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Abstract (150 words): Recent studies have investigated post-acute sequelae of SARS-CoV-2 
infection (PASC) using real-world patient data such as electronic health records (EHR). Prior 
studies have typically been conducted on patient cohorts with small sample sizes1 or specific 
patient populations2,3 limiting generalizability. This study aims to characterize PASC using the 
EHR data warehouses from two large national patient-centered clinical research networks 
(PCORnet), INSIGHT and OneFlorida+, which include 11 million patients in New York City (NYC) 
and 16.8 million patients in Florida respectively.  With a high-throughput causal inference pipeline 
using high-dimensional inverse propensity score adjustment, we identified a broad list of 
diagnoses and medications with significantly higher incidence 30-180 days after the laboratory-
confirmed SARS-CoV-2 infection compared to non-infected patients. We found more PASC 
diagnoses and a higher risk of PASC in NYC than in Florida, which highlights the heterogeneity 
of PASC in different populations. 

Introduction  

The global COVID-19 pandemic from late 2019 has led to more than 434 million infections and 
5.9 million deaths as of March 1, 20224. Growing scientific and clinical evidence has demonstrated 
potential post-acute and long-term effects of SARS-CoV-2 infection in multiple organ systems5, 
including  cardiovascular6, mental health7, neurological8, and metabolic9 among other systems. 
Recently, several retrospective cohort analyses have described post-acute sequelae of SARS-
CoV-2 infection (PASC) using real-world patient data2,10,11. These studies typically start with a 
predefined list of PASC symptoms and signs, and then contrast their incidence or burden in 
SARS-CoV-2 positive patients versus appropriate controls. Different analytical pipelines have 
been utilized, such as causal inference2, regression analysis12, and network analysis13. There are 
two major challenges to these existing studies. First, the disease etiology and pathophysiology of 
PASC is complicated, and our current state of knowledge is still far from complete. This means 
that conventional hypothesis-driven study design may miss potential PASC symptoms and signs 
or result in biased findings. Second, prior studies have typically been conducted on patient cohorts 
with small sample sizes1, or specific patient populations2,3. It is unclear how generalizable the 
results are from these studies when applied to the general patient population, and how PASC 
varies over broad patient populations with different characteristics. 
 
In this study, we aim to address these two challenges by developing a high-throughput causal 
inference pipeline to identify potential PASC symptoms and signs using electronic health records 
(EHR) from two large national patient-centered clinical research networks (PCORnet)14: the 
INSIGHT network15 covering patients in the New York City (NYC) metropolitan area and the 
OneFlorida+ network16 covering patients from Florida, Georgia and Alabama. We started with a 
broad list of 137 potential PASC diagnoses and 459 potential PASC medications (See Method for 
the construction of both the diagnosis and medication lists). For each of diagnoses or medications, 
we built an outcome-specific cohort with patients who are free of it at baseline, applied inverse 
propensity treatment re-weighting (IPTW) to adjust for high-dimensional hypothetical confounders 
collected from the baseline period, and calculated its adjusted hazard ratio and excess burden in 
the post-acute phase of the SARS-CoV-2 infection compared to non-infected patients (See an 
illustration in Fig. 1 and details in the Method section). We only focused on new incidences in the 
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post-acute period in this study because it provided a clean way of defining PASC phenotypes 
without complicated consideration of pre-existing conditions. 25 diagnosis categories and 51 
medications involving a wide range of organ systems were identified to be associated with SARS-
CoV-2 exposure from the INSIGHT cohort. However, by applying the same methodology for the 
OneFlorida+ cohort, we only found 9 diagnosis categories and 9 medications, and they were 
subset of the findings from INSIGHT. This discrepancy highlights the heterogeneity of PASC and 
the need for replication studies over different populations before robust conclusions about PASC 
can be made. This study is part of the NIH Researching COVID to Enhance Recovery (RECOVER) 
Initiative, which seeks to understand, treat, and prevent the post-acute sequelae of SARS-CoV-2 
infection (PASC). For more information on RECOVER, visit https://recovercovid.org/.  
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Fig.1 Overall data-driven high-throughput screening framework for the post-acute 
sequelae of SARS-CoV-2 infection (PASC) in both the INSIGHT and OneFlorida+ cohorts, 
March 2020 to November 2021. a. Selection of patients from the INSIGHT and OneFlorida+ 
EHR warehouses. b. High-throughput construction of PASC-specific case and control groups that 
patients did not have target condition at baseline. c. Study design. The PASC outcomes were 
ascertained from day 30 after the SARS-CoV-2 infection and the adjusted risk were computed at 
180 days after the SARS-CoV-2 infection. d. Confounding control with inverse propensity 
treatment re-weighting (IPTW). e. Likely PASC were identified in the INSIGHT and OneFlorida+ 
cohorts respectively. Identified PASC were compared across the two cohorts.  

Results 

Population statistics 

We identified potential PASC conditions using two different cohorts. The first cohort was built from 
the INSIGHT network15, which contained 35,275 adult patients (age ≥ 20) with lab-confirmed 
SARS-CoV-2 infection who survived the first 30 days of infection from March 2020 to November 
2021 in NYC and 326,126 eligible non-infected controls. Our second cohort was built from the 
OneFlorida+ network16 with 22,341 eligible lab-confirmed SARS-CoV-2 positive patients who 
survived the first 30 days of infection during the same period in Florida, Georgia, and Alabama 
and 177,010 non-infected controls. To ensure that patients were connected to healthcare systems 
(and thus available for observation before and after their index encounters), we required eligible 
patients to have at least one diagnosis record within three years to one week prior to the index 
date and at least one diagnosis record within 30 days to 180 days after the index date. We also 
required no COVID-19-related diagnoses for the control patients (see Methods for the definitions 
of index date and lab confirmations, and Fig. 1 for inclusion-exclusion cascade). We identified 
new-onset diagnoses and medications for SARS-CoV-2 infected patients in excess of control 
patients 30-180 days after the index date as potential PASC conditions.  
 
We summarized the baseline characteristics of both the INSIGHT cohort and OneFlorida+ cohort 
in Table 1 from information that was available on patients in clinical data; demographic information 
was collected from patients when they registered for care within the healthcare systems. We 
observed significant differences between the two cohorts regarding age, gender, race, area 
deprivation index, and outbreak waves. The INSIGHT cohort contained SARS-CoV-2 infected 
patients mainly from the New York metropolitan area with the median area deprivation index 
(ADI)17 15 (6-24) in the SARS-CoV-2 infected patient group, indicating fewer disadvantaged 
neighborhoods than the OneFlorida+ cohort whose median ADI was 58 (41-76). Indeed, the 
OneFlorida+ cohort consisted of a mixture of urban, sub-urban and rural populations in Florida 
and selected cities in Georgia and Alabama (see Methods). The median age of SARS-CoV-2 
infected patients in the INSIGHT cohort was 55 (38-68), older than the OneFlorida+ cohort with 
median age of 50 (34-64). Plus, more female SARS-CoV-2 infected patients were in the 
OneFlorida+ cohort (62.7%) than in the INSIGHT cohort (58.6%). The INSIGHT cohort also had 
a more diverse population with 34.7% white and 54.9% others (Asian and others including 
American Indian or Alaska Native, Native Hawaiian or other Pacific Islander, multiple races, etc.); 
the OneFlorida+ cohort had a majority of patients identifying as White race (51.0%). Additionally, 
there is a higher proportion of patients infected early in the pandemic in the INSIGHT cohort (31.8% 
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of all infected patients were from March 2020 to June 2020) compared to the OneFlorida+ cohort 
(9.1% of cases were from March 2020 to June 2020). Different temporal patterns of new cases 
per month across two cohorts are illustrated in Extended Data Fig. 1. The two networks also 
differed in care settings connected to patient encounters and treatments utilized for infected 
patients (e.g., more inpatient visits and more prescriptions of corticosteroids in the OneFlorida+ 
cohort than in the INSIGHT cohort). 

Table 1. Baseline characteristics of the lab-confirmed SARS-CoV-2 Positive patients and 
SARS-CoV-2 Negative patients in the INSIGHT and OneFlorida+ cohorts, March 2020 to 
November 2021a. 

