criterion. The lower values of the information 

criteria indicated a better fit for the model. Moreover, we used the Vuong–Lo–Mendell–
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Rubin likelihood ratio (VLMR) test and the Lo–Mendell–Rubin (LMR) test to determine the 

optimal number of classes. The estimated model was compared with the model with one class 

less, and the low p value suggested that the model with one class less should be rejected. At 

each step, the classification quality was assessed using the average posterior probabilities for 

most likely latent class membership (AvePP). AvePP values close to 1 indicate a clear 

classification. In addition to the model fit, the final model for further analyses was chosen 

based on the parsimony and interpretability of the classes. 

 

Differences in biological aging  

The mean differences in biological aging between the lifestyle behavior patterns were studied 

using the Bolck–Croon–Hagenaars approach (Asparouhov & Muthén, 2021). The class-

specific weights for each participant were computed and saved during the latent class model 

estimation. After that, a secondary model conditional on the latent lifestyle behavior patterns 

was specified using weights as training data: Epigenetic aging measures were treated as distal 

outcome one at a time, and the mean differences across classes were studied while adjusting 

for sex, age and baseline pubertal development. Similarly, the mean differences in the 

components of DNAm GrimAge and lifestyle-related factors in young adulthood were 

studied. The models of epigenetic aging measures were additionally adjusted for BMI in 

adulthood. To evaluate the effect sizes, standardised mean differences (SMDs) were 

calculated. 

 

Genetic and environmental influences  

Genetic and environmental influences on biological aging in common with lifestyle behavior 

patterns were studied using quantitative genetic modelling. For simplicity, we adjusted the 

epigenetic aging variables for sex, age and baseline pubertal development prior to the 

analysis. 

We first carried out univariate modelling to study genetic and environmental influences on 

epigenetic aging measures (Supplementary text) (Neale & Cardon, 1992). On one hand, total 

variance in biological aging was decomposed in the components explained by genetic, 

unshared and shared environmental factors �����

� � ����
� � ����

� ��� 	�
���) (Figure 1A). On 

the other hand, it comprised the variance explained by the adolescent lifestyle behavior 
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patterns (	�
������ and the variance of the residual term (	�
	�
�. We also conducted 

univariate modelling for the residual term of biological aging, which corresponds to the 

variation in biological aging not explained by the adolescent lifestyle behavior patterns 

��	�

� �  �	�


� � �	�

� � (=	�
	�
) (Figure 1B). The residual terms were obtained by specifying 

a latent variable corresponding to the residuals of the secondary model described above 

(without including covariates), and the factor scores were saved. Finally, the proportion of 

variation in biological aging explained by the genetic factors shared with adolescent lifestyle 

patterns was evaluated as follows:  �����

� � �	�

� �/ 	�
��� . The proportion of variation in 

epigenetic aging explained by the environmental factors was evaluated similarly.  

Missing data were assumed to be missing at random (MAR). The model parameters were 

estimated using the full information maximum likelihood (FIML) method with robust 

standard errors. Under the MAR assumption, the FIML method produced unbiased parameter 

estimates. The standard errors of the latent class models and secondary models were 

corrected for nested sampling (TYPE = COMPLEX). Descriptive statistics were calculated 

using IBM SPSS Statistics for Windows, version 20.0 (IBM Corp, Armonk, NY), and further 

modeling was conducted using Mplus, version 8.2 (Muthén & Muthén, 1998-2018).  

 

RESULTS 

The descriptive statistics of the study variables are presented in Table 1. A total of 5,114 

twins answered questionnaires on lifestyle-related behaviors during their adolescent years at 

least once. For 824 twins, epigenetic aging estimates were obtained. 

The mean age (SD) of the twins having information on biological aging was 22.4 (0.7) years. 

The means of the epigenetic age estimates were estimated as follows: Horvath’s clock 28.9 

(3.6), Hannum’s clock 18.2 (3.3), DNAm PhenoAge 13.0 (5.3) and DNAm GrimAge 25.2 

(3.3) years. The intraclass correlation coefficients (ICCs) of epigenetic aging measures were 

consistently higher in MZ twin pairs than in DZ twin pairs (Table 2). This suggests an 

underlying genetic component in biological aging. The correlations between the different 

epigenetic aging measures ranged from -0.12 to 0.73. The lowest correlation was observed 

between AAHorvath and DunedinPoAm and between AAHorvath and DunedinPACE. All other 

correlations were positive. The highest correlations (>0.5) were observed between AAHannum 

and AAPheno, AAGrim and DunedinPoAm and DunedinPoAm and DunedinPACE.  
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Patterns of lifestyle behaviors 

Increasing the number of classes continued to improve AIC, BIC and ABIC (Table 3). 

