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ABSTRACT 

OBJECTIVES. To emulate the Glycemia Reduction Approaches in Diabetes: A Comparative 

Effectiveness Study (GRADE) trial using real-world data prior to its publication. GRADE is the 

first comparative effectiveness study to directly compare second-line glucose-lowering 

medications with respect to their ability to lower hemoglobin A1c (HbA1c).  

DESIGN AND SETTING. In this observational cohort study, we applied GRADE trial criteria to 

claims and laboratory data from OptumLabs® Data Warehouse (OLDW), a U.S. nationwide 

claims database, between 1/25/2010 and 6/30/2019.  

PARTICIAPNTS. Adults with type 2 diabetes with hemoglobin A1c (HbA1c) 6.8-8.5% on 

metformin monotherapy, identified according to GRADE trial specifications. 

INTERVENTIONS. Glimepiride, liraglutide, sitagliptin, and insulin glargine.   

MAIN OUTCOME MEASURES. The primary outcome was time to HbA1c ≥7.0% and 

secondary outcomes were other metabolic, microvascular, macrovascular, and safety outcomes 

specified by GRADE. Propensity scores were estimated using the gradient boosting machine 

method and inverse propensity score weighting was used to emulate randomization of the 

treatment groups, which were then compared using Cox proportional hazards regression. 

RESULTS. We identified 8252 patients (19.7% of adults starting the study drugs in OLDW) 

meeting GRADE eligibility criteria (glimepiride arm=4318, liraglutide arm=690, sitagliptin 

arm=2993, glargine arm=251). The glargine arm was excluded from analyses due to small 

sample size. Median times to HbA1c ≥7.0% were 442 (95% CI, 394-480) days for glimepiride, 

764 (95% CI, 741-NA) days for liraglutide, and 427 (95% CI, 380-483) days for sitagliptin. 

Liraglutide was associated with lower risk of reaching HbA1c ≥7.0% compared to glimepiride 

(HR 0.57 [95% CI, 0.43-0.75]) and sitagliptin (HR 0.55 [95% CI, 0.41-0.73]). Results were 
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consistent for the secondary outcome of time to HbA1c >7.5%. There were no significant 

differences among treatment groups for the remaining secondary outcomes. 

CONCLUSIONS. In this emulation of the GRADE trial, liraglutide was significantly more 

effective at maintaining glycemic control than glimepiride or sitagliptin when added to 

metformin monotherapy. There is value in generating timely evidence on medical treatments 

using real-world data as a complement to prospective trials. 
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SUMMARY BOXES 

1. What is already known about this topic? 

• Real-world data is an important source of information about clinical practice, 

comparative effectiveness and safety, and health outcomes and has the potential to 

generate timely, pragmatic evidence on medical treatments as a complement to 

prospective clinical trials. 

• Multiple classes of second-line glucose-lowering medications have been approved for 

the management of type 2 diabetes, with limited evidence of their comparative 

effectiveness with respect to glycemic control. 

2. What this study adds? 

• We emulated the Glycemia Reduction Approaches in Diabetes: A Comparative 

Effectiveness Study (GRADE) randomized clinical trial using data from a U.S. 

nationwide administrative claims database to identify the strengths and limitations of 

using real-world data to emulate prospective comparative effectiveness trials, 

particularly when examining medications in contexts that may not be the standard of 

care. 

• Liraglutide is more effective than glimepiride and sitagliptin at lowering HbA1c, 

supporting its preferential use when substantial glycemic reduction is needed. 

• Advanced causal inference analytic methods applied to observational data can be 

used to efficiently and effectively emulate clinical trials. 
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INTRODUCTION 

Type 2 diabetes is one of the most common serious chronic health conditions in the U.S. and 

worldwide, impacting 11.3% (37.3 million) of the U.S. population1 and 9.3% (463 million) 

people worldwide.2 Moderate glycemic control, defined by achieving glycosylated hemoglobin 

(HbA1c) between 7% and 8%, improves microvascular and macrovascular outcomes.3 4 Current 

clinical practice guidelines recommend targeting HbA1c under 7% for most non-pregnant adults.5 

Timely and appropriate treatment intensification is fundamental to maintaining glycemic control6 

and preventing complications.7-10 Metformin is recommended as the first-line glucose-lowering 

medication due to its efficacy, tolerability, and low cost.11-14 However, type 2 diabetes is a 

progressive disease and most patients ultimately require intensification of therapy. Recent 

population-level estimates suggest that nearly one-third of patients with HbA1c ≥7% are treated 

with only one glucose-lowering drug15 and as such would benefit from treatment intensification. 

