
1 
 

Identifying type 1 and 2 diabetes in population level data: assessing the accuracy of published 

approaches 

 

Nicholas J Thomas 1, 2, Andrew McGovern 1,2, Katherine G Young 1, Seth A Sharp1,  Michael N 

Weedon 1, Andrew T Hattersley 1,2, John Dennis 1, Angus G Jones 1,2  

 

Author details: 

1. Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK 

2. Department of Diabetes and Endocrinology, Royal Devon and Exeter NHS Foundation Trust, 

Exeter, UK, Exeter, UK 

 

Corresponding author 

 

Angus Jones 

Institute of Biomedical and Clinical Science, University of Exeter, College of Medicine and Health, 

Exeter, UK 

Email: angus.jones@exeter.ac.uk 

Tel 01392408538 

 

Abstract: 304 

Manuscript: 4279 

Tables: 4 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 13, 2022. ; https://doi.org/10.1101/2022.04.11.22273617doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://www.researchgate.net/institution/Royal_Devon_and_Exeter_NHS_Foundation_Trust
https://doi.org/10.1101/2022.04.11.22273617
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Abstract:  

 

Aims 

Population datasets are increasingly used to study type 1 or 2 diabetes, and inform clinical practice. 

However, correctly classifying diabetes type, when insulin treated, in population datasets is 

challenging. Many different approaches have been proposed, ranging from simple age or BMI cut 

offs, to complex algorithms, and the optimal approach is unclear. We aimed to compare the 

performance of approaches for classifying insulin treated diabetes for research studies, evaluated 

against two independent biological definitions of diabetes type. 

 

Method  

We compared accuracy of thirteen reported approaches for classifying insulin treated diabetes into 

type 1 and type 2 diabetes in two population cohorts with diabetes: UK Biobank (UKBB) n=26,399  

and DARE n=1,296. Overall accuracy and predictive values for classifying type 1 and 2 diabetes were 

assessed using: 1) a type 1 diabetes genetic risk score and genetic stratification method (UKBB); 2) C-

peptide measured at >3 years diabetes duration (DARE).  

 

Results 

Accuracy of approaches ranged from 71%-88% in UKBB and 68%-88% in DARE. All approaches were 

improved by combining with requirement for early insulin treatment (<1 year from diagnosis). When 

classifying all participants, combining early insulin requirement with a type 1 diabetes probability 

model incorporating continuous clinical features (diagnosis age and BMI only) consistently achieved 

high accuracy, (UKBB 87%, DARE 85%). Self-reported diabetes type alone had high accuracy (UKBB 

87%, DARE 88%) but was available in just 15% of UKBB participants.  For identifying type 1 diabetes 

with minimal misclassification, using models with high thresholds or young age at diagnosis (<20 

years) had the highest performance. An online tool developed from all UKBB findings allows the 

optimum approach of those tested to be selected based on variable availability and the research 

aim. 

 

Conclusion 

Self-reported diagnosis and models combining continuous features with early insulin requirement 

are the most accurate methods of classifying insulin treated diabetes in research datasets without 

measured classification biomarkers. 
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Background 

 

Robustly classifying diabetes type in population level data is challenging 

 

Large population level datasets are widely used for clinical studies of people with diabetes, however 

for results to be robust, accurate diabetes classification is fundamental. Together type 1 diabetes 

(T1D) and type 2 diabetes (T2D) account for ≥98% of all diabetes cases, [1] but these two subtypes 

have marked differences in aetiology, pathophysiology and management [2]. While absence of 

insulin treatment in longstanding diabetes is highly specific for T2D [2, 3], classifying currently insulin 

treated diabetes cases is challenging [3]. The clinical diagnosis of insulin treated diabetes cases is 

frequently not available in population data, and if available will include substantial misclassification 

and miscoding (≈15%)[4-8].  In population data, biomarkers which can help improve classification, 

such as C-peptide or islet autoantibodies [9], are rarely available.   

 

The comparative performance of approaches to classify insulin treated diabetes in epidemiological 

studies is unknown. 