However, the VLMR and LMR tests indicated that even a solution with four classes would be 

sufficient. In the fifth step, a class of participants with high BMI was extracted. Previous 

studies have shown the role of being overweight or obese in biological aging (Lundgren et 

al., 2021). After including the sixth class, the information criteria still showed considerable 

improvement, but the AvePPs for several classes were below 0.8. For these reasons, and to 

have adequate statistical power for subsequent analyses, a five-class solution was considered 

optimal. The AvePPs ranged from 0.78 to 0.91 for the five-class solution, indicating 

reasonable classification quality.  

Of the participants, 32% fell into the class of healthiest lifestyle habits (C1) (see Figure 2, and 

the distributions of indicator variables according to the adolescent lifestyle behavior patterns 

in Supplemental Table S1). They had normal weight, on average, and were more likely to 

engage in regular LTPA compared to the other groups; most of them were non-smokers and 

did not use alcohol regularly. Every fifth (19.9%) participant belonged to the second class 

(C2), characterized by the low mean level of BMI in the range of normal weight for children 

(low-normal BMI) (Cole et al., 2007). They also had healthy lifestyle habits, but they were 

not as physically active as the participants in class C1. The participants placed in the third 

class (C3, 22.8%) had lifestyle habits similar to those of the participants in class C1; 

however, they had a higher level of BMI in the range of normal weight for children (high-

normal BMI). About every tenth (9.5%) of the participants belonged to the fourth class (C4), 

with the highest level of BMI (high BMI). At each measurement point, the mean BMI level 

exceeded the cut-off points for overweight in children (Cole et al., 2000). The prevalence of 

daily smoking was slightly higher in C4 compared to classes C1, C2 and C3. Of the 

participants, 15.9% were classified in the subgroup characterised by the unhealthiest lifestyle 

behaviors (C5). Most of them were daily smokers and used alcohol regularly at the age of 17. 

They also had a lower probability of engaging in regular LTPA compared to the other groups; 

however, they were of normal weight, on average. 

Boys were slightly over-represented in the classes that were most physically active (C1, C3) 

and had the highest levels of BMI (C3, C4) (percentage of boys: C1: 57.2%, C3: 51.5% and 

C4: 52.7%), and under-represented in the classes with lowest levels of BMI (C2) and the 

unhealthiest lifestyle behavior pattern (C5) (C2: 42.7% and C5: 44.1%). There were also 
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differences in pubertal development at baseline between the groups. The subgroups with the 

highest levels of BMI (C3, C4) and the class with unhealthiest lifestyle habits (C5) were, on 

average, the most advanced in pubertal development (Mean PDS, C3: 1.67 95% CI: [1.63 to 

1.71], C4: 1.69 [1.64 to 1.74] and C5: 1.68 [1.63 to 1.72]), while the class with the healthiest 

lifestyle pattern (C1) and that with the lowest level of BMI (C2) were less advanced in 

pubertal development (C1: 1.53 [1.50 to 1.56] and C2: 1.44 [1.41 to 1.47]). 

 

Differences in biological aging  

The distribution of lifestyle behavior patterns in the subsample of participants having 

information on biological aging was very similar to that in the large cohort data (C1: 33.0%, 

C2: 16.6%, C3: 20.6%, C4: 10.1%, C5: 19.7%).  

There were differences among the classes in AAPheno (Wald test: p = 0.006), AAGrim (p = 2.3e-

11), DunedinPoAm (p = 3.1e-9) and DunedinPACE (p = 5.5e-7) in the models adjusted for 

sex, age and baseline pubertal development. There were no differences in biological aging 

when Horvath’s clock (p = 0.550) and Hannum’s clock (p = 0.487) were used. The overall 

results considering AAGrim, DunedinPoAm and DunedinPACE were very similar (Figure 3 

and Table 4).  