Clinical practice guidelines advise that choice of second-line therapy should be informed by 

clinical and situational considerations specific to each patient, acknowledging the knowledge 

gaps stemming from the lack of direct comparisons of currently available second-line 

medications.11-14  

The Glycemia Reduction Approaches in Diabetes: A Comparative Effectiveness Study 

(GRADE) is a recently completed, but still unpublished, pragmatic, randomized, parallel-arm 

clinical trial that seeks to address this knowledge gap by comparing four second-line glucose-

lowering medications among adults with moderately uncontrolled type 2 diabetes on metformin 

monotherapy.16 17 The drugs represent four medication classes: glimepiride (sulfonylurea), 

sitagliptin (dipeptidyl-peptidase 4 inhibitor [DPP-4i]), liraglutide (glucagon-like peptide-1 

receptor agonist [GLP-1RA]), and insulin glargine (basal analog insulin). GRADE was designed 
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(2008) and launched (July 2013) prior to U.S. Food and Drug Administration (FDA) approval of 

sodium-glucose cotransporter-2 inhibitors (SGLT2i) and several cardiovascular outcomes trials 

that demonstrated reduction in atherosclerotic cardiovascular (ASCVD) and kidney disease 

outcomes with GLP-1RA use, and in heart failure and kidney disease outcomes with SGLT2i 

use. This highlights a key limitation of large prospective randomized controlled trials (RCTs): 

they are time-consuming to conduct, potentially hindering their ability to answer questions in a 

clinically meaningful time frame. Thus, there is value in efficiently generating timely evidence 

on medical treatments using observational research methods applied to real-world data as a 

complement to prospective trials. 

Advances in the quantity, quality, and granularity of real-world data, combined with 

improvements in statistical methods used to account for confounding, treatment allocation bias, 

and time-related bias, have provided opportunities to use large-scale real-world data to inform 

our understanding of drug effectiveness and safety. Ideally, studies using real-world data would 

be conducted prior to the publication of RCT results, thereby minimizing potential biases that 

could be introduced by trying to replicate known RCT results. As an illustrative test case of the 

opportunities and limitations of using observational research methods to emulate RCTs, and 

building on parallel analyses emulating the PRONOUNCE trial,18 we used claims and laboratory 

results data from OptumLabs® Data Warehouse (OLDW), a de-identified national dataset of 

privately insured and Medicare Advantage beneficiaries, to emulate the GRADE trial. We used 

published16 19 and publicly available17 information on GRADE’s study design to emulate the 

methods and anticipated results as closely as possible, with the goal of directly comparing the 

effectiveness of glimepiride, sitagliptin, liraglutide, and insulin glargine with respect to achieving 

and maintaining HbA1c below 7.0% among adults with type 2 diabetes and HbA1c 6.8-8.5% on 
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metformin monotherapy. We also examined the secondary metabolic, microvascular, 

macrovascular, and safety endpoints planned in GRADE as feasible using the data available 

within OLDW. This work therefore has two complementary objectives. First – a clinical 

objective – to examine four second-line glucose-lowering medications with respect to lowering 

and/or maintaining HbA1c below 7.0%, filling an important clinical knowledge gap with respect 

to the comparative effectiveness of these commonly used and guideline-recommended drug 

classes. Second – a methodologic objective – to ascertain whether routinely available claims data 

can be used to emulate a prospective randomized clinical trial ahead of its publication, filling 

important methodologic and regulatory policy needs with respect to the use of real-world data to 

predict clinical trial results. 

 

METHODS 

Study design: We retrospectively analyzed medical and pharmacy claims data from OLDW, a 

nationwide de-identified claims dataset comprised of enrollees in commercial and Medicare 

Advantage health plans. Private health plan beneficiaries are working-age adults and their 

dependents. Medicare Advantage plans are Medicare-approved plans offered by private 

companies to beneficiaries who are eligible for Medicare (e.g., adults 65 years and older, 

individuals with disability, patients with end-stage kidney disease) as a private alternative to 

Original Medicare. Just like commercial insurance, Medicare Advantage plans typically bundle 

medical and pharmacy coverage. OLDW contains longitudinal health information on enrollees in 

these health plans, representing a diverse mixture of ages, ethnicities, and geographic regions 

across the U.S.20 21 All study data are de-identified consistent with HIPAA expert de-

identification determination. The study was exempt from Mayo Clinic Institutional Review 
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Board review and is reported according to the Reporting of studies Conducted using 

Observational Routinely-collected Data (RECORD) reporting guideline.22  

 

Data Sharing Statement: OLDW data are available for research through a virtual data 

warehouse. The authors are not able to distribute the data. Study protocol, code sets, and 

statistical analysis plan are available online.23 

  

Study population: We first assembled a cohort of adults (≥18 years) who first started 

glimepiride, sitagliptin, liraglutide, or insulin glargine between January 25, 2010 (date of 

liraglutide approval by the FDA; remaining study drugs were approved earlier) and June 30, 

2019 (Figure S1 in the Supplement). The index date was set to the date of the first claim for the 

study drug. Patients who started ≥2 study drugs on the index date were excluded. Patients were 

required to be adherent to metformin for ≥8 weeks prior to that first fill date. This was 

established by identifying all metformin fills prior to the index date, establishing continuous 

treatment episodes based on prescription fill dates and the days’ supply for each fill (allowing up 

to 30-day gap between fills), and requiring that the last metformin treatment episode prior to the 

index date be at least 8 weeks. To ensure consistent and adequate capture of baseline 

comorbidities and treatment data, patients were required to have 6 months of continuous 

enrollment with medical and pharmacy coverage before the index date. Patients with fills for any 

glucose-lowering medications other than metformin during the baseline period were excluded. 