 

The optimum approach for classifying T1D and T2D in population data remains unclear. Previously 

published approaches vary and include: clinician or self-reported diabetes type, diabetes treatment, 

billing codes or using specific cut offs of diabetes related features for example body mass index 

(BMI) or age at diabetes diagnosis [10-21]. Where the performance of these approaches has been 

assessed, it is normally against a clinical assessment of T1D or T2D diagnosis [7, 10, 11, 16-21]. These 

assessments will not only suffer from the inaccuracies of clinical diagnosis and coding, but also a 

circularity bias that features favored by clinicians for determining diabetes type will appear to be 

most discriminatory.  While prediction models for classification have been developed and tested 

against C-peptide and histology defined diabetes type these have not been compared to other 

approaches [12, 15, 22]. To date, there has not been an evaluation of the comparative performance 

of existing classification approaches against a robust independent biomarker. 

 

Aim 

 

To help researchers to choose the optimum diabetes classification approach for research studies 

using large datasets, we aimed to compare the performance of a number of published approaches 

for classifying insulin treated diabetes in two population level datasets. Classification approaches 

were evaluated against two independent biological definitions of diabetes type based on type 1 

diabetes genetic risk scores (T1GRS), and measured C-peptide.  
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Method 

Within two population cohorts we assessed the performance of different published approaches for 

classifying insulin treated diabetes into T1D and T2D against biomarker defined diabetes subtypes. In 

UK Biobank we used a type 1 diabetes genetic risk score (T1DGRS) within a previously published 

genetic stratification method [23] to compare the proportion of T1D and T2D cases correctly and 

incorrectly classified by each approach. We also assessed the performance of these approaches in a 

large unselected population cohort with diabetes (the DARE cohort) against diabetes type defined by 

C-peptide level measured after a median 14 years duration. 

 

Study design and participants 

UK Biobank  

 

UK Biobank recruited a population cohort of more than 500,000 people aged between 40 and 70 

years registered with the UK National Health Service [24]. We evaluated a subset of 26,399 

unrelated individuals self-reporting diabetes. To allow direct comparison of classification approaches 

in the same cohort, individuals were excluded where missing BMI measurement (n=237) or self-

reported age at diabetes diagnosis (n=1,675). A further 1,389 participants were excluded where it 

was not possible to generate a T1DGRS . Overall 23,098 participants met study eligibility criteria, a 

study flowchart is shown in electronic supplementary materials (ESM) Figure 1a. A subset of 45% 

(10,491/23,098) of participants had linkage to their primary care record.  

 

The main analysis was restricted to the 72% (16,619/23,098) of participants of white European 

descent, as the T1DGRS used to define diabetes type has not been validated in non-white ethnicities 

[25, 26]. People of white European descent were those who self-identified as white European and 

were confirmed as ancestrally white by use of principal components analyses of genome-wide 

genetic information [27]. A separate secondary exploratory analysis was undertaken including all 

23,098 participants of all ethnicities. Clinical history was self-reported via an interactive 

questionnaire and nurse led interview, further details of clinical features and lipid assessment are 

given in ESM.  

 

DARE cohort 

 

The DARE study recruited, predominantly though primary care in the South West of England, an 

unselected population of adults with diabetes (regardless of age of onset or diabetes type, 

gestational diabetes excluded) [5]. We evaluated 1,296 participants (22% (1296/5991) of the DARE 

cohort) with measured C-peptide. C-peptide was measured on stored non fasting EDTA at DARE 

recruitment after January 2010 as previously described (see ESM) [5]. Participants were excluded 

where BMI measurement was missing (n=6) or if diabetes duration at recruitment was ≤3 years 

(n=49) due to the limitations of C-peptide assessment in short duration diabetes [9]. A study flow 

chart is shown in ESM Figure 1b. Although all ethnicities were recruited to DARE, 99% were white 

(1224/1241). In DARE all clinical history was self-reported by participants in an interview with a 

research nurse as reported previously [5]. 