  INSIGHT OneFlorida+ 

Characteristics 

SARS-CoV-2 
Positive 

(N=35,275) 

SARS-CoV-2 
Negative 

(N=326,126) 
SMDb 

SARS-CoV-2 
Positive 

(N=22,341) 

SARS-CoV-2 
Negative 

(N=177,010) 
SMD 

Median age (IQR) — yrs 55 (38-68) 57 (40-69) -0.09 50 (34-64) 57 (40-69) -0.27 

Age group — no. (%)       

20-<40 years 9,529 (27.0) 77,403 (23.7) 0.08 7,506 (33.6) 42,286 (23.9) 0.22 

40-<55 years 7,975 (22.6) 70,313 (21.6) 0.03 5,473 (24.5) 37,555 (21.2) 0.08 

55-<65 years 6,965 (19.7) 66,361 (20.3) -0.02 4,036 (18.1) 37,142 (21.0) -0.07 

65-<75 years 5,712 (16.2) 62,860 (19.3) -0.08 2,929 (13.1) 34,601 (19.5) -0.17 

75+ years 5,094 (14.4) 49,189 (15.1) -0.02 2,397 (10.7) 25,426 (14.4) -0.11 

Sex — no. (%)       

Female 20,686 (58.6) 196,730 (60.3) -0.03 14,004 (62.7) 106,963 (60.4) 0.05 

Male 14,586 (41.3) 129,360 (39.7) 0.03 8,335 (37.3) 70,034 (39.6) -0.05 

Race — no. (%)       

Asian 1,736 (4.9) 17,439 (5.3) -0.02 275 (1.2) 2,912 (1.6) -0.03 

Black 7,791 (22.1) 62,281 (19.1) 0.07 6,504 (29.1) 35,381 (20.0) 0.21 

White 12,233 (34.7) 139,512 (42.8) -0.17 11,398 (51.0) 105,521 (59.6) -0.17 

Other 9,844 (27.9) 69,406 (21.3) 0.15 3,730 (16.7) 30,138 (17.0) -0.01 

Unknown 3,671 (10.4) 37,488 (11.5) -0.03 434 (1.9) 3,058 (1.7) 0.02 

Ethnic group — no. (%)       

Hispanic 10,658 (30.2) 73,522 (22.5) 0.17 4,500 (20.1) 21,484 (12.1) 0.22 

Not Hispanic 20,838 (59.1) 216,179 (66.3) -0.15 14,798 (66.2) 120,315 (68.0) -0.04 

Unknown 3,779 (10.7) 36,425 (11.2) -0.01 3,043 (13.6) 35,211 (19.9) -0.17 

Median ADI (IQR) — rank 15 (6-24) 13 (5-23) 0.03 58 (41-76) 53 (36-72) 0.19 

Hospital visits in the past 3 years — no. (%)      

Inpatient 0 25,717 (72.9) 278,784 (85.5) -0.31 12,838 (57.5) 112,480 (63.5) -0.12 

Inpatient 1-2 6,805 (19.3) 37,297 (11.4) 0.22 4,614 (20.7) 33,658 (19.0) 0.04 

Inpatient >=3 2,753 (7.8) 10,045 (3.1) 0.21 4,889 (21.9) 30,872 (17.4) 0.11 

Outpatient 0 1,570 (4.5) 8,956 (2.7) 0.09 3,757 (16.8) 19,163 (10.8) 0.17 

Outpatient 1-2 3,327 (9.4) 32,047 (9.8) -0.01 2,617 (11.7) 18,622 (10.5) 0.04 

Outpatient >=3 30,378 (86.1) 285,123 (87.4) -0.04 15,967 (71.5) 139,225 (78.7) -0.17 

Emergency 0 20,351 (57.7) 238,527 (73.1) -0.33 8,883 (39.8) 96,496 (54.5) -0.30 

Emergency 1-2 9,518 (27.0) 61,973 (19.0) 0.19 5,151 (23.1) 35,094 (19.8) 0.08 
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Emergency >=3 5,406 (15.3) 25,626 (7.9) 0.23 8,307 (37.2) 45,420 (25.7) 0.25 

BMI kg/m2 (IQR) 27 (21-32) 25 (1-30) 0.02 30 (25-35) 28 (24-34) 0.00 

BMI >=30 obese 9,751 (27.6) 74,602 (22.9) 0.11 8,497 (38.0) 62,764 (35.5) 0.05 

Index time period — no. (%)       

03/20-06/20 11,235 (31.8) 53,988 (16.6) 0.36 2,032 (9.1) 37,363 (21.1) -0.34 

07/20-10/20 2,018 (5.7) 111,409 (34.2) -0.76 6,035 (27.0) 54,060 (30.5) -0.08 

11/20-02/21 14,637 (41.5) 88,009 (27.0) 0.31 6,254 (28.0) 38,536 (21.8) 0.14 

03/21-06/21 5,573 (15.8) 54,234 (16.6) -0.02 2,315 (10.4) 27,985 (15.8) -0.16 

07/21-11/21 1,812 (5.1) 18,486 (5.7) -0.02 5,705 (25.5) 19,066 (10.8) 0.39 

Pre-existing conditions — no. (%)c       

Alcohol Abuse 1,018 (2.9) 7,689 (2.4) 0.03 723 (3.2) 7,547 (4.3) -0.05 

Anemia 4,862 (13.8) 27,588 (8.5) 0.17 4,071 (18.2) 26,085 (14.7) 0.09 

Arrythmia 5,350 (15.2) 33,729 (10.3) 0.14 3,075 (13.8) 24,187 (13.7) 0.00 

Asthma 3,950 (11.2) 23,852 (7.3) 0.13 2,596 (11.6) 15,679 (8.9) 0.09 

Autism 47 (0.1) 288 (0.1) 0.01 89 (0.4) 578 (0.3) 0.01 

Cancer 3,616 (10.3) 34,169 (10.5) -0.01 1,968 (8.8) 24,141 (13.6) -0.15 

Chronic Kidney Disease 5,126 (14.5) 24,720 (7.6) 0.22 3,257 (14.6) 22,656 (12.8) 0.05 

Chronic Pulmonary Disorders 6,209 (17.6) 38,302 (11.7) 0.17 4,435 (19.9) 31,803 (18.0) 0.05 

Cirrhosis 582 (1.6) 4,097 (1.3) 0.03 368 (1.6) 3,856 (2.2) -0.04 

Coagulopathy 2,511 (7.1) 9,621 (3.0) 0.19 1,141 (5.1) 7,418 (4.2) 0.04 

Congestive Heart Failure 3,682 (10.4) 21,376 (6.6) 0.14 2,920 (13.1) 20,631 (11.7) 0.04 

COPD 1,726 (4.9) 9,644 (3.0) 0.10 1,600 (7.2) 13,474 (7.6) -0.02 

Coronary Artery Disease 4,658 (13.2) 30,523 (9.4) 0.12 2,742 (12.3) 22,397 (12.7) -0.01 

Cystic Fibrosis 13 (0.0) 148 (0.0) 0.00 16 (0.1) 159 (0.1) -0.01 

Dementia 1,404 (4.0) 5,330 (1.6) 0.14 909 (4.1) 4,100 (2.3) 0.10 

Diabetes Type 1 435 (1.2) 2,262 (0.7) 0.06 394 (1.8) 2,414 (1.4) 0.03 

Diabetes Type 2 7,681 (21.8) 43,233 (13.3) 0.23 5,323 (23.8) 34,512 (19.5) 0.11 

Down's Syndrome 30 (0.1) 105 (0.0) 0.02 35 (0.2) 146 (0.1) 0.02 

End Stage Renal Disease on Dialysis 1,573 (4.5) 5,701 (1.7) 0.16 895 (4.0) 5,094 (2.9) 0.06 

Hemiplegia 440 (1.2) 2,242 (0.7) 0.06 345 (1.5) 2,050 (1.2) 0.03 

HIV 586 (1.7) 5,473 (1.7) 0.00 188 (0.8) 1,601 (0.9) -0.01 

Hypertension 13,796 (39.1) 95,865 (29.4) 0.21 9,854 (44.1) 73,739 (41.7) 0.05 

Inflammatory Bowel Disorder 367 (1.0) 4,994 (1.5) -0.04 251 (1.1) 2,699 (1.5) -0.04 
Lupus or Systemic Lupus 

Erythematosus 
290 (0.8) 1,894 (0.6) 0.03 257 (1.2) 1,536 (0.9) 0.03 

Mental Health Disorders 3,682 (10.4) 24,530 (7.5) 0.10 3,983 (17.8) 29,640 (16.7) 0.03 