Patients with type 1 diabetes, defined using International Classification of Diseases (ICD) codes 

were excluded. Patients were further required to have valid demographic (age, sex, region) data 

and HbA1c results both within 3 months prior to the index date (“baseline HbA1c”) and during 
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follow-up. Next, eligibility criteria for the GRADE trial16 17 19 were adapted and applied to 

beneficiaries included in OLDW as detailed in Table S1. All relevant diagnosis codes and 

medications are summarized in Tables S2-S3. All eligible patients in OLDW were included in 

the cohort. 

  

Outcomes: The primary outcome was time to primary metabolic failure of the assigned 

treatment, calculated as days to HbA1c ≥7.0% while treated with the assigned medication, with 

the period of eligibility starting at month 3 after the index date (analogous to the first quarterly 

HbA1c assessment in GRADE). Deviating from the GRADE protocol, we did not require a 

confirmatory HbA1c due to variation in real-world HbA1c testing intervals. To assess for potential 

bias in outcome ascertainment as the result of different frequencies of HbA1c testing and varying 

intervals between tests among the treatment groups, we compared these number, frequency, and 

timing of available HbA1c test results and found no difference between the groups (Table S4). 

Because testing frequency is guided by baseline HbA1c, we also examined intervals between 

sequential HbA1c tests stratified by baseline HbA1c, and found no differences between the 

treatment groups (Table S5).  

Secondary metabolic, cardiovascular, and microvascular outcomes were analyzed as 

specified in the GRADE statistical analysis plan (SAP)17 if they were feasible to ascertain using 

claims data (Table S6). Patients were followed until they experienced the outcome of interest, 

anticipated follow-up duration of the trial (7 years), end of the study period (July 31, 2019), end 

of insurance coverage, or death. For outcomes observed “while being treated assigned regimen,” 

we followed patients until they discontinued the assigned medication (defined as not refilling a 

medication after 30 days of the end of last treatment episode), with the goal of emulating the 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 25, 2022. ; https://doi.org/10.1101/2022.05.23.22275392doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.23.22275392


Page 11 of 32 
 

definitions of these outcomes in the GRADE trial (i.e., “while treated with originally assigned 

medications”)16. 

 

Independent Variables: Patient individual-level age, sex, race/ethnicity, and annual household 

income were identified from OLDW enrollment files at the time of the index date. Detailed 

description of the source data for these variables is available in the Supplemental Methods. 

Comorbidities (ascertained from all claims during 6 months preceding the index date) included 

retinopathy, nephropathy, neuropathy, coronary artery disease, cerebrovascular disease, 

peripheral vascular disease, heart failure, and prior severe hypoglycemia and hyperglycemia as 

detailed in Table S2. Specialties of treating physicians were categorized as primary care, 

endocrinology, cardiology, nephrology, other, and unknown. Baseline medications, included as 

surrogates for complications burden, were identified from fills in the six months preceding the 

index date (Table S3). 

 

Patient and Public Involvement: Patients were not involved in the design, conduct, or 

dissemination of this study. However, this study was informed by the need to 1) identify 

preferred glucose-lowering treatment strategies in the absence of direct comparisons across the 

examined drugs; and 2) examine whether and how data collected in the process of routine patient 

care can be used to emulate prospective clinical trials. Because this study seeks to inform drug 

regulatory policy and procedures, investigators from the U.S. FDA contributed to the design of 

the study and interpretation of study findings; they are included as co-authors on this publication. 
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Statistical analysis: Inverse probability of treatment weighting (IPTW) were used to balance the 

differences in baseline characteristics among the treatment groups. Propensity score (PS) were 

used as probability of treatment; these PS weights were estimated using Generalized Boosted 

Models (GBM) including the baseline variables presented in Table 1. GBM involves an iterative 

process with multiple regression trees to capture complex and nonlinear relationships between 

treatment assignments and the pretreatment covariates, resulting in the PS model leading to the 

best balance among the treatment groups.24 Additional detail on the models is provided in Supp. 

Methods. Stabilized weights with multiple treatments were calculated by dividing the marginal 

probability of treatment by the PS of treatment received.25 The distribution of weights is 

illustrated in Figure S2. Standardized mean differences (SMD) were used to assess the balance 

of covariates after weighting; SMD ≤0.1 was considered a good balance and SMD≤0.2 was 

considered acceptable.26 Prior to evaluation of the outcomes, weighted sample sizes and ability 

to account for baseline confounding were examined to determine the feasibility of including each 

treatment group. 