 

Assessment of population approaches for classifying diabetes type in insulin treated individual  
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Overall we compared ten different approaches for the classification of insulin treated diabetes with 

the variables required for each approach listed in Table 1. For all approaches using continuous 

variables, cut offs to classify either T1D or T2D were selected based on previously proposed values 

where available [7, 10-12, 15]. Different cut offs were used where the aim was to classify all insulin 

treated participants or select a T1D or T2D cohort with minimal misclassification (Table 1). The 

approaches evaluated were: age at diagnosis alone ((approach 1: age), BMI alone (approach 2: BMI), 

a T1D probability clinical features model, incorporating BMI and age at diagnosis (approach 3: 

clinical model) [12, 22], a T1D probability model incorporating BMI and age at diagnosis, sex, HDL, 

triglycerides and total cholesterol (approach 4: lipid model) [15], a tree structured model using 

hospital episode statistics (HES) data including ICD10 and ICD9 diabetes codes and history of diabetic 

ketoacidosis (DKA) (approach 5: ICD Algorithm) [18] and an algorithm developed for classifying 

diabetes type within UK Biobank (approach 6: Biobank algorithm) [10]. The UK Biobank algorithm 

defines diabetes as probable or possible T1D or T2D using three different flow charts incorporating 

age at diagnosis, time to Insulin, non-metformin oral hypoglycaemic agents (OHA), self-report of 

type 1 diabetes and ethnicity. In our study the UK Biobank algorithm was evaluated with and 

without the addition of self-reported diabetes type. For the model incorporating lipids, in the 26% 

(1262/4845) of UK Biobank participants where lipids were not available, instead of excluding these 

cases, their calculated clinical model probability as above (BMI and age at diagnosis) was 

substituted, allowing classification of all participants.  While both the clinical and lipid models can 

also incorporate islet antibodies and T1DGRS this was not assessed due to lack of islet 

autoantibodies and the use of T1DGRS for outcome definition in UK biobank, and the performance 

incorporating these markers in DARE being already published [12, 15]. Self-reported diabetes type as 

a single marker was also evaluated (approach 7: Self). 

 

In the subset of UK Biobank participants with linked primary care data, recorded diagnostic codes 

were used to classify diabetes type, within the following approaches:  a classification algorithm 

incorporating diagnosis codes and prescriptions for non-metformin OHA, glucagon or urine acetone 

(ketone) strips [11] ((approach 8: diagnosis codes algorithm), diagnosis codes used alone [17]  

(approach 9: diagnostic codes alone) and diagnostic code in combination with age of diagnosis [16] 

(approach 10: diagnosis codes and age). Linked primary care data were not available in DARE. The 

code for all approaches is provided in ESM appendix 2.  

 

For identifying ‘pure’ type 1 and 2 diabetes using prediction models, no previous cut off has been 

recommended, therefore cut offs were chosen prior to analysis based on probability thresholds that 

gave high positive predictive value (PPV) for type 1 or 2 diabetes in previous literature [12]: T1D 

≥80% probability and T2D <5% probability, for defining T1D a further cut-off of 20% probability was 

evaluated to give a high PPV whilst aiming to capture a high percentage of all T1D cases. Rapid 

insulin requirement and OHA treatment are well reported to associate with T1D and T2D 

respectively. Therefore as an additional analysis performance of approaches was further evaluated 

with the addition of knowledge of rapid insulin requirement defined as insulin treatment within a 

year of diagnosis, or also by current treatment with any OHA.  

 

Biological definitions of diabetes type approaches evaluated against: 
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UK Biobank:  

 

We have recently shown that measuring the average polygenic susceptibility to T1D (captured by a 

T1D genetic risk score (T1DGRS)) of a population with diabetes can allow the proportion of T1D in 

that population to be determined [23, 28]. Genetic risk cannot be used in isolation to define diabetes 

type at an individual level as a high genetic susceptibility for T1D does not prevent a person having 

T2D [29]. However, within a cohort the average distribution of T1DGRS will reflect the proportion of 

T1D to T2D cases within it. A T1D cohort defined by an accurate classification approach will have a 

high average genetic susceptibility to T1D, closely mirroring the genetic risk of a reference cohort 

with confirmed T1D [3]. Conversely a T1D cohort defined by an inaccurate classification approach 

will have a lower average genetic susceptibility to T1D, as it will also include T2D cases with neutral 

genetic susceptibility for T1D. This concept allows the proportion of T1D to T2D within cohorts 

defined by different classification approaches to be estimated and the relative performance of 

different approaches to be compared. The main analysis was restricted to participants of white 

European descent, where the T1DGRS is validated, with a separate secondary exploratory analysis 

undertaken in all ethnicities.  

 

We generated a 67 SNP type 1 diabetes T1DGRS as previously described [30], see ESM methods for 

further detail.  