Multiple Sclerosis 187 (0.5) 1,224 (0.4) 0.02 109 (0.5) 779 (0.4) 0.01 

Other Substance Abuse 2,225 (6.3) 18,661 (5.7) 0.02 2,694 (12.1) 26,706 (15.1) -0.09 

Parkinson's Disease 222 (0.6) 1,781 (0.5) 0.01 143 (0.6) 1,566 (0.9) -0.03 

Peripheral vascular disorders 2,562 (7.3) 16,914 (5.2) 0.09 1,695 (7.6) 13,416 (7.6) 0.00 

Pregnant 1,608 (4.6) 15,722 (4.8) -0.01 1,504 (6.7) 10,350 (5.8) 0.04 

Pulmonary Circulation Disorder 1,345 (3.8) 6,206 (1.9) 0.11 927 (4.1) 5,761 (3.3) 0.05 

Rheumatoid Arthritis 544 (1.5) 3,649 (1.1) 0.04 453 (2.0) 3,221 (1.8) 0.02 
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Seizure/Epilepsy 790 (2.2) 4,596 (1.4) 0.06 795 (3.6) 5,124 (2.9) 0.04 

Severe Obesity (BMI>=40 kg/m2) 2,519 (7.1) 16,613 (5.1) 0.09 2,779 (12.4) 15,006 (8.5) 0.13 

Sickle Cell 255 (0.7) 1,536 (0.5) 0.03 227 (1.0) 1,108 (0.6) 0.04 

Weight Loss 1,603 (4.5) 7,190 (2.2) 0.13 1,125 (5.0) 7,742 (4.4) 0.03 

Corticosteroids Prescriptions 4,999 (14.2) 28,915 (8.9) 0.17 4,253 (19.0) 27,783 (15.7) 0.09 

Immunosuppressant Prescriptions 2,110 (6.0) 10,761 (3.3) 0.13 1,013 (4.5) 7,281 (4.1) 0.02 
a. The lab-confirmed SARS-CoV-2 positive and negative patients were identified by polymerase chain reaction (PCR) test or 
antigen test. Negative patients were further required no documented COVID-19 related diagnoses at any time. IQR denotes inter-
quartile range. Percentage may not sum up to 100 because of rounding. 
b. A standardized mean difference (SMD) of >0.10 or <-0.10 indicates an important effect size difference between the two 
samples, otherwise, no significant difference is assumed. 
c. Coexisting conditions existed if two records in the 3-years prior to index event. See detailed phenotyping codes in the appendix. 
SLE: Systemic Lupus Erythematosus; COPD: Chronic obstructive pulmonary disease. 

Identified potential PASC conditions in the INSIGHT cohort 

We started with a list of 137 potentially PASC-related diagnostic groups defined by ICD-10 
diagnosis codes and CCSR categories (Supplementary Table 2) and 359 classes of medications 
grouped by their active ingredients (See Method) to screen for potential PASC conditions. For 
each of these diagnoses or medications, we built a specific cohort who didn’t have the condition 
at baseline (Fig. 1) and conducted a causal inference procedure following the pipeline in Extended 
Data Table 2 (details provided in Method section) to estimate its risk in the post-acute period of 
SARS-CoV-2 infected patients compared to non-infected controls. Figure 2 summarizes potential 
PASC diagnoses (Fig. 2a) and medications (Fig. 2b) identified from the INSIGHT cohort, spanning 
a broad range of organ systems. We reported their incident risks in the adjusted hazard ratio (Fig. 
2) and excess burdens in the adjusted excess cumulative incidence (Fig.3). 
 
Nervous System. We observed a number of neurologic conditions which exhibited higher risk in 
SARS-CoV-2 infected patients after acute infection, including encephalopathy (1.41 [95% CI, 
1.25-1.58]), dementia (1.36 [95% CI, 1.17-1.58]), cognitive problems (1.36 [95% CI, 1.24-1.49]), 
sleep disorders (1.22 [95% CI, 1.11-1.34]), and headache (1.20 [95% CI, 1.09-1.32]). Besides, 
the insomnia drug melatonin also showed a significantly higher risk of use (1.44 [95% CI, 1.29-
1.59]), in line with diagnoses of sleep disorders. 
 
Skin. Certain skin symptoms also showed significantly higher risk in the post-acute period, 
including hair loss (2.00 [95% CI, 1.70-2.36]) and pressure ulcers (1.71 [95% CI, 1.44-2.04]), 
coupled with relevant medications including witch hazel, collagenase, and bacitracin.  
 
Respiratory System. Several pulmonary manifestations in the post-acute phase were significant. 
These included pulmonary fibrosis (2.43 [95% CI, 2.18, 2.70]), dyspnea (1.72 [95% CI, 1.63, 
1.83]), and acute pharyngitis (1.34 [95% CI, 1.17-1.54]). Besides, a large number of medications 
in line with these diagnoses also showed significantly higher use, such as asthma or chronic 
obstructive pulmonary disease drugs (e.g., vilanterol, fluticasone, budesonide, levalbuterol, 
formoterol, etc.) and cough suppressants (e.g., dextromethorphan, benzonatate, guaifenesin, 
etc.). 
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Circulatory and Blood. Identified cardiovascular manifestations with a higher risk in the post-
acute period were pulmonary embolism (1.92 [95% CI, 1.64-2.25]), thromboembolism (1.55 [95% 
CI, 1.35-1.78]), chest pain (1.50 [95% CI, 1.38-1.62]), and abnormal heartbeat (1.38 [95% CI, 
1.28-1.49]), coupled with anticoagulant medications (e.g., apixaban, rivaroxaban, enoxaparin, 
heparin, etc.) and a beta-blocker metoprolol. We also observed higher risk of anemia (1.25 (95% 
CI, 1.16-1.36) and ferric cation use (1.36 (95% CI, 1.22-1.51)) in the post-acute phase. 
 
Endocrine. Identified endocrine, nutritional and metabolic disorders with higher risk were 
malnutrition (1.39 [95% CI, 1.24-1.57]), diabetes mellitus (1.22 [95% CI, 1.10-1.35]), fluid and 
electrolyte disorders (1.20 [95% CI, 1.11-1.31]), and edema (1.17 [95% CI, 1.09-1.26]), coupled 
with higher use of glucagon, insulin, and metformin. 
 
Digestive System. Digestive system conditions with higher risks were constipation (1.19 [95% 
CI, 1.09-1.31]) and abdominal pain (1.15 [95% CI, 1.07-1.23]). The associated medications 
included magnesium hydroxide, trimethobenzamide, and simethicone. 
 
General and Musculoskeletal. General symptoms including malaise and fatigue (1.56 [95% CI, 
1.44-1.69]), fever (1.33 [95% CI 1.18-1.51]), and joint pain (1.12 [95% CI, 1.06-1.20]) showed 
significantly higher risk, coupled with higher risk of using menthol, ibuprofen, ketorolac, and 
acetaminophen.  
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Fig. 2. Identified potential incident PASC conditions from the INSIGHT cohort, March 2020 
to November 2021. a. The adjusted hazard ratios of incident diagnoses. b. The adjusted hazard 
ratios of incident use of medications. The sequelae outcomes were ascertained from day 30 after 
the SARS-CoV-2 infection and the adjusted hazard ratio were computed at 180 days after the 
SARS-CoV-2 infection. The colors represent different organ systems.  

Stratified Analysis 

To better understand the heterogeneity of potential PASC conditions, we conducted a 
comprehensive stratified analysis to examine how identified diagnoses vary across demographic 
(age, gender, race) groups, baseline pre-existing conditions, and disease severity in the acute 
phase operationalized by healthcare utilization (outpatient versus inpatient). We also studied the 
population that had no documented pre-existing conditions or PASC-like symptoms at baseline, 
referred to as the healthy population. We estimated the adjusted cumulative incidence of each 
potential PASC diagnosis per 1,000 patients at 180 days in different groups and compared the 
excess burden of it18, which is the difference between the adjusted cumulative incidences of a 
specific diagnosis in the SARS-CoV-2 infected subpopulation and the corresponding control 
subgroup. We also considered death after the 30 days since the infection as a competing risk. 
The overall results have been summarized in Fig. 3, which are further described below. 
 