The cumulative incidence of the primary (time to first HbA1c ≥7.0) and secondary (time 

to first HbA1c >7.5%) metabolic failures within each treatment arm was estimated with the IPTW 

Kaplan-Meier method. PS weighted Cox proportional hazards (PH) regression models adjusted 

by baseline HbA1c values were used to compare the outcomes between treatment groups. The at-

risk time for the PH model was set as 3 months after the index date as the primary outcome can 

be only observed starting at 3rd month. Results were presented as median times to metabolic 

failure and expected proportions of patients experiencing metabolic failure at 1 and 2 years. All 

pairwise comparisons between the treatment groups were estimated and the Holm method was 

applied to adjust the p-values for multiple testing. The proportional hazards assumption was 
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tested using Schoenfeld residuals. Similar analyses were performed for other time-to-event 

outcomes. The at-risk start time for modeling secondary metabolic, cardiovascular, and 

microvascular disease outcomes was set at the study index date. Repeated measures HbA1c 

trends by treatment group were estimated by using the IPTW mean HbA1c results by treatment 

group in 3-month time intervals. The follow-up time by treatment arm was estimated using the 

same propensity score weights as the primary analysis and the IPTW Kaplan-Meier method for 

the censoring distribution.27 

All primary analyses were conducted using the “per-protocol” censoring approach for the 

primary outcome and for the secondary outcomes of secondary metabolic failure and insulin 

initiation, censoring at the time of treatment drug discontinuation, disenrollment from the health 

plan, end of study period, or death, whichever came first (Figure S3). Time “on treatment” for 

each drug was determined by calculating continuous coverage episodes based on available fills, 

same as for baseline metformin therapy.  Remaining secondary outcomes were analyzed using 

the “intention-to-treat” censoring approach, censoring the patient at the time of health plan 

disenrollment, end of study, or death, which ever came first. P < 0.05 was considered statistically 

significant for all 2-sided tests. All analyses were performed using SAS 9.4 (SAS Institute Inc., 

Cary, NC) and R version 4.0.2.(R Foundation). 

 

Subgroup analyses: A priori-defined subgroup analyses were performed as a function of 

baseline HbA1c (<7.0% vs. ≥7.0%), age group (<65 years, ≥65 years), sex (male vs. female) and 

race/ethnicity (White, Black, Hispanic, Asian). 
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Sensitivity analyses: First, to examine the comparative effectiveness of study medications while 

treated only with them and not with any other medication, accounting for real-world treatment 

practices, we repeated all analyses using the “as-treated” censoring approach, censoring at the 

time a new medication class was added, the assigned medication was discontinued, health plan 

disenrollment, end of study, or death, which ever came first (Figure S3). Second, we assessed 

residual confounding by testing a falsification end point that is unlikely to be associated with the 

studied medications: diagnosis of pneumonia (Table S2) during the follow-up period.  

 

RESULTS 

Study Population 

We identified 18,365 adults with type 2 diabetes who started glimepiride, 12,818 who started 

sitagliptin, 5,021 who started liraglutide, and 5,659 who started insulin glargine and had the 

required baseline enrollment and available HbA1c results (Figure S1). GRADE eligibility criteria 

were met by 19.7% of these patients, ranging from 4.4% of glargine-treated patients to 23.5% of 

glimepiride-treated patients. The most prevalent reasons for ineligibility (Table S7) were HbA1c 

outside the prespecified range (ranging from 51.7% of sitagliptin-treated patients to 81.1% of 

glargine-treated patients) and not being treated with metformin monotherapy at the time of study 

drug initiation (ranging from 43.5% of glimepiride-treated patients to 68.5% of glargine-treated 

patients). The final cohort was comprised of 4318 patients in the glimepiride arm, 2993 patients 

in the sitagliptin arm, 690 patients in the liraglutide arm, and 251 patients in the glargine arm 

(see Table S8 for all included drugs).  

Baseline patient characteristics prior to weighting are shown in Table S9. There were 

significant differences (largest SMD >0.2) in patient age, race/ethnicity, annual household 
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income, and prescribing physician specialty across the four treatment groups. Patients in the 

liraglutide arm were more likely to be younger, White, higher income, and treated by an 

endocrinologist than patients in the other treatment arms. Patients in the glargine arm were most 

likely to be low income and had the highest prevalence of all examined comorbidities. 

 The glargine arm was excluded from all analyses because of small sample size (N=251, 

weighted N=179) and inability to achieve good confounder control after weighting. After the 

glargine group was dropped, the PS model was estimated on the remaining 3 groups. After 

weighting, mean patient ages were 62.0 (SD, 11.1) years in the glimepiride arm, 62.0 (SD, 11.0) 

in the sitagliptin arm, and 60.5 (SD, 10.4) in the liraglutide arm (Table 1). Women comprised 

48.2%, 49.1%, and 50.5% of the treatment arms, respectively. White patients comprised 64.7%, 

64.2%, and 65.8% of the treatment arms, respectively. Mean baseline HbA1c levels were 7.63% 

(SD, 0.48), 7.61% (SD, 0.47), and 7.60% (SD, 0.48), respectively. Pairwise SMDs for all 

baseline covariates are presented in Table S10; all SMDs were <0.2.  