The group with the unhealthiest lifestyle pattern (C5) was, on average, 1.7–3.3 years 

biologically older than the groups with healthier lifestyle patterns and normal weight (C1-C3) 

when DNAm GrimAge was used to assess biological aging (Table 4, M1). Moreover, the 

unhealthiest group had, an average, 2–3 weeks/calendar year faster pace of biological aging, 

as measured with DunedinPoAm. The differences in DunedinPACE were very similar to 

those observed in DunedinPoAm, but there was no difference between the unhealthiest class 

(C5) and the class with a healthy lifestyle and high-normal BMI (C3).  

When DNAm GrimAge was used, the group with a high BMI (C4) was, on average, 1.8–2.4 

years biologically older than the two groups with healthier lifestyle patterns (C1 and C2) 

(Table 4, M1). When measured with the DunedinPoAm estimator, the class had, on average, 

3–4 weeks/calendar year faster pace of aging, and when measured with the DunedinPACE 

estimator, it had 4–5 weeks/calendar year faster pace of aging. Moreover, when 

DunedinPoAm and DunedinPACE were used, the class had approximately 3 weeks/calendar 

year faster pace of aging compared to the group with healthy lifestyle with normal-high BMI 
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(C3), and when DunedinPACE was used, the class had 2 weeks/calendar year faster pace of 

aging compared to the group with unhealthiest lifestyle pattern (C5). When DNAm 

PhenoAge was used to assess biological aging, only the group with a high BMI stood out. 

The group was biologically 2.0–2.5 years older than the groups with lower mean levels of 

BMI (C1–C2, C5). Based on the estimation results of the models, baseline pubertal 

development was associated with advanced biological aging only when Hannum’s clock was 

used to derive biological AA (standardised regression coefficient B = 0.10 [0.01 to 0.18]). 

After additionally adjusting for BMI in adulthood, the differences in AAPheno and 

DunedinPACE between the class of participants with high BMI (C4) and those with lower 

BMI (C1, C2, C5) were attenuated (Table 4, M2). The differences in biological ageing were 

only slightly attenuated when the DNAm GrimAge and DunedinPoAm estimators were used. 

The differences in the DNAm-based plasma proteins and smoking pack-years are presented 

in the Supplementary text and Figure S1. In brief, the class with the unhealthiest lifestyle 

habits (C5) differed unfavourably from the other classes only by DNAm smoking pack-years, 

while the class of participants with high BMI (C4) stood out by several DNAm-based plasma 

proteins. The differences in the lifestyle-related factors in adulthood between the lifestyle 

behavior classes defined in adolescence are presented in the Supplementary text and Figure 

S2. The lifestyle patterns established during adolescence remained into early adulthood. 

 

Genetic and environmental effects 

Twin pairs with biological aging data on both members of the pair were used in the 

quantitative genetic modelling to estimate the genetic and environmental components of 

variance for biological aging (n = 154 monozygotic and 212 dizygotic pairs). Genetic factors 

explained 62%–73% of variation in biological aging depending on the estimator 

(Supplementary text and Table S2). The rest of the variation was explained by unshared 

environmental factors. 

The proportion of variation in biological aging in early adulthood explained by adolescent 

lifestyle behavior patterns was 3.7% for AAPheno, 16.8% for AAGrim, 15.4% for 

DunedinPoAm and 11.1% for DunedinPACE (Figure 4). The association between adolescent 

lifestyle patterns and biological aging in early adulthood was largely explained by shared 

genetic factors. Depending on the biological aging estimate, only 0%–3.7% of variation in 
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biological aging was explained by (unshared) environmental factors shared with adolescent 

lifestyle patterns. 

 

 

DISCUSSION 

We conducted a twin study with a longitudinal lifestyle follow-up during the adolescent years 

and measured biological aging from genome-wide DNAm data using the most recent 

epigenetic aging clocks. Our findings supported previous studies, which showed that 

lifestyle-related behaviors tend to cluster in adolescence. In our study, most participants 

generally followed healthy lifestyle patterns, but we could also identify a group of young 

adults characterised by higher BMI (10% of all participants) in adolescence, as well as a 

group (16% of all participants) with more frequent co-occurrence of smoking, binge drinking 

and low levels of physical activity in adolescence. We observed differences in biological 

aging between the classes characterised by adolescent lifestyle patterns in young adulthood. 

Both the class with the overall unhealthiest lifestyle and that with a high BMI were 

biologically 1.7–3.3 years older (AAGrim) than the classes with healthier lifestyle patterns. 