Acute phase severity. General respiratory symptoms and signs (Fig. 3) demonstrated clear 
increasing burdens by settings (e.g., dyspnea from 34.9 excess cases per 1,000 patients 
compared to control patients in the outpatient setting to 79.8 in the inpatient setting). Other 
potential PASC diagnoses that followed the same trend included pulmonary fibrosis (8.8 to 30.0), 
sleep disorders (3.6 to 14.7), hair loss (5.7 to 11.4), and pulmonary embolism (1.7 to 8.6). We 
further investigated two PASC-related ICD-10 diagnosis codes, U099 (post COVID-19 condition, 
unspecified) and B948 (sequelae of other specified infectious and parasitic diseases), which also 
showed an increasing burden from 3.6 in the outpatient setting to 13.0 in the inpatient setting.  
 
Age groups. We partitioned patients into two groups according to their age (< 65 and ≥ 65). 
Potential PASC conditions that had the highest excess burden in <65 group were dyspnea, chest 
pain, abnormal heartbeat, malaise, and fatigue. Potential PASC conditions with highest excess 
burden in the ≥ 65 group included dyspnea, malaise and fatigue, edema, diabetes, anemia, 
cognitive problems, joint pain, malnutrition, and abdominal pain, among others; all of these 
conditions had a higher excess burden among those ≥ 65 compared to <65. 
 
Gender and race. Higher excess burdens in male patients included dyspnea, sleep disorders, 
malnutrition, and joint pain. Problems including hair loss and anemia demonstrated higher excess 
burdens for female patients. Black patients had higher excess burdens of chest pain than white 
patients. 
 
Baseline pre-existing conditions. Overall, we observed higher excess cumulative incidences in 
patients with any baseline pre-existing conditions (See Method) than patients without any 
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assessed comorbidities or PASC-like symptoms (denoted as healthy patients). There were also 
varying excess burdens of different potential PASC conditions associated with patients with 
different pre-existing conditions. For example, patients with coronary artery disease (CAD) had 
higher burdens of cognitive problems, sleep disorders, and encephalopathy. Patients with chronic 
kidney disease (CKD) have higher burdens of pressure ulcers, diabetes, fluid disorders, and joint 
pains. Patients with chronic pulmonary disease (CPD) had higher burdens of malaise and fatigue, 
encephalopathy, hair loss, and chest pain than those without this condition at baseline.  
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Figure 3. Adjusted excess cumulative incidence of post-acute sequelae of SARS-CoV-2 
infection (PASC) in the INSIGHT cohort, from March 2020 to November 2021, stratified by 
the acute severity status, age groups, gender, race groups, and baseline pre-existing 
conditions. P-value < 3.6 × 10−4 were used for selecting significant diagnoses. Different color 
panels represent different organ system, including (from top to bottom): nervous system, skin, 
respiratory system, circulatory system, blood forming organs, endocrine and metabolic, digestive 
system, genitourinary system, and general signs. CAD, coronary artery disease; CKD, chronic 
kidney disease; CPD, chronic pulmonary disease; T2D, diabetes type 2; Healthy: no documented 
pre-existing conditions and no PASC-like symptoms at baseline. Two ICD-10 diagnosis codes 
B948 (sequelae of other specified infectious and parasitic diseases) and U099 (post COVID-19 
condition, unspecified) were also used to compare general post-acute sequelae of SARS-CoV-2 
infection in different groups. 

Comparison with the OneFlorida+ Cohort 

To better understand the heterogeneity and commonality of potential PASC conditions over 
different populations, we replicated our analysis on the OneFlorida+ cohort and compared the 
adjusted hazard ratio of identified potential PASC diagnoses in the INSIGHT cohort versus the 
OneFlorida+ cohort. As shown in Fig. 4, overall higher adjusted hazard ratios were observed in 
the INSIGHT cohort compared to the OneFlorida+ cohort, indicating a generally higher risk of 
potential PASC conditions in INSIGHT than OneFlorida+. For certain PASC conditions the 
associated aHR values in the INSIGHT cohort exceed that in the OneFlorida+ cohort by more 
than 30%, such as malaise and fatigue, encephalopathy, sleep disorders, respiratory failure, 
pulmonary fibrosis, thromboembolism, anemia, and malnutrition. By calculating the excess 
burden of a set of potential PASC conditions identified from OneFlorida+ using the same criteria 
as INSIGHT (in Methods), we identified fewer “qualified” potential PASC conditions (Extended 
Data Fig. 2 and 3).  
 
Some PASC conditions had similar risks in both the INSIGHT and OneFlorida+ cohorts, such as 
dementia, hair loss, pressure ulcers, acute pharyngitis, and diabetes mellitus (in Fig. 4). The 
stratified analysis results (Extended Data Fig. 2) also aligned with our observations in Fig.2, 
including significantly higher burdens of any PASC diagnoses in hospitalized patients in the acute 
phase, and malaise and fatigue, hair loss, dyspnea, and chest pain for female patients. 
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Figure 4. Comparison of the post-acute sequelae of SARS-CoV-2 risks in the INSIGHT 
cohort versus in the OneFlorida+ cohort, from March 2020 to November 2021. Adjusted 
hazard ratios were reported. The color panels represent different organ system, including (from 
top to bottom): nervous system, skin, respiratory system, circulatory system, blood forming organs, 
endocrine and metabolic, digestive system, and other general signs. 
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Negative Controls 

We employed negative outcome controls19,20 in both the INSIGHT and OneFlorida+ cohorts to 
rule out potential residual confounding. We examined the adjusted risk of a range of clinical 
outcomes (e.g., injury due to external causes and neoplasms-related outcomes) where no 
association was expected with COVID-19 based on prior knowledge. We emulated trials of 
negative outcomes following the same procedure as in screening potential PASC conditions and 
estimated the adjusted risk in both exposure groups. We found no significant association between 
any of the negative outcomes and SARS-CoV-2 infection after the acute phase as shown in 
Extended Data Table 1. 

Discussion 
 

In this study, we developed a data-driven approach to identify a broad spectrum of clinical 
abnormalities (incident diagnoses and medication use) experienced by SARS-CoV-2 infected 
patients who survived beyond the first 30 days of the infection. The clinical EHRs from two large 
PCORnet clinical research networks, INSIGHT and OneFlorida+, were leveraged in our study to 
investigate the heterogeneity of potential PASC conditions over different patient populations. This 
differentiates our study from prior studies that focused on a specific patient population (e.g., Al-
Aly et al. 2 focused on the US veteran population with 87.91% males). There are also several 
studies focusing on a more discrete set of potential PASC conditions such as mental health 
problems 11,21, cardiovascular problems 10, diabetes 22, kidney problems23 among others. 
Additionally, according to a recent systematic review1, most of these studies are small (less than 
1,000 patients). 
 
With a high-throughput causal inference pipeline, we identified a broad spectrum of diagnoses 
and medication use that exhibited higher adjusted hazard ratios and excess burdens in SARS-
CoV-2 infected patients in the post-acute period compared to non-infected patients. These 
diagnoses and medications spanned a wide range of organ systems (Fig. 2), suggesting that 
PASC is a multi-organ disease. Diagnoses with high adjusted hazard ratios (aHRs) included 
respiratory problems (e.g., dyspnea and pulmonary fibrosis), dermatologic problems (e.g., hair 
loss and pressure ulcers), cardiovascular problems (e.g., pulmonary embolism, thromboembolism, 
chest pain, and abnormal heartbeat), nervous system problems (e.g., encephalopathy, dementia, 
and cognitive problems), and general symptoms (e.g., malaise, fatigue, fever, and joint pain). In 
addition to diagnoses, we also observed increased incident prescription risk in a diverse set of 
medications, including asthma drugs (e.g., vilanterol trifenatate and fluticasone furoate), cough 
drugs (e.g., dextromethorphan and benzonatate), anticoagulants (e.g., apixaban, heparin, and 
aspirin), diabetic drugs (e.g., insulin and metformin), drugs for constipation (e.g., magnesium 
hydroxide), drugs for vomiting (e.g., trimethobenzamide), pain medications (e.g., menthol, 
ibuprofen, and acetaminophen), drugs for treating skin problems (e.g., witch hazel and 
collagenase), and insomnia drugs (e.g., melatonin). These conditions and medications showed a 
higher incidence of diagnosis or use after infection than the non-infected control group, suggesting 
that these could be likely post-acute sequelae of SARS-CoV-2 infection (PASC) conditions. 
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We have also performed detailed stratified analyses on the adjusted excess burden of different 
potential PASC diagnoses over different groups defined by age, sex, race, acute severity of 
SARS-CoV-2 infection, and baseline comorbidity conditions. Our results showed that, in both the 
INSIGHT and OneFlorida+ cohorts, hospitalized patients demonstrated more excess cases of 
potential PASC diagnoses and medications (compared to non-infected controls) than non-
hospitalized patients, especially for respiratory conditions. Older patients also had higher excess 
cases of PASC conditions than younger patients, as did female and non-white patients. These 
observations were consistent with prior studies.2,18 Patients with co-morbidities had a higher 
incidence and number of putative post-acute SARS-CoV-2 conditions. Furthermore, the 
distribution of post-acute conditions varied across distinct co-morbidities. We observed that 
dyspnea consistently showed the highest excess burden across all patients regardless of co-
morbidity status. Patients with baseline cardiac problems (arrhythmia and coronary heart disease), 
type II diabetes, and chronic kidney disease (CKD) demonstrated higher burdens of a more 
diverse set of potential PASC conditions than other comorbidity groups. Patients without pre-
existing conditions at baseline had higher dyspnea, chest pain, diabetes, malaise, and fatigue 
burdens compared with control patients. 
 