 

DARE:  

 

T1D was defined as severe insulin deficiency: measured non-fasting C-peptide <200pmol/L.  Type 2 

diabetes was defined as participants currently insulin treated with a C-peptide ≥200pmol/L. All 

analysed participants had a duration of diabetes at C-peptide measurement of over three years [9]. 

C-peptide was measured on stored non-fasted EDTA at DARE recruitment and as part of routine care 

ESM and as previously described [5].   

 

Statistical analysis 

 

When classifying all insulin treated cases, approaches were ranked by the overall accuracy of each 

definition, defined as the proportion of all T1D and T2D cases correctly classified relative to the total 

number of all cases classified. For each approach the PPV of cases called T1D and T2D (percent of 

those identified who have the condition as defined by the biological standard) and sensitivity for 

detecting T1D and T2D (percentage of cases with the condition identified) were also calculated.  

Where aiming to classify just a T1D or T2D cohort, approaches were ranked firstly based on PPV and 

then secondly by sensitivity. 

 

UK Biobank 

For each classification approach the mean T1DGRS for cases classified as T1D (𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝐶𝑎𝑙𝑙𝑒𝑑  𝑇1𝐷 ) 

and T2D (𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝐶𝑎𝑙𝑙𝑒𝑑  𝑇2𝐷 ) were separately evaluated against mean T1DGRS for reference T1D 

cases (𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑇1𝐷) (n=6483 mean T1DGRS = 14.50) and reference Type 2 diabetes equivalent 

cohort (𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑇2𝐷)  (n= 9246 mean T1DGRS = 10.37) both taken from the Type 1 Diabetes 

Genetics Consortium [31]. Reference T1D cases were white European, clinically diagnosed and aged 
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<17 years at diagnosis. The higher the proportion of diabetes cases correctly defined by a 

classification approach the more the T1DGRS of the groups classified as T1D or T2D will respectively 

genetically resemble true T1D and T2D reference populations (method shown in ESM figure 2). The 

proportion of T1D within groups, defined by each classification approach, is then calculated 

according to the normalised difference of each clinical definitions mean T1DGRS 

(𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝐶𝑎𝑙𝑙𝑒𝑑 (𝑇1𝐷/𝑇2𝐷)) and the mean T1DGRS of the two reference populations (𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑇1𝐷 

and 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑇2𝐷) in the equations below and as described previously [28, 32]. For cases defined 

as having T1D by each classification approach, PPV for T1D is equivalent to 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑇1𝐷. For 

cases defined as having T2D by each classification approach, positive predictive value (PPV) for T2D 

is calculated as 1- 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑇1𝐷 .  

 
 

Calculating accuracy in UK Biobank and DARE 

 

Where all insulin treated participants were classified as having either T1D or T2D, accuracy was 

calculated as: 

 
Where 𝑛𝑇1𝐷 is the number of cases called as having T1D and 𝑛𝑇2𝐷 is the number of cases called as 

having T2D by each approach. 

 

All analyses were performed using Stata 16 (StataCorp LP, College Station, TX). 
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Results:  

 

Performance of approaches to classifying all insulin treated white European participants with 

diabetes in UK Biobank 

 

Within the UK Biobank, of the white European participants meeting eligibility criteria, 21% 

(3534/16,619) were insulin treated. The clinical characteristics of all participants split by insulin 

treatment status are shown in ESM Table 1. In the 13,085 participants with diabetes not currently 

insulin treated the mean T1DGRS (10.32, SD 2.38) was consistent with a classical non-T1D reference 

population [31] mean T1DGRS (10.37 SD 2.26) suggesting little to no T1D in this group. The 

genetically assessed performance of classification approaches to classify all insulin treated diabetes 

cases as either T1D or T2D ranked by accuracy are shown in Table 2.  