Moreover, they had 2–5 weeks/calendar year faster pace of biological aging (DunedinPoAm 

and DundeinPACE). The differences in lifestyle-related factors were maintained well over 

the transition from adolescence to young adulthood. However, genetic factors shared with 

adolescent lifestyle explained most of the observed differences in biological aging. Our 

findings suggest pleiotropic genetic effects; that is, the same genes affect both adolescent 

lifestyle and the pace of biological aging. 

In our study, when the most recently published epigenetic aging measures were used, the 

class with the unhealthiest lifestyle was biologically 1.7–3.3 years older (AAGrim) and had 2–

3 weeks/calendar year faster pace of biological aging (DunedinPoAm and DundeinPACE) 

than the classes with healthier patterns. These measures can predict mortality and morbidity, 

especially cardiometabolic and lung diseases (Belsky et al., 2020, 2022; Lu et al., 2019). A 

previous meta-analysis showed that the number of healthy lifestyle behaviors is inversely 

associated with all-cause mortality risk (Loef & Walach, 2012). The mortality risk was up to 

66% lower for individuals having multiple healthy behaviors compared to those adhering to 

an unhealthy lifestyle (smoking, low or high levels of alcohol use, unhealthy diet, no physical 

activity and overweight). Our results suggested that the accumulation of multiple unhealthy 
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lifestyle habits in adolescence has a more detrimental effect on biological aging than any 

single lifestyle habit. The unhealthy lifestyle-induced changes in biological aging begin to 

accumulate in early life and might predispose individuals to premature death in later life. 

To the best of our knowledge, this is the first study to investigate common genetic influences 

underlying lifestyle clusters and biological aging. In our study, the genetic factors shared 

between adolescent lifestyle and biological aging largely explained the observed differences 

in biological aging. Our results suggest that individuals who are genetically prone to 

unhealthy lifestyles or overweight in adolescence are also susceptible to faster biological 

aging later in young adulthood. These results are supported by McCartney et al. (2021), who 

showed shared underlying genetic contributions between single lifestyle factors and 

polygenetic risk scores for epigenetic AA. They concluded that genetic pleiotropy is an 

underlying mechanism, especially behind associations of BMI and biological aging (AAGrim, 

AAPheno) and smoking and biological aging (AAGrim). 

To the best of our knowledge, this is also the first study reporting the association between 

adolescent BMI (relative weight) and biological aging in later life. Previous systematic 

reviews have concluded that being overweight or obese in childhood and adolescence has a 

consistent impact on mortality and morbidity in later life (Park et al., 2012; Reilly & Kelly, 

2011). In particular, the associations with cardiometabolic morbidity are well-established, but 

the results of the studies investigating the associations independent of adult BMI are 

inconclusive (Park et al., 2012). A more recent study showed that early-life body size 

indirectly predisposes coronary artery disease and type 2 diabetes through body size in 

adulthood rather than having a direct effect (Richardson et al., 2020). Our results considering 

biological aging are in line with the existing literature but depend on the epigenetic clock 

utilized. In our study, the participants assigned to the class that was, on average, overweight 

in adolescence were biologically older (based on AAPheno, AAGrim, DunedinPoAm and 

DunedinPACE) in young adulthood compared to the classes of normal weight and healthy 

lifestyle habits. The group stood out, especially when AAPheno and DunedinPACE were used 

to measure biological aging, but adult BMI explained the observed differences in these 

measures. Practically all variance of AAPheno and DunedinPACE common with adolescent 

lifestyle was explained by shared genetic factors. Therefore, these measures probably capture 

aspects of biological aging that are attributed to genetic factors shared with BMI. The 

differences in AAGrim and DunedinPoAm did not attenuate after additionally controlling for 
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adult BMI, suggesting that higher BMI in adolescence has a direct long-term effect on 

biological aging measured with these epigenetic clocks.  

LTPA is associated with a lower risk of mortality and cardiovascular diseases (Li et al., 2013; 

Löllgen et al., 2009). Twin studies and genetically informed studies have suggested that 

genetic pleiotropy can partly explain these frequently observed associations (Karvinen et al., 

2015; Sillanpää et al., 2022). Previous studies have shown that LTPA is also associated with 

slower biological aging (Kankaanpää et al., 2020). In the present study, lower levels of 

physical activity in adolescence were closely intertwined with other unhealthy behaviors. To 

fully understand the role of adolescence physical activity in later biological aging would 

require a more comprehensive analysis of activity patterns, intensities and modes, as well as 

subgroup analyses that account for other lifestyle factors, such as diet. 