We observed clear heterogeneity after replicating the same analysis to the OneFlorida+ cohort. 
Overall, aHRs on all potential PASC diagnoses identified from the INSIGHT cohort were higher 
than in the OneFlorida+ cohort. In particular, rates of pulmonary fibrosis and thromboembolism 
were 50% higher in the INSIGHT cohort than in the OneFlorida+ cohort. In addition, 25 diagnoses 
and 51 medications were identified as potential PASCs in the INSIGHT cohort compared to the 9 
diagnoses and 9 medications identified in the OneFlorida+ cohort. Potential reasons accounting 
for this heterogeneity of PASC conditions include distinct patient characteristics and different 
periods of infections which could have led to differential use of therapeutics and vaccination that 
could alter the trajectory of PASC. The SARS-CoV-2 infected patients in the OneFlorida+ cohort 
were younger (median age 50 (34-64)) than those in the INSIGHT cohort (median age 55 (38-
68)). Younger adults have been found to be at lower risk for PASC than older adults. Patients in 
the OneFlorida+ cohort were also much more socially disadvantaged on average. Their median 
ADI ranking value was almost four times higher than the median ADI of patients in the INSIGHT 
cohort. Disadvantaged social conditions can be associated with delayed or no care access and 
initiation of treatment for PASC conditions; therefore, OneFlorida+ patients might be less likely to 
present for care during a relatively short post-acute phase, leading to an undercount of potential 
PASC conditions and medication use in that population. 
 
The treatment standard for COVID-19 evolved over time.24,25 For example, there was 
demonstrable higher use of corticosteroids in the Florida cohort compared with the NYC cohort. 
Patients who received timely and appropriate treatment for COVID-19 in the acute phase could 
be less likely to develop PASC in the post-acute phase. Early evidence showed that vaccinations 
for COVID-19 significantly reduced the likelihood of getting PASC conditions.26 It should be noted 
that NYC had a higher incident burden of SARS-CoV-2 infection prior to the widespread 
availability of vaccinations in December of 2020. In comparison, the OneFlorida+ had a high 
burden of incident SARS-CoV-2 infections after December 2020. 
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Our study has several strengths. First, this study examined PASC in a large population of general 
adult patients using a data-driven approach to identify a broad list of potential PASC. Existing 
studies with comparable sample sizes are Al-Aly et al. 2, which focused on a population of mostly 
male veterans, and Cohen et al. 3, which focused on older patients enrolled in a Medicare 
Advantage plan. Second, this study incorporated EHR data from two large-scale clinical research 
networks covering patients from distinct geographic regions in the US with very different 
characteristics, allowing us to highlight the heterogeneity of PASC manifestations in terms of 
diagnoses and medications over two different populations thereby improving generalizability. 
Third, from March 2020 to November 2021 (the enrollment period of our study), the US went 
through COVID-19 waves associated with different SARS-CoV-2 virus variants demonstrating 
different epidemiological and clinical characteristics. Our INSIGHT and OneFlorida+ cohorts 
contained robust patient populations in New York and Florida, representing the different waves of 
SARS-CoV-2 infected cases in the US. This temporal difference is another important factor 
accounting for the different observations from the two cohorts, in addition to their different 
demographic and geographic characteristics.  
 
There are also several limitations. First, our study was based on observational data analysis, 
assignment to a particular exposure group was not randomized. However, we balanced high-
dimensional hypothetical confounders and got consistent results from several negative outcome 
control analyses across two datasets, suggesting little confounding. Second, our study included 
the patient population from the NYC and Florida areas, which may not be representative of other 
geographical regions of the US or other countries. Third, the PASC is currently defined in the 
RECOVER protocols as “ongoing, relapsing, or new symptoms, or other health effects occurring 
after the acute phase of SARS-CoV-2 infection”. 27 Our study only studied incident events, and 
the worsening and relapsing conditions were left for future investigations. Fourth, the way these 
CCSR categories were defined may not reflect the actual co-occurring risk of the individual 
conditions contained in each in the context of PASC. In addition, our study period was from March 
2020 to November 2021, which did not include patients infected during the phase dominated by 
the Omicron variants of SARS-CoV-2. Lastly, our analyses did not include information on 
vaccination status. 
 
In conclusion, this study demonstrated that adult patients surviving beyond 30 days of their SARS-
CoV-2 infection exhibited high incident risks and burdens across a broad range of conditions and 
signs. Our findings verified that PASC is a complex condition involving multiple organ systems. 
There was surprising geographic heterogeneity of PASC as well as patient sub-group 
heterogeneity. This study provides additional insights into our understanding of PASC and 
highlights the need for further research to support the diagnosis, prevention, and treatment of the 
post-acute sequelae of SARS-CoV-2 infection. 
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Methods  

Data 

This study used two large-scale de-identified real-world EHR datasets from the INSIGHT Clinical 
Research Network (CRN)15 and the OneFlorida+ CRN16. The INSIGHT CRN contained 
longitudinal clinical data of approximately 12 million patients in the New York City metropolitan 
area, and the OneFlorida+ CRN contained the EHR data of nearly 15 million patients from Florida 
and selected cities in Georgia and Alabama. The use of the INSIGHT data was approved by the 
Institutional Review Board (IRB) of Weill Cornell Medicine following NIH protocol 21-10-95-380 
with protocol title: Adult PCORnet-PASC Response to the Proposed Revised Milestones for the 
PASC EHR/ORWD Teams (RECOVER). The use of the OneFlorida+ data for this study was 
approved under the University of Florida IRB number IRB202001831. 
 

High-throughput causal inference pipeline to identify post-acute sequelae of SARS-CoV-2 
(PASC) 

To systematically identify likely PASCs, we examined in total 596 incident diagnoses and 
medication use (Supplemental Table 1-2) in the SARS-CoV-2 infected patients from 31 days to 
180 days after their acute infection. For each incident diagnostic category or medication use, 
we constructed an outcome-specific cohort including both SARS-CoV-2 infected patients and 
non-infected patients who did not have the corresponding diagnostic category or medication 
use at baseline and assessed its incident risk in the post-acute phase (see Fig. 1 for a graphical 
illustration of our pipeline). Similar to trial emulation using real-world data27, we evaluated the 
impact of SARS-CoV-2 infection (as exposures) in the post-acute period using each target 
outcome, leading to 596 independent trials. Of note, we scaled up standard trial emulation with 
only one specific outcome to our data-driven high-throughput hypotheses generation setting 
described as follows. We further summarized the key protocol components of these target trials 
and their high-throughput emulations in Extended Data Table 2.  

Eligibility criteria and exposure strategies. We included patients with at least one SARS-
CoV-2 polymerase-chain-reaction (PCR) or antigen laboratory test between March 01, 2020, 
and November 30, 2021, for both cohorts. Other eligibility criteria included an age of at least 20 
years old, at least one diagnosis code within three years to seven days prior to the index date 
(referred to as the baseline period), and at least one diagnosis code from 31 days to 180 days 
after the index date (referred to as the post-acute phase or follow-up period), to ensure that 
patients were connected to the healthcare system and were being observed during the study 
period. Two exposure groups were the SARS-CoV-2 infected group and the non-infected group. 
The SARS-CoV-2 infected group included patients with a positive SARS-CoV-2 PCR or antigen 
laboratory test. The index date of the infected group was defined as the date of the first 
documented positive PCR or antigen test. The non-infected group included patients whose 
SARS-CoV-2 PCR or Antigen tests were all negative throughout the entire study period with no 
documented COVID-19 related diagnoses at any time. The index date for patients in the non-
infected group was defined as the date of the first negative PCR or antigen test. See the 
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Supplementary Table 1 for the list of LOINC laboratory codes and ICD-10 diagnosis codes used 
for building patient cohorts.  