 

Primary Metabolic Failure (HbA1c ≥7.0%) 

Median follow-up until per-protocol censoring was 238 (95% CI, 226-255) days in the 

glimepiride arm, 124 (95% CI, 100-150) days in the liraglutide arm, and 186 (95% CI, 179-201) 

days in the sitagliptin arm (Figure S4). Mean HbA1c decreased most in the liraglutide arm and 

least in the sitagliptin arm, with differences most pronounced between months 3 and 6 of 

treatment (Figure 1A). The median times to primary metabolic failure were 442 (95% CI, 394-

480) days in the glimepiride arm, 764 (95% CI, 741-NA) days in the liraglutide arm, and 427 

(95% CI, 380-483) days in the sitagliptin arm (Figure 1B). Liraglutide was associated with 

lower risk of primary metabolic failure compared to glimepiride (HR 0.57; 95% CI, 0.43-0.75) 
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and sitagliptin (HR 0.55; 95% CI, 0.41-0.73); Table 2. No significant difference was observed 

between sitagliptin and glimepiride (HR 1.03; 95% CI, 0.94-1.13). By 1-year, the estimated rates 

of primary metabolic failure were 0.28 (95% CI, 0.19-0.36) in the liraglutide arm, 0.44 (95% CI, 

0.42-0.46) in the glimepiride arm, and 0.46 (95% CI, 0.43-0.48) in the sitagliptin arm (Table 3). 

The difference in event rates persisted at 2 years. 

 

Secondary Metabolic Failure (HbA1c >7.5%)  

Time to secondary metabolic failure was longest in the liraglutide arm (Figure S5). Liraglutide 

was associated with lower risk of secondary metabolic failure compared to glimepiride (HR 0.61; 

95% CI [0.43, 0.87]) and sitagliptin (HR 0.59; 95% CI [0.41, 0.85]); (Table 2). By 1-year, the 

estimated rates of secondary metabolic failure were 0.11 (95% CI, 0.06-0.17) in the liraglutide 

arm, 0.20 (95% CI, 0.19-0.22) in the glimepiride arm, and 0.22 (95% CI, 0.19-0.24) in the 

sitagliptin arm (Table 3). The difference in event rates persisted at 2 years. 

 

Other Secondary Outcomes 

Insulin was started by 84 (2.0%) patients in the glimepiride arm, 11 (1.9%) patients in the 

liraglutide arm, and 50 (1.8%) patients in the sitagliptin arm, with no significant difference 

among the three groups (Table 2). Overall, 37 patients experienced emergency department visits 

or hospitalizations for hypoglycemia during the study period, including <11 in the liraglutide and 

sitagliptin arms, precluding statistical analyses.  

Heart failure, ESKD, pancreatitis, pancreatic/thyroid cancer, and all-cause mortality 

could not be analyzed due to <11 events in all treatment groups (event rates are presented in 

Table S11). There were no statistically significant differences between groups for MACE, 
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retinopathy, neuropathy, other cardiovascular events, cancer, and all-cause hospitalizations 

(Table S12).  

 

Subgroup Analyses 

Liraglutide was associated with lower risk of primary metabolic failure compared with 

glimepiride (HR 0.59; 95% CI, 0.44-0.78) and sitagliptin (HR 0.58; 95% CI, 0.43-0.79) among 

patients with baseline HbA1c ≥7.0%. There were no significant differences among the treatment 

groups in patients with baseline HbA1c <7.0% (Table S13). Liraglutide was associated with 

lower risk of primary metabolic failure compared with glimepiride (HR 0.54; 95% CI, 0.42-0.71) 

and sitagliptin (HR 0.58; 95% CI, 0.44-0.77) among patients <65 years old. There were no 

significant differences among groups in patients ≥65 years of age. Liraglutide was also 

associated with lower risks of primary metabolic failure than glimepiride and sitagliptin in 

women, but not in men, and in White and Hispanic patients, but not in Black or Asian patients. 

Findings were similar for secondary metabolic failure (Table S14). 

 

Sensitivity Analyses 

Another glucose-lowering medication was added prior to discontinuation of the assigned 

treatment in 434 (10%) patients in the glimepiride arm, 268 (39%) in the liraglutide arm, and 429 

(14%) in the sitagliptin arm. Sensitivity analyses using the as-treated censor approach were 

consistent with the primary analyses (Figure S6, Table S15). There were no significant 

differences among the treatment groups in the pneumonia falsification endpoint (Table S16).  

 

DISCUSSION 
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Our emulation of the GRADE trial using real-world data from an administrative claims database 

revealed that liraglutide was significantly more effective at maintaining glycemic control, 

defined by time to HbA1c ≥7.0% (primary metabolic failure) and HbA1c >7.5% (secondary 

metabolic failure) than either glimepiride or sitagliptin. These differences are clinically 

meaningful, with over 40% more patients in control of their HbA1c when treated with liraglutide 

than when treated with glimepiride or sitagliptin. We were unable to include insulin glargine in 

the comparisons because of the small number of glargine-treated patients meeting GRADE 

eligibility criteria. This was not surprising as treatment with basal insulin in the clinical context 

examined by GRADE is outside the standard of care and mainstream practice. Additionally, the 

analytic framework implemented in this work demonstrates that real-world data may be an 

important complement to prospective trials, allowing for efficient and timely examination of 

pressing clinical questions and inquiries of comparative effectiveness and safety.  