Adolescent smoking behavior and alcohol use appeared to be strongly clustered, in line with 

the findings of a recent systematic review (Whitaker et al., 2021). For this reason, the 

associations of smoking and alcohol use with biological aging might be difficult to 

disentangle. Smoking is the most detrimental lifestyle factor, and its’ association with 

accelerated biological aging has been frequently reported (Oblak et al., 2021). However, the 

results obtained for the association between alcohol use and biological aging remain unclear 

(Oblak et al., 2021). A recent study showed that smoking has a causal effect on AAGrim, 

whereas alcohol use did not exhibit such effect (McCartney et al., 2021). Epigenetic 

methylation changes due to alcohol seem to be much fewer in number and magnitude 

compared to smoking exposure (Stephenson et al., 2021). In our study, the unhealthiest 

lifestyle class, in which smoking and alcohol use co-occurred, exhibited accelerated 

biological aging, especially when GrimAge and DunedinPoAm were used. These epigenetic 

aging measures are highly sensitive to tobacco exposure (Belsky et al., 2020; Lu et al., 2019). 

DNAm GrimAge is a composite biomarker comprising seven DNAm surrogates for plasma 

markers and smoking pack-years, which can predict the time to death (Lu et al., 2019). 

DunedinPoAm utilizes a specific CpG site (located within the gene AHRR), the methylation 

of which is strongly affected by tobacco exposure (Belsky et al., 2020). For these reasons, 

most of the variation in biological aging, which is explained by environmental factors shared 

with adolescent lifestyle, is probably due to smoking exposure.  

To better understand the observed differences in biological aging, we also studied differences 

in DNAm-based surrogates included in the DNAm GrimAge estimator (Supplementary text 
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and Figure S1). The class with the unhealthiest lifestyle pattern differed unfavourably from 

those with healthier habits only in DNAm-based smoking pack-years. The class with a high 

BMI had increased levels of several DNAm-based plasma markers, including DNAm PAI-1 

an TIMP-1, which are associated with markers of inflammation and metabolic conditions (Lu 

et al., 2019). These findings support the suggestions that AAGrim is a useful biomarker for 

cardiovascular health and a potential predictor of cardiovascular disease already in young 

adulthood (Joyce et al., 2021).  

Recent studies have yielded inconsistent results regarding the association between pubertal 

timing and biological aging (Hamlat et al., 2021; Maddock et al., 2021). In our models 

studying the differences in biological aging across adolescent lifestyle patterns, pubertal 

development at the age of 12 was not associated with accelerated biological aging in young 

adulthood (except for AAHannum). Moreover, the class with a high BMI included participants 

with advanced pubertal development, which might reflect the common genetic background 

underlying BMI and age at menarche (Kaprio et al., 1995). All these findings support the 

studies showing that childhood obesity, which tracks forward into adulthood, explains the 

observed associations between advanced pubertal status and worse cardiovascular health 

(Bell et al., 2018) and can further reflect the genetic architecture underlying BMI, pubertal 

development and worse health (Day et al., 2015).   

Our study has the following major strengths. Adolescent lifestyle-related patterns were 

identified using population-based large cohort data (N~5000), with longitudinal 

measurements of lifestyle-related factors assessed using validated questionnaires. Moreover, 

adolescent lifestyle behavior patterns were identified using data-driven LCA. This approach 

enabled us to use all available data on adolescent lifestyle-related behaviors and to identify 

the patterns without using artificial cut-off points for the variables. The reciprocal 

associations between different lifestyle-related factors, as well as their joint association with 

biological aging, are complex, and individual associations are difficult to interpret. However, 

our approach produced results with easy interpretation. The data were prospective, and 

biological aging was assessed with novel epigenetic aging measures, including a recently 

published DunedinPACE estimator. Furthermore, for the first time, we could evaluate the 

proportions of genetic and environmental influences underlying adolescent lifestyle as a 

whole in relation to biological aging by using quantitative genetic modelling. However, our 

study also has some limitations. Adolescent lifestyle-related behaviors were self-reported 

and, therefore, might be susceptible to recall bias and bias through social desirability.  
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In conclusion, later biological aging reflects adolescent lifestyle behavior. Our findings 

advance research on biological aging by showing that a shared genetic background can 

underlie both adolescent lifestyle and biological aging measured with epigenetic clocks.  
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Figure 1. Decomposition of A) total variation in biological aging, and B) the variation of the 

residual term.  
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Figure 2. Classes with different lifestyle patterns (n = 5114). Mean and probability profiles 