Group assignment and baseline covariates. We assigned patients to the two exposure 
groups (i.e., the SARS-Cov-2 infected group and the non-infected group) according to their 
baseline eligibility criteria and the exposure strategies. Patients in the two exposure groups 
were assumed exchangeable after adjusting for high-dimensional baseline covariates as 
hypothetical confounders. The collected baseline covariates included age (categorized into 20-
39 years, 40-54 years, 55-4 years, 65-74 years, 75-84 years, 85 years and older), gender 
(female, male, other/missing), race (Asian, Black or African American, White, other, missing), 
ethnicity (Hispanic, not Hispanic, other/missing). The national-level area deprivation index (ADI) 
was used to capture the socioeconomic disadvantage of patients’ residential neighborhood17. 
We used 9-digit zip code to link to the national ADI percentiles (ranked from 1 to 100). We 
imputed missing ADI value with median ADI per site. Healthcare utilization was measured as 
the number of inpatient, outpatient, and emergency encounters (0 visit, 1 or 2 visits, 3 or o visits, 
5+ visits for each encounter type) respectively. In addition, periods (March 2020 – June 2020, 
July 2020 – October 2020, November 2020 - February 2021, March 2021 – June 2021, July 
2021 – November 2021) of the index date were used to account for potentially different stages 
of the pandemic. We also collected a wide range baseline comorbidities based on a tailored list 
of the Elixhauser comorbidities28 and related drug categories, including alcohol abuse, anemia, 
arrythmia, asthma, cancer, chronic kidney disease, chronic pulmonary disorders, cirrhosis, 
coagulopathy, congestive heart failure, chronic obstructive pulmonary disease, coronary artery 
disease, dementia, diabetes type 1, diabetes type 2, end stage renal disease on dialysis, 
hemiplegia, HIV, hypertension, hypertension and type 1 or 2 diabetes diagnosis, inflammatory 
bowel disorder, lupus or systemic lupus erythematosus, mental health disorders, multiple 
sclerosis, Parkinson's disease, peripheral vascular disorders, pregnant, pulmonary circulation 
disorder, rheumatoid arthritis, seizure/epilepsy, severe obesity  (BMI>=40 kg/m2), weight loss, 
Down's syndrome, other substance abuse, cystic fibrosis, autism, sickle cell, corticosteroid drug 
prescriptions, immunosuppressant drug prescriptions. Patients were defined as having a 
condition if they had at least two corresponding diagnoses documented during the baseline 
period.  

Follow-up period. We followed each patient from 31 days after his/her index date until the day 
of the first target outcome, documented death, loss of follow-up in the database, 180 days after 
the baseline, or the end of our observational window (December 31, 2021), whichever came 
first.  

Diagnosis categories for screening potential PASC conditions. We examined an initial list of 
potential adult PASC diagnostic outcomes for screening, which contained 137 diagnostic 
categories. A team of clinicians built our initial screening list based on the Clinical Classifications 
Software Refined (CCSR) v2022.1 covering all the 66,534 ICD-10-CM Diagnoses, removed 
codes that cannot be attributed to COVID-19 (e.g., HIV, tuberculosis, infection by non-COVID 
causes, neoplasms, injury due to external causes), and systematically added parent codes (e.g., 
the first 3-digits of ICD-10 codes) of potential PASC diagnosis codes. The full list of our 
investigative diagnosis codes is provided in Supplementary Table 2 and includes 6466 codes. 
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Medications for screening potential PASC conditions. We examined an initial list of potential 
adult PASC medication outcomes for screening, which contained 459 drug categories classified 
by their active ingredients. We collected real-world drug prescription data from our EHR datasets, 
mapped drugs into their active ingredients, and selected drug ingredients prescribed for at least 
100 patients in the COVID-19 positive group, which led to 434 active drug ingredients. We further 
considered another 25 categories of medications used during the course of treatment for COVID-
19, including anti-platelet therapy, aspirin, colchicine, corticosteroids, dexamethasone, and 
heparin, which were potentially identified by both prescription records and procedure records. 
 
Causal contrasts of PASC outcomes. Adjusted hazard ratio and excess burden for each 
incident PASC diagnosis or medication were calculated in the follow-up period. 
 
High-throughput screening pipeline for PASC.  We systematically examined the 137 diagnosis 
categories and 459 medication ingredients using our pipeline shown in Fig. 1. 

Statistical analyses for high-throughput hypotheses generation. 

Inverse propensity score weighting confounding control. We built a propensity score (PS) 
model—the probability of assignment of a particular exposure group conditioned on baseline 
covariates—for each target outcome. Based on the estimated PS values, we then used stabilized 
inverse propensity score weighting (IPTW) 29 to re-weight patients in exposure and control groups, 
aiming to balance the two groups on baseline covariates after re-weighting. If we use 𝑋𝑋,𝑍𝑍 to 
represent the observed baseline covariates and the assignment of exposure (𝑍𝑍 = 1) and control 
groups (𝑍𝑍 = 0), the PS is defined as 𝑃𝑃𝜃𝜃(𝑍𝑍 = 1|𝑋𝑋) and the stabilized IPTW is 𝑤𝑤 = 𝑍𝑍∗𝑃𝑃(𝑍𝑍=1)

𝑃𝑃𝜃𝜃(𝑍𝑍=1|𝑋𝑋)
+

(1−𝑍𝑍)∗𝑃𝑃(𝑍𝑍=0)
1−𝑃𝑃𝜃𝜃(𝑍𝑍=1|𝑋𝑋)

. We used standardized mean difference (SMD) to quantify the goodness-of-balance 

of covariates over two groups 𝑆𝑆𝑆𝑆𝑆𝑆(𝑋𝑋1,𝑋𝑋0) = 𝐸𝐸[𝑋𝑋1]−𝐸𝐸[𝑋𝑋0]
�(𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋1)+𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋0))/22  and used 𝑆𝑆𝑆𝑆𝑆𝑆 < 0.1  as the 

threshold for balancing diagnostics. The SMD was calculated before and after IPTW re-weighting, 
and the results are provided in Supplementary Table 3 and 4. 
 
We used regularized logistic regression for PS calculation, with the optimal regularization 
parameters determined through grid search. We have shown in our previous study that a better 
PS model can be selected by considering both the goodness-of-balance performance and the 
goodness-of-fit performance. Here, we designed a cross-validation pipeline for PS model training, 
selection, and validation as detailed in Extended Data Table 3 based on our prior work30, which 
can achieve better goodness-of-balance performance compared with the PS model selected by 
other machine learning model selection strategies in trial emulations. 
 
Statistical analysis for causal contrasts. The adjusted hazard ratio (aHR) was estimated by 
Cox proportional hazard model with the abovementioned stabilized IPTW weights. The cumulative 
incidence was estimated by the Aalen-Johansen model31 considering death to be a competing 
risk for the target outcomes.  
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Subgroup analysis and negative outcome controls. The subgroup analysis was conducted by 
stratifying patients (in both SARS-CoV-2 infected and non-infected groups) by their age, race, 
gender, the severity of acute infection (outpatient or inpatient) and pre-existing conditions. We 
also included a population with no documented pre-existing conditions or PASC-like symptoms 
at baseline, denoted as healthy. To explore the possible existence of residual confounding, we 
estimated the adjusted hazard ratio of non-PASC outcomes following negative outcome control 
framework19,20. 
 
Screening criteria for likely PASC conditions. To reduce the chance of false positive discovery, 
we adhered to the following screening criteria: Only diagnoses and medications with 1) adjusted 
hazard ratios larger than 1, 2) P-value smaller than 3.6 × 10−4 (for diagnoses, significance level 
corrected by Bonferroni method for multiple testing) and 1.4 × 10−4  (for medications) will be 
retained as potential PASCs. Further, we required a minimum number of PASC events that 
appeared (at least 100 times on INSIGHT and 63 times on OneFlorida+) in the post-acute period 
of COVID-19 patients. We also considered Holms’ method for correcting the P-value under the 
high-throughput multiple-test setting, and both correction methods gave a consistent conclusion. 