Our efforts to emulate all specifications of the GRADE trial were hindered by the fact 

that study conditions are not adequately represented in real-world practice as they are not 

supported by clinical practice guidelines. While all four study drugs were frequently used by the 

OLDW population, 80% of adults starting these medications had to be excluded because they did 

not meet the prespecified GRADE eligibility criteria. Nevertheless, this proportion of included 

patients is still higher than the 9.1% generalizability estimated by the GRADE study team when 

compared to the overall U.S. population with diabetes.19 The majority of patients (58.6% overall) 

were excluded due to not meeting baseline HbA1c level requirements, including 81.1% of 

glargine-initiators, 71.8% of liraglutide-initiators, 52.8% of glimepiride initiators, and 51.7% of 

sitagliptin-initiators. According to current guidelines, the target HbA1c for most non-pregnant 

adults is 7.0%, such that treatment intensification would not be warranted for some participants. 
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Initiation of insulin, in particular, is advised when HbA1c is above 9-10%,14 28 so starting glargine 

as a second-line drug at HbA1c levels below 8.5% would not be consistent with the standard of 

care14 28 or contemporary practice.29-31 The fact that most patients treated with the examined 

medications in clinical practice are not represented in the study population raises concerns about 

the utility and generalizability of GRADE study findings and its impact on diabetes management, 

underscoring the important complementary insights that can be gleaned from analyses of real-

world data (which can be designed to use more pragmatic and generalizable eligibility criteria) as 

adjuncts to RCTs. 

We met our objective to conduct all analyses prior to publication of GRADE trial 

findings, and it will be important to ultimately compare our findings to those in GRADE. The 

greater effectiveness of liraglutide compared to both glimepiride and sitagliptin is consistent with 

prior studies.30 32-34 Additionally, subgroup analyses demonstrating greater effectiveness of 

liraglutide among patients with elevated baseline HbA1c and in younger patients, generated 

important hypotheses regarding the optimal use of liraglutide (and potentially other GLP-1RA) 

in clinical practice to be explored in future research. When the GRADE trial was conceived, 

drugs’ ability to lower HbA1c was at the forefront of clinical decision making when choosing 

glucose-lowering therapy. Similarly, the SGLT2i class of glucose-lowering medications had not 

yet been incorporated into practice and therefore was excluded as a comparator therapy when the 

GRADE trial was conceived and designed. In addition, contemporary clinical practice guidelines 

increasingly focus on the impacts of glucose-lowering therapies on hard outcomes that are 

important to patients such macrovascular and microvascular complications and death, beyond 

HbA1c.
35 Indeed, most recent clinical practice guidelines recommend consideration of GLP-1RA 

and SGLT2i even as first-line therapies and independent of the HbA1c level among patients at 
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high risk for ASCVD, kidney disease, and heart failure.14 For these outcomes, there is robust 

evidence favoring liraglutide (of the drug classes examined) in patients at high risk for 

ASCVD,36 37 further underscoring its advantage. It will be important, in future research, to 

compare the effectiveness of glycemic control achieved by GLP-1RA with that of SGLT2i, as 

SGLT2i are similarly recommended for patients at high risk for cardiovascular disease, kidney 

disease, and heart failure.14 

 Our study is strengthened by application of advanced analytic methods that account for 

measured differences between treatment arms that otherwise confound analyses and preclude 

causal inference. The GBM-based models for the PS are more flexible and less sensitive to 

model misspecification compared to logistic regression. The large and diverse patient population 

within OLDW made emulation efforts uniquely possible despite the narrow eligibility criteria 

specified by GRADE.  

 

Limitations 

Despite rigorous causal inference analytic methods, observational studies are inevitably subject 

to residual confounding. For the metabolic endpoints, there was evidence of non-proportional 

hazards, which makes the single summary hazard ratio calculated from the Cox proportional 

hazards an imperfect estimate for the time-varying risk. However, with the goal of emulating the 

GRADE trial, where the statistical analysis plan was to estimate single summary hazard ratios, 

we report the same estimate in the emulation. Nevertheless, we were unable to operationalize 

every component of GRADE’s eligibility criteria and end points. For example, we did not 

require confirmatory HbA1c results to meet the metabolic endpoints and were not able to 

maintain the same standard timeframe for HbA1c ascertainment as specified in GRADE. 
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Additionally, while the GRADE trial analyses were conducted using the ITT principle, we a 

priori chose to use per-protocol analysis for the metabolic endpoints because in the absence of 

randomization, reasons for changing a treatment typically depend on post-initiation factors that 

could confound the association between the treatment group and the outcome. While advanced 

statistical methods can account for post-baseline differences between groups in key 

characteristics, these methods require accurate estimation of the reasons to stop or change 

treatment, and such estimation is not feasible in this setting using claims data. Duration of 

follow-up was also different among the treatment arms, which is unavoidable when studying 

real-world practice patterns. In particular, a higher proportion of patients initiating liraglutide 

filled only one cycle of treatment before either switching to a different treatment or not refilling 

their prescription, potentially due to poor tolerability, subcutaneous administration, or high cost.  