(95% confidence intervals) of the indicator variables utilized in the classification: A) body 

mass index, B) regular LTPA (several times a week), C) daily smoking and D) regular 

alcohol use (once a month or more). For categorical variables, the probabilities of belonging 

to the highest categories are presented. 
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Figure 3. Mean differences between the adolescent lifestyle behavior patterns in biological 

aging measured with A) DNAm PhenoAge, B) DNAm GrimAge, C) DunedinPoAm and D) 

DunedinPACE estimators (n = 824). The analysis was adjusted for sex (female), standardized 

age and baseline pubertal development. Means and 95% confidence intervals are presented. 

C1 = the class with the healthiest lifestyle pattern, C2 = the class with low–normal BMI, C3 = 

the class with a healthy lifestyle and high–normal BMI, C4 = the class with high BMI, C5 = 

the class with the unhealthiest lifestyle pattern. AA, age acceleration.  
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Figure 4. Proportions of variation in biological aging explained by genetic and (unshared) 

environmental factors shared with adolescent lifestyle patterns. The results are based on the 

model including additive genetic and non-shared environmental component (AE model). AA, 

age acceleration. 
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Table 1. Descriptive statistics of the adolescent lifestyle-related variables in all twins and in the 

subsample of twins with information on biological aging. 

 

  All twins (n = 5,114) Subsample (n = 824) 

  n Mean (SD) or % n Mean (SD) or %  

Zygosity 4852 
 824 

   MZ 1650 34.0 335 40.7 

   same-sex DZ 1603 33.0 262 31.8 

   opposite-sex DZ 1599 33.0 227 27.5 

Sex 5114 
 

824 

   Female 2584 50.5 470 57.0 

   Male 2530 49.5 354 43.0 

At age 12   
   Pubertal development (1–3) 5111 1.6 (0.5) 823 1.6 (0.5) 

   Body mass index 4913 17.6 (2.6) 793 17.7 (2.6) 

   Leisure-time physical activity 5038 
 813  

      Less than once a week 1877 37.3 295 35.3 

      Once a week 2499 49.6 416 51.2 

      Every day 662 13.1 102 12.5 

At age 14   
   Body mass index 4473 19.3 (2.7) 787 19.5 (2.6) 

   Leisure-time physical activity 4590 
 

799 

      Less than once a week  688 15.0 110 13.8 

      Once a week 796 17.3 149 18.6 

      2–5 times a week 2182 47.5 370 46.3 

      Every day 924 20.1 170 21.3 

   Smoking status 4570 
 

800 
 

      Never  3954 86.5 687 85.9 

      Former 296 6.5 57 7.1 

      Occasional 122 2.7 24 3.0 

      Daily smoker 198 4.3 32 4.0 

   Alcohol use (binge drinking) 4565 
 

796 

      Never  3501 76.7 602 75.6 

      Less than once a month 756 16.6 135 17 

      Once or twice a month 275 6.0 50 6.3 

      Once a week or more  33 0.7 9 1.1 

At age 17   
   Body mass index 4158 21.4 (3.0) 760 21.4 (2.7) 

   Leisure-time physical activity 4208 
 

766 

      Less than once a week  748 17.8 132 17.2 

      Once a week 686 16.3 130 17.0 

      2–5 times a week 1977 47.0 363 47.4 
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      Every day 797 18.9 141 18.4 

   Smoking status 4190 
 

762 
 

      Never  2419 57.7 454 59.7 

      Former 493 11.8 83 10.9 

      Occasional 213 5.1 48 6.3 

      Daily smoker 1065 25.4 176 23.1 

   Alcohol use (binge drinking) 4217 
 

766 

      Never  881 20.9 152 19.8 

      Less than once a month 1807 42.9 340 44.4 

      Once or twice a month 1240 29.4 222 29.0 

      Once a week or more  289 6.9 52 6.8 
MZ, monozygotic twins; DZ, dizygotic twins; SD, standard deviation. 
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Table 2. The intraclass correlation coefficients (ICCs) of epigenetic aging measures by zygosity and correlation coefficients between the measures (n = 824)  