Code availability  

For reproducibility, our codes are available at https://github.com/calvin-zcx/pasc_phenotype. We 
used Python 3.9, python package lifelines-0.2666 for survival analysis, and scikit-learn-0.2318 
for machine learning models. 

Data Availability 

The INSIGHT data can be requested through https://insightcrn.org/. The OneFlorida+ data can 
be requested through https://onefloridaconsortium.org. Both the INSIGHT and the OneFlorida+ 
data are HIPAA-limited. Therefore, data use agreements must be established with the INSIGHT 
and OneFlorida+ networks.  
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Extended Data Figures and Tables 

 

 

Extended Data Fig.1 Lab-confirmed New SARS-CoV-2 Cases Per 10,000 patients in the 
INSIGHT and OneFlorida+ cohorts, from March 2020 to November 2021.  
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Extended Data Fig 2 Adjusted excess cumulative incidence of post-acute sequelae of 
SARS-CoV-2 infection (PASC) in the OneFlorida+ cohort, March 2020 – November 2021, 
stratified by the acute severity status, age groups, gender, race groups, and pre-existing 
conditions. P-value < 3.6 × 10−4 were used for selecting significant diagnoses. Different color 
panels represent different organ system, including (from top to bottom): nervous system, skin, 
respiratory system, circulatory system, musculoskeletal system, and general signs. CAD, 
coronary artery disease; CKD, chronic kidney disease; CPD, chronic pulmonary disease; T2D, 
diabetes type 2. 
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Extended Data Fig 3 Adjusted hazard ratio of identified incident medications for PASC in 
the OneFlorida+ cohort. Bonferroni corrected significance level 1.4 × 10−4   was used for 
selecting significant medications.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 23, 2022. ; https://doi.org/10.1101/2022.05.21.22275420doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.21.22275420
http://creativecommons.org/licenses/by-nc-nd/4.0/


Extended Data Table 1.  Results of negative outcome control in both the INSIGHT and OneFlorida+ cohorts, March 2020–
November 2021. 

Negative Outcomes 

Adjusted Hazard 
Ratio (95% 
Confidence 

Interval)a 

P-valueb 

No. of 
Covid-19 
Positive 
patients 

No. of 
patients 

in control 
groupc 

Number 
of events 
in case 
group 

Number 
of events 
in control 

group 

No. of 
unbalanced 
covariates 

No. of 
unbalanced 
covariates 

after re-
weightinga 

INSIGHT         

Accidental Injuries 1.02 (0.84, 1.23) 0.87 33,898 33,898 347 248 26 0 
Benign Neoplasms 0.93 (0.84, 1.03) 0.14 30,461 30,461 1030 1228 26 0 
OneFlorida+ 

        
Accidental Injuries 0.99 (0.88, 1.12) 0.92 18,967 18967 661 599 10 0 
Benign neoplasms 0.93 (0.82, 1.05) 0.23 18,729 18729 585 693 10 0 
a. Outcomes were ascertained from day 30 after the SARS-CoV-2 infection. The adjusted hazard ratios were computed at 180 days 

after the SARS-CoV-2 infection by adjusting high-dimensional baseline variables the same as in the screening sequelae as 
discussed in the Method section. We used inverse propensity treatment weights to do re-weight. All the baseline covariates were 
balanced in term of standardized mean difference < 0.1. 

b. Large P-value (> 0.05) indicates no significant association between SARS-CoV-2 infection and outcomes were found 
c. The number of patients in the control group were randomly selected from all Covid-19 negative patients with the same number as 

patients in the case group.
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Extended Data Table 2 Specifications and High-throughput emulations of target trials (a large 
number of hypothetical randomized controlled clinical trials to answer a large number of causal 
questions of interests) to screening potential Post-Acute Sequelae of SARS-CoV-2 infected 
(PASC) using INSIGHT Electronic Health Records in New York City and OneFlorida+ EHRs in 
Florida (March 2020 – November 2021).  

 

Protocol 
component  

Specifications of Target Trials    High-throughput target trial emulation  

Eligibility 
criteria  

• Age ≥20 years at index, and no upper 
age limit, between March 1, 2020, and 
November 30, 2021. 

• Patients without any positive SARS-CoV-
2 polymerase-chain-reaction (PCR) or 
Antigen test, or COVID-19 diagnoses 
before index 

• Use of the INSIGHT health care system, 
defined as at least one encounter with 
any diagnoses, in the past 3 years to 7 
days before index. 

• Use of the INSIGHT health care system, 
defined as at least one encounter with 
any diagnoses, 31 days to 180 days after 
index in the follow-up period, indicates 
being alive after potential COVID-19 
acute phase and at least 31 days of 
potential follow-up. 

• Known documented SARS-CoV-2 
PCR/Antigen lab positive or negative 
results 

• (High-throughput scenario for PASC) No 
history of target post-acute sequelae of 
COVID-19 in the past 3 years to 7 days 
before index. 

• (High-throughput scenario for PASC 
medications) No history of target 
medication usage in the past 1 year to 7 
days before index. 

Same as for the target trials. We identified 
the SARS-CoV-2 infected PCR/Antigen tests 
using the laboratory results table, and the 
COVID-19 diagnoses using ICD-10 codes in 
patients’ diagnosis table in the INSIGHT EHR 
system or OneFlorida+ EHR system, 
following the PCORnet data model 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 23, 2022. ; https://doi.org/10.1101/2022.05.21.22275420doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.21.22275420
http://creativecommons.org/licenses/by-nc-nd/4.0/


Exposure 
strategies  

• Exposure group: Infection of SARS-CoV-
2 and the SARS-CoV-2 PCR/Antigen 
tested positive 

• Control group: No infection of SARS-
CoV-2, and the SARS-CoV-2 
PCR/Antigen tests keeping negative in 
the follow-up period 

• Same as for the target trial.  
• SARS-CoV-2 infected cases were defined as 

patients who had any SARS-CoV-2 
positive PCR/Antigen test, and the 
baseline date, or the index date, is defined 
as the date of the first documented positive 
SARS-CoV-2 PCR/Antigen test. 

• Non-infected controls were defined as 
patients whose SARS-CoV-2 PCR/Antigen 
tests were all negative, and there were no 
COVID-19 related diagnoses documented 
anytime. The baseline date, or the index 
date, is defined as the date of the first 
documented SARS-CoV-2 PCR/Antigen 
test. 

 

Group 
assignment  

Individuals are randomly assigned to an 
exposure strategy at baseline and are 
aware of the assigned exposure strategy. 
 

We classified patients into different exposure 
groups according to their baseline eligibility 
criteria and the exposure strategies. We 
assumed that the exposure group and the 
control group were exchangeable by 
adjusting for high-dimensional baseline, 
including age, gender, race, ethnicity, social-
economic status, hospital utilization history, 
time period of infection, baseline 
comorbidities, history prescriptions, etc. 
 
 

High-
throughput 
Outcomes  

• 137 potential post-acute sequelae of COVID-
19 (PASC) 

• 459 categories of drugs due to post-acute 
sequelae of COVID-19  

 Hospitalization due to PASC 
 ICU admission due to PASC  
 Death due to PASC (defined as death after 

31 days of SARS-CoV-2 infection)  

  Same as for the target trials.   

Follow-up   We followed each patient from his/her baseline 
day until the day of the outcome of interest, 
death, 180 days after baseline, or the end of 
the study period (November 30, 2021), 
whichever happens first.  

  Same as for the target trial.   
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Causal 
contrasts  

Excess risk of newly-onset post-acute sequelae 
of COVID-19 against baseline incidence.  

  Same as for the target trial.   

High-
throughput 
trials for 
screening 
PASC 

For each target PASC outcome, we conducted 
a corresponding target trial among which 
patients were free of the target PASC outcome 
at baseline and no history of target outcome 
before baseline. The number of potential 
PASCs are large and thus the number of 
target trials are large. 
 

 We emulated 137 trials for potential 
PASC diagnosis outcomes, and 459 
trials for potential PASC medication 
outcomes. For each emulated trial, 
the exposure group consisted of 
eligible SARS-CoV-2 infected patients 
without a history of target outcome 
at baseline. The control group were 
built from COVID-19 negative 
patients who were also without any 
history of target outcome at 
baseline. The ratio of the number of 
patients in the exposure group and 
the control group was 1:5. 
 