Not all patients with claims data in OLDW have available laboratory data, as results are 

available for a subset of patients based on data sharing agreements between OptumLabs and 

commercial laboratories. However, laboratory results availability is independent of treatment 

regimen, and we do not expect it to bias our analyses. The schedule of HbA1c testing in real-

world practice is contingent on the patient’s current HbA1c level, the clinician’s anticipation of 

changing HbA1c levels, and the patient’s ability to access care. This may have confounded study 

results by delaying the time to HbA1c reassessment and reaching the study endpoint in patients 

with low baseline HbA1c or with barriers to care. Our evaluation could not account for inclusion 

and exclusion criteria that could not be operationalized using claims data, including medications 

obtained without insurance coverage (e.g., obtained through a low-cost generic program,38 

patient assistance program, or a sample), comorbidities that were not coded and billed in a 

clinical encounter, and family history information. However, prior studies found the likely 
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number of glucose-lowering medications missing from claims to be low.39 Finally, the study 

cohort was comprised of patients with private and Medicare Advantage health plans, such that 

results may not fully generalize to patients with public health plans or those without insurance 

coverage. 

 

CONCLUSIONS 

Better understanding of the comparative effectiveness and safety of second-line glucose-

lowering medications is urgently needed to inform shared decision-making in diabetes. Analytic 

methods such as those implemented in this study, and in the parallel emulation of 

PRONOUNCE,18 can be leveraged for more timely evaluations of drug effectiveness and safety 

as long as the treatments being considered are already being used in clinical practice. Indeed, 

work is currently under way to examine the comparative effectiveness of sulfonylurea, GLP-

1RA, DPP-4i, and SGLT2i drugs with respect to ASCVD and other hard outcomes among 

patients at moderate risk for ASCVD using observational data from real-world practice.40 

Ultimately, the population included in this study and our findings should be compared to those of 

the GRADE trial, once published in peer-reviewed literature, to assess the fidelity and 

generalizability of results and to deepen our understanding of the use of real-world data to 

emulate clinical trials.   
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Table 1. Baseline characteristics in weighted cohort. Data are presented as count (percentage), 

unless otherwise specified. ARB, angiotensin II receptor blockers; ACE, angiotensin-converting 

enzyme; HbA1c, hemoglobin A1c; SMD, standardized mean difference. 

  Glimepiride Liraglutide Sitagliptin Largest 
SMD 

Weighted N 4168 572 2800 
 

Age, years, mean (SD) 62.0 (11.1) 60.5 (10.4) 61.98 (11.0) 0.14 

Sex    
0.05 

   Female 2009 (48.2%) 289 (50.5%) 1374 (49.1%) 
 

   Male  2159 (51.8%) 283 (49.5%) 1427 (50.9%) 
 

Race/ethnicity    
0.09 

   White 2695 (64.7%) 376 (65.8%) 1798 (64.2%) 
 

   Black 536 (12.9%) 79 (13.7%) 355 (12.7%) 
 

   Hispanic 513 (12.3%) 72(12.6%) 353 (12.6%) 
 

   Asian 266 (6.4%) 28 (4.9%) 185 (6.6%)  

   Unknown 159 (3.8%) 17 (3.0%) 108 (3.9%) 
 

Annual Household Income    
0.10 

   <$40,000 989 (23.7%) 123 (21.6%) 647 (23.1%) 
 

   $40,000 - $74,999 1145 (27.5%) 175 (30.7%) 766 (27.3%) 
 

   $75,000 – $124,999 1153 (27.7%) 164 (28.6%) 772 (27.6%) 
 

   $125,000 – $199,999 485 (11.6%) 63 (11.0%) 336 (12.0%) 
 

   ≥$200,000 185 (4.4%) 26 (4.5%) 139 (4.9%) 
 

   Unknown/missing 211 (5.1%) 21 (3.7%) 142 (5.1%)  
Baseline HbA1c, mean (SD) 7.6 (0.5) 7.6 (0.5) 7.6 (0.5) 0.06 

Baseline HbA1c categories    
0.09 

   6.8-6.9% 336 (8.1%) 59 (10.3%) 233 (8.3%) 
 

   7.0-7.9% 2630 (63.1%) 364 (63.7%) 1786 (63.8%) 
 

   8.0-8.5% 1202 (28.8%) 149 (26.0%) 782 (27.9%) 
 

Baseline creatinine, mg/dL, 
mean (SD)* 

0.9 (0.2) 0.9 (0.2) 0.9 (0.2) 0.02 

Baseline comorbidities     
   Nephropathy 363 (8.7%) 55 (9.5%) 229 (8.2%) 0.05 

   Retinopathy 196 (4.7%) 31 (5.4%) 135 (4.8%) 0.03 

   Neuropathy 505 (12.1%) 75 (13.2%) 326 (11.7%) 0.05 

   Hyperglycemia 2 (0.0%) 0 0 0.03 

   Hypoglycemia 2 (0.0%) 0 0 0.03 

   Coronary artery disease 355 (8.5%) 53 (9.2%) 224 (8.0%) 0.04 

   Chronic kidney disease 121(2.9%) 18 (3.1%) 82 (2.9%) 0.01 

   Cerebrovascular disease 117 (2.8%) 16 (2.8%) 80 (2.8%) 0.00 

   Peripheral vascular disease 190 (4.6%) 28 (4.9%) 130 (4.6%) 0.02 

Baseline medications     
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  Glimepiride Liraglutide Sitagliptin Largest 
SMD 