  ICCs (95% CI)a                   Correlation coefficients (95% CI)a off-diagonal and means (standard deviations) on the diagonal 

  MZ twin pairs DZ twin pairs AAHorvath AAHannum AAPheno AAGrim DunedinPoAm DunedinPACE 

AAHorvath 0.71 (0.63, 0.79) 0.40 (0.24, 0.55) 0.00 (3.51) 
    

AAHannum 0.66 (0.56, 0.76) 0.32 (0.16, 0.48) 0.40 (0.33, 0.48) 0.00 (3.27) 
   

AAPheno 0.69 (0.60, 0.78) 0.16 (0.00, 0.33) 0.36 (0.29, 0.44) 0.61 (0.56, 0.66) 0.00 (5.25) 
  

AAGrim 0.72 (0.63, 0.80) 0.35 (0.15, 0.55) 0.08 (0.01, 0.16) 0.32 (0.24, 0.40) 0.39 (0.33, 0.46) 0.00 (3.24) 
 

DunedinPoAm 0.62 (0.52, 0.71) 0.42 (0.24, 0.60) -0.05 (-0.12, 0.03) 0.20 (0.13, 0.27) 0.41 (0.35, 0.47) 0.57 (0.52, 0.63) 1.00 (0.07) 

DunedinPACE 0.71 (0.64, 0.78) 0.46 (0.31, 0.61) -0.04 (-0.11, 0.04) 0.32 (0.23, 0.40) 0.49 (0.43, 0.55) 0.56 (0.50, 0.63) 0.61 (0.56, 0.67) 0.88 (0.10) 

CI, confidence interval; AA, age acceleration; MZ, monozygotic; DZ, dizygotic. CIs were corrected for nested sampling. 
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Table 3. Model fit of the latent class models (n = 5,114).  

  AIC BIC ABIC VLMR LMR Class sizes  AvePP 

1 128842 129012 128929 
    

2 122533 122880 122711 <0.001 <0.001 74.0%, 26.0% 0.95, 0.92 

3 119937 120460 120206 <0.001 <0.001 44.9%, 40.5%, 14.6% 0.88, 0.89, 0.93 

4 118030 118729 118389 <0.001 <0.001 36.4%, 32.7%, 16.7%, 14.2% 0.83, 0.86, 0.87, 0.92 

5 117167 118043 117617 0.529 0.530 32.0%, 22.8%, 19.9%, 15.9%, 9.5% 0.78, 0.82, 0.85, 0.88, 0.91 

6 116526 117578 117076 0.169 0.170 31.5%, 18.5%, 15.7%, 14.0%, 12.7%, 7.7% 0.77, 0.84, 0.83, 0.78, 0.78, 0.90 

7 116099 117328 116731 0.043 0.044 21.0%, 17.5%, 15.2%, 13.8%, 12.9%, 12.8%, 6.9% 0.73, 0.82, 0.70, 0.77, 0.83, 0.83, 0.91 

8 115695 117101 116418 0.407 0.408 20.3%, 16.2%, 13.6%, 13.5%, 12.3%, 11.3%, 9.3%, 3.4% 0.72, 0.75, 0.82, 0.71, 0.83, 0.80, 0.82, 0.89 

AIC, Akaike’s information criterion; BIC, Bayesian information criterion; ABIC, sample size-adjusted Bayesian information criterion; VLMR, Vuong–Lo–Mendell–

Rubin likelihood ratio test; LMR, Lo–Mendell–Rubin-adjusted likelihood ratio test; AvePP, average posterior probabilities for most likely latent class membership. 
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Table 4. Differences in biological aging between classes with different adolescent lifestyle behavior patterns.  
 

  
AAPheno 

 
AAGrim 

 
DunedinPoAm 

 
DunedinPACE 

 

  Diff 95% CI SMD Diff 95% CI SMD Diff 95% CI SMD Diff 95% CI SMD 
C2 vs C1 

           
    M1 -0.55 -2.15, 1.06 -0.10 -0.57 -1.37, 0.23 -0.18 -0.01 -0.03, 0.01 -0.14 -0.03 -0.05, 0.00 -0.30 

   M2 -0.13 -1.79, 1.54 -0.02 -0.54 -1.38, 0.29 -0.17 -0.01 -0.03, 0.01 -0.14 -0.01 -0.04, 0.02 -0.10 
C3 vs C1 