 

Statistical 
analysis  

Cumulative incidence (risk) curves and 
estimates of 18-months risk, and hazard ratio 
(HR) between two exposure groups.   
Subgroup analyses by baseline age, race, 
gender, and severity of acute phase of COVID-
19.  
 

  Same as for the target trial.  
• We used inverse propensity of 

treatment re-weighting (IPTW) to 
adjust for high-dimensional 
baseline covariates. We used 
L2-norm logistic regression for 
propensity score calculation, 
and the best PS model was 
selected in 10-fold cross-
validations with respect to both 
goodness-of-balance and 
goodness-of-fit. 

• Adjusted Cox proportional 
hazard model, Kaplan-Meier 
estimator, and Aalen-Johansen 
estimator were used. 

• The p-value was corrected by 
Bonferroni method for multiple 
tests of diagnoses and 
medications separately. 

• Potential PASCs were selected 
according to the number of 
patients with target outcome in 
the real-world data (>200), the 
corrected P-value 
(<0.05/number of trials), and the 
hazard ratio (>1) 
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Abbreviations: PCORnet, the National Patient-Centered Clinical Research Network; PASC, Post-
Acute Sequelae of COVID-19; PCR, polymerase chain reaction; HR, hazard ratio; IPTW, inverse 
propensity of treatment re-weighting 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 23, 2022. ; https://doi.org/10.1101/2022.05.21.22275420doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.21.22275420
http://creativecommons.org/licenses/by-nc-nd/4.0/


Extended Data Table 3 Cross-validation algorithm tailored for our machine learning-based 
propensity score calculation for each emulated trial. 

 
Table S2. Cross-validation algorithm for the ML-based PS model training, selection, and 
evaluation 

 
Input:  
(𝑋𝑋,𝑇𝑇): Patient’s covariates and exposure assignment where 𝑇𝑇 ∈ {0, 1};  
𝐹𝐹𝛩𝛩: a set of machine learning-based propensity score (PS) models;  
Output: 
𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏: the best PS model learned from (𝑋𝑋,𝑇𝑇) 
Goodness-of-balance performance, and goodness-of-fit performance 

 
1. for each 𝑓𝑓𝜃𝜃 in 𝐹𝐹𝛩𝛩  do: 
2.  randomly splitting (𝑋𝑋,𝑇𝑇) into K (K=10 in our experiments) equal sized subsets 
3. for each (𝑋𝑋𝑖𝑖, 𝑇𝑇𝑖𝑖) subset in the 𝐾𝐾 subsets do: 
4.              training 𝑓𝑓𝜃𝜃  on the remaining 𝐾𝐾 − 1 subsets (𝑋𝑋𝐾𝐾−𝑖𝑖, 𝑇𝑇𝐾𝐾−𝑖𝑖) by optimizing  

                                    binary cross entropy loss 𝐿𝐿(𝑇𝑇,𝑓𝑓𝜃𝜃 (𝑋𝑋)) 
         5.              computing stabilized IPTW 𝑤𝑤 by using 𝑓𝑓𝜃𝜃   on (𝑋𝑋,𝑇𝑇) 
         6.                    computing re-weighted 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 on (𝑋𝑋,𝑇𝑇) by using w 
         7.                    computing the number of unbalanced features 𝑛𝑛𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢−𝑖𝑖  after IPTW 
         8.                    computing the 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 of 𝑓𝑓𝜃𝜃  on the testing set (𝑋𝑋𝑖𝑖, 𝑇𝑇𝑖𝑖) 

             9. computing 𝑓𝑓𝜃𝜃’s average goodness-of-balance performance 𝑛𝑛𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢−𝜃𝜃 = 
             𝐸𝐸𝑖𝑖~𝐾𝐾[𝑛𝑛𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢−𝑖𝑖] and goodness-of-fit performance 𝐴𝐴𝐴𝐴𝐴𝐴𝜃𝜃  =  𝐸𝐸𝑖𝑖~𝐾𝐾[𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖] over 
K folds 

           10. updating best selected model 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏:= 𝑓𝑓𝜃𝜃 , the best performance 

           𝑛𝑛𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  if 𝑛𝑛𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢−𝜃𝜃 is smaller than the current minimum 

             𝑛𝑛𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, or 𝑛𝑛𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢−𝜃𝜃 is equal to the current minimum 𝑛𝑛𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
but 

             the 𝐴𝐴𝐴𝐴𝐴𝐴𝜃𝜃 is larger than the current maximum 𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

           11. re-training 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 on the whole dataset (𝑋𝑋,𝑇𝑇) 

       12. re-computing stabilized IPTW 𝑤𝑤𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 by using learned 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 on (𝑋𝑋,𝑇𝑇) 
       13. re-computing re-weighted 𝑆𝑆𝑆𝑆𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 on (𝑋𝑋,𝑇𝑇) by using 𝑤𝑤𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
       14. re-computing the number of unbalanced features 𝑛𝑛𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  after IPTW 

 

           15. return 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  , 𝑛𝑛𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  and 𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
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• Supplementary Table 1. COVID-19 Phenotyping Lab LOINC codes and Diagnosis 
ICD10 codes 

• Supplementary Table 2. PASC Adult Diagnostic List for Screening 
• Supplementary Table 3. Balance Diagnostics of Discovered PASC Specific Cohorts on 

INSIGHT, NYC 
• Supplementary Table 4. Balance Diagnostics of Discovered PASC Specific Cohorts on 

OneFlorida, Florida 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 23, 2022. ; https://doi.org/10.1101/2022.05.21.22275420doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.21.22275420
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Fig.1 Overall data-driven high-throughput screening framework for the post-acute sequelae of SARS-CoV-2 infection (PASC) in both the INSIGHT and OneFlorida+ cohorts, March 2020 to November 2021. a. Selection of patients from the INSIGHT and OneFlorida...

	Results
	Population statistics
	Table 1. Baseline characteristics of the lab-confirmed SARS-CoV-2 Positive patients and SARS-CoV-2 Negative patients  in the INSIGHT and OneFlorida+ cohorts, March 2020 to November 2021a.

	Identified potential PASC conditions in the INSIGHT cohort
	Fig. 2. Identified potential incident PASC conditions from the INSIGHT cohort, March 2020 to November 2021. a. The adjusted hazard ratios of incident diagnoses. b. The adjusted hazard ratios of incident use of medications. The sequelae outcomes were a...

	Stratified Analysis
	Figure 3. Adjusted excess cumulative incidence of post-acute sequelae of SARS-CoV-2 infection (PASC) in the INSIGHT cohort, from March 2020 to November 2021, stratified by the acute severity status, age groups, gender, race groups, and baseline pre-ex...

	Comparison with the OneFlorida+ Cohort
	Figure 4. Comparison of the post-acute sequelae of SARS-CoV-2 risks in the INSIGHT cohort versus in the OneFlorida+ cohort, from March 2020 to November 2021. Adjusted hazard ratios were reported. The color panels represent different organ system, incl...

	Negative Controls

	Discussion
	Methods
	Data
	High-throughput causal inference pipeline to identify post-acute sequelae of SARS-CoV-2 (PASC)
	Statistical analyses for high-throughput hypotheses generation.

	Code availability
	Data Availability
	Acknowledgment
	References
	Extended Data Figures and Tables
	Extended Data Fig.1 Lab-confirmed New SARS-CoV-2 Cases Per 10,000 patients in the INSIGHT and OneFlorida+ cohorts, from March 2020 to November 2021.
	Extended Data Fig 2 Adjusted excess cumulative incidence of post-acute sequelae of SARS-CoV-2 infection (PASC) in the OneFlorida+ cohort, March 2020 – November 2021, stratified by the acute severity status, age groups, gender, race groups, and pre-exi...
	Extended Data Fig 3 Adjusted hazard ratio of identified incident medications for PASC in the OneFlorida+ cohort. Bonferroni corrected significance level 1.4×,10-−4.  was used for selecting significant medications.
	Extended Data Table 2 Specifications and High-throughput emulations of target trials (a large number of hypothetical randomized controlled clinical trials to answer a large number of causal questions of interests) to screening potential Post-Acute Seq...
	Extended Data Table 3 Cross-validation algorithm tailored for our machine learning-based propensity score calculation for each emulated trial.

	Supplementary Information