   ACE inhibitor 1819 (43.6%) 250 (43.7%) 1206 (43.1%) 0.01 

   ARB 1110 (26.6%) 157 (27.4%) 755 (27.0%) 0.02 

   ACE inhibitor or ARB 2850 (68.4%) 400 (69.9%) 1906 (68.0%) 0.04 

   Direct oral anticoagulant 57 (1.4%) 9 (1.5%) 40 (1.4%) 0.01 

   Statin 2853 (68.5%) 374 (65.4%) 1937 (69.2%) 0.08 
Non-statin lipid lowering 
medications 

549 (13.2%) 85 (14.9%) 382 (13.6%) 0.05 

   Warfarin 83 (2.0%) 12 (2.0%) 48 (1.7%) 0.02 
Peripheral neuropathy 
medications 

410 (9.8%) 74 (12.9%) 281 (10.0%) 0.09 

Specialty of treating physicians    
0.10 

   Primary care 3202 (76.8%) 424 (74.1%) 2145 (76.6%) 
 

   Endocrinology 174 (4.2%) 27 (4.7%) 120 (4.3%) 
 

   Cardiology 28 (0.7%) 2 (0.4%) 19 (0.7%) 
 

   Nephrology 6 (0.1%) 0 5 (0.2%) 
 

   Other 274 (6.6%) 45 (7.9%) 179 (6.4%) 
 

   Unknown 483 (11.6%) 74 (12.9%) 333 (11.9%) 
 

Year of cohort entry    0.13 

2010 237 (5.7%) 29 (5.0%) 167 (6.0%) 
 

2011 241 (5.8%) 25 (4.4%) 168 (6.0%) 
 

2012 297 (7.1%) 41 (7.2%) 204 (7.3%) 
 

2013 388 (9.3%) 65 (11.3%) 268 (9.6%) 
 

2014 464 (11.1%) 65 (11.4%) 318 (11.4%) 
 

2015 449 (10.8%) 58 (10.1%) 293 (10.4%) 
 

2016 575 (13.8%) 75 (13.0%) 380 (13.6%) 
 

2017 761 (18.3%) 97 (16.9%) 497 (17.8%) 
 

2018 632 (15.2%) 91 (15.9%) 422 (15.1%) 
 

2019 126 (3.0%) 27 (4.7%) 84 (3.0%) 
 

*Baseline creatinine was not included in the propensity score model as there were missing 
values.  
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Table 2. Hazard ratios for primary and secondary metabolic outcomes. *Holm-adjusted p-

values. 

 Hazard Ratio (95% CI) P-value* 

Primary metabolic failure (HbA1c ≥7%)   
Liraglutide vs Glimepiride 0.57 (0.43, 0.75) <0.001 

Sitagliptin vs Glimepiride 1.03 (0.94, 1.13) 0.48 

Liraglutide vs Sitagliptin 0.55 (0.41, 0.73) <0.001 

Secondary metabolic failure (HbA1c >7.5%)   

Liraglutide vs Glimepiride 0.61 (0.43, 0.87) 0.01 

Sitagliptin vs Glimepiride 1.04 (0.91, 1.18) 0.60 

Liraglutide vs Sitagliptin 0.59 (0.41, 0.85) 0.01 

Initiating insulin    

Liraglutide vs Glimepiride 1.49 (0.76, 2.93) 0.75 

Sitagliptin vs Glimepiride 1.10 (0.77, 1.58) 0.81 

Liraglutide vs Sitagliptin 1.35 (0.67, 2.72) 0.81 
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Table 3. Rates of primary and secondary metabolic failure by treatment arm. 
 
 1-year Event Rate (95% CI) 2-year Event Rate (95% CI) 

Primary metabolic failure (HbA1c ≥7%)   

Glimepiride 0.44 (0.42, 0.46) 0.65 (0.63, 0.68) 

Sitagliptin 0.28 (0.19, 0.36) 0.40 (0.29, 0.49) 

Liraglutide 0.46 (0.43, 0.48) 0.62 (0.58, 0.65) 

Secondary metabolic failure (HbA1c >7.5%)   

Glimepiride 0.20 (0.19, 0.22) 0.37 (0.34, 0.39) 
Sitagliptin 0.11 (0.06, 0.17) 0.17 (0.10, 0.25) 
Liraglutide 0.22 (0.19, 0.24) 0.37 (0.33, 0.41) 
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Figure 1. Glycemic control. (A) Mean HbA1c levels over time. Results are based on observed 
on-treatment trajectories, with no imputation of missing HbA1c levels.  (B) Cumulative risks of 
primary metabolic failure in propensity score weighted patients. 
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