            
   M1 1.04 -0.54, 2.63 0.20 0.97 -0.01, 1.95 0.30 0.00 -0.02, 0.02 0.00 0.02 -0.01, 0.05 0.20 
   M2 0.60 -1.01, 2.21 0.11 0.94 -0.10, 1.97 0.29 0.00 -0.02, 0.02 0.00 0.00 -0.03, 0.03 0.00 
C4 vs C1 

            
   M1 1.97 0.44, 3.50 0.38 1.83 0.74, 2.91 0.56 0.05 0.03, 0.07 0.71 0.07 0.04, 0.11 0.70 
   M2 0.66 -1.31, 2.63 0.13 1.73 0.26, 3.21 0.53 0.04 0.01, 0.07 0.57 0.02 -0.02, 0.07 0.20 
C5 vs C1 

            
   M1 -0.36 -1.76, 1.04 -0.07 2.70 1.74, 3.66 0.83 0.04 0.02, 0.07 0.57 0.03 0.00, 0.06 0.30 
   M2 -0.45 -1.82, 0.93 -0.09 2.69 1.73, 3.66 0.83 0.04 0.02, 0.06 0.57 0.03 0.00, 0.06 0.30 
C3 vs C2 

            
   M1 1.59 -0.07, 3.25 0.30 1.54 0.58, 2.50 0.48 0.01 -0.01, 0.04 0.14 0.05 0.02, 0.08 0.50 
   M2 0.73 -1.10, 2.55 0.14 1.48 0.36, 2.60 0.46 0.01 -0.02, 0.03 0.14 0.01 -0.02, 0.05 0.10 
C4 vs C2 

            
   M1 2.52 0.85, 4.18 0.48 2.40 1.28, 3.51 0.74 0.07 0.04, 0.09 1.00 0.10 0.06, 0.14 1.00 
   M2 0.79 -1.59, 3.16 0.15 2.27 0.59, 3.95 0.70 0.05 0.02, 0.09 0.71 0.03 -0.02, 0.08 0.30 
C5 vs C2 

            
   M1 0.19 -1.40, 1.77 0.04 3.27 2.32, 4.23 1.01 0.06 0.03, 0.08 0.86 0.06 0.03, 0.09 0.60 
   M2 -0.32 -1.97, 1.33 -0.06 3.24 2.21, 4.27 1.00 0.05 0.03, 0.08 0.71 0.04 0.01, 0.07 0.40 
C4 vs C3 

            
   M1 0.93 -0.82, 2.67 0.18 0.85 -0.45, 2.16 0.26 0.05 0.03, 0.08 0.71 0.05 0.01, 0.09 0.50 
   M2 0.06 -1.91, 2.03 0.01 0.79 -0.68, 2.26 0.24 0.05 0.02, 0.08 0.71 0.02 -0.03, 0.06 0.20 
C5 vs C3 

            
   M1 -1.40 -2.99, 0.18 -0.27 1.73 0.62, 2.84 0.53 0.04 0.02, 0.07 0.57 0.01 -0.02, 0.04 0.10 
   M2 -1.05 -2.63, 0.54 -0.20 1.76 0.63, 2.88 0.54 0.05 0.02, 0.07 0.71 0.03 -0.01, 0.06 0.30 
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C5 vs C4 
            

   M1 -2.33 -3.84, -0.82 -0.44 0.88 -0.32, 2.07 0.27 -0.01 -0.03, 0.02 -0.14 -0.04 -0.08, 0.00 -0.40 
   M2 -1.10 -3.01, 0.80 -0.21 0.96 -0.51, 2.44 0.30 0.00 -0.03, 0.03 0.00 0.01 -0.04, 0.05 0.10 
AA, Age acceleration; Diff, Difference; CI, Confidence Interval; SMD, Standardized Mean Difference 

C1 = the class with the healthiest lifestyle pattern, C2 = the class with low–normal BMI, C3 = the class with healthy lifestyle and high–normal BMI, C4 = the 

class with high BMI, C5 = the class with the unhealthiest lifestyle pattern. 

M1, Model was adjusted for sex, age and pubertal status at age 12. 

M2, Model was additionally adjusted for BMI in adulthood. 

 

 

 

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

(w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this preprint
this version posted M

ay 31, 2022. 
; 

https://doi.org/10.1101/2022.05.30.22275761
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2022.05.30.22275761