 

The median classification accuracy was 85%, and varied substantially by approach (range 71% to 

88%). The highest accuracy overall was rapid insulin requirement combined with the clinical model, 

overall correctly classifying 87% and lipid model overall correctly classifying 88%. Self-reported 

diabetes type with or without the addition of rapid insulin had accuracy of 87% but was available in 

just 15% (519/3534) of all cases. For the majority of approaches, adding rapid insulin treatment 

requirement to define T1D substantially improved accuracy with absence of OHA treatment only 

slightly less accurate, ESM table 2. The lowest accuracy was seen in approaches using simple cut-offs 

for individual variables: age of diagnosis (<35 years) 82% and BMI (≤25kg/m2) 71%. In the 47% 

(1644/3534) of the insulin treated cohort with linked primary care data, diabetes diagnosis codes 

algorithm alongside rapid insulin requirement gave the highest accuracy of approaches that 

incorporate electronic healthcare record data and diagnosis codes at 85%. For direct comparison 

ESM table 3 gives the performance of other classification approaches in this reduced subset of the 

dataset with linked primary care records, results were broadly similar in this subset, again models 

with and without lipids, combined with early insulin treatment having the highest overall accuracy of 

88% and 87% respectively. 

 

Performance of approaches to classifying all insulin treated participants with diabetes in DARE 

 

In the DARE cohort we identified 1241 people with diabetes who met our inclusion criteria, 63% 

(784/1241) were insulin treated with 42% (333/784) having a C-peptide <200 pmol/l consistent with 

T1D, at a median duration of 18 years. Table 3 gives the performance of classification approaches to 

classify all insulin treated diabetes cases as either T1D or T2D against a C-peptide definition of 

diabetes type. Accuracy values and overall ranking of approaches were similar to when diabetes type 

was defined genetically in UK Biobank, median accuracy 83% (range 68%-88%). In DARE the clinical 

model combined with rapid insulin requirement had accuracy of 85%. Self-reported diabetes type 

alone gave the highest accuracy 88%. The Biobank algorithm (incorporating self-reported diabetes 

type) with rapid insulin had accuracy of 87%. This reduced to 84% when self-reported diabetes type 

was not included within the algorithm. Again all methods were improved by adding rapid insulin 

requirement. In the 451 non-insulin treated participants with C-peptide measured 99.6% (449/451) 

had a C-peptide ≥200 consistent with T2D.  

 

Performance of approaches to optimally identify type 1 diabetes amongst insulin treated 
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participants with diabetes  

 

The performance of methods to optimally identify T1D, ranked by PPV in UK Biobank (percent of 

those identified as T1D who have the condition genetically) are shown in table 4. A pure T1D cohort 

was generated when rapid insulin requirement was combined with either age at diagnosis ≤ 20 years 

(PPV 100%) or a clinical model probability ≥80% (PPV 99%). However, these approaches had low 

sensitivity respectively only identifying 33% and 37% of all T1D cases. Using probable T1D in the 

Biobank algorithm combined with rapid insulin requirement identified 69% of all T1D cases, with a 

PPV of 90%. This was similar to using a lower clinical model probability of ≥20% identifying 67% of all 

T1D cases with a PPV of 91%. Comparable results for the majority of approaches for both PPV and 

sensitivity of T1D identified were achieved in DARE, using C-peptide defined diabetes type, Table 4. 

 

Performance of approaches to optimally identify type 2 diabetes within insulin treated 

participants with diabetes  

 

Performance of methods to optimally identify T2D, ranked by PPV in UK Biobank (percent of those 

identified as T2D who have the condition genetically) are shown in ESM table 4. A pure T2D cohort 

was generated using probable T2D within the Biobank Algorithm, PPV 100% but this had low 

sensitivity capturing just 17% of all insulin treated T2D cases. A clinical model probability <5% gave a 

T2D PPV of 94% and captured 67% of all T2D cases. Adding absence of rapid insulin requirement to 

all definitions of T2D increased T2D PPV in all approaches but resulted in a lower proportion of all 

T2D cases being captured. Comparable results for both PPV and sensitivity for each approach were 

achieved in DARE, ESM Table 4. 

 

Performance of approaches to classifying all insulin treated participants with diabetes in UK 

Biobank 

 

As an exploratory analysis we evaluated the performance of approaches to classify all participants 

with diabetes in UK Biobank regardless of ethnicity. Within the 4,845 insulin treated participants the 

overall performance of approaches was similar to when undertaken in just White Europeans, median 

accuracy 85% (range 75% to 91%) with the best accuracy achieved using probability models 

combined with rapid insulin requirement: lipid model 91%, clinical features only model 90%,  ESM 

Table 5. 

 

Development of algorithm for optimal approach selection. 

 

We developed a pragmatic online tool for researchers to select the optimum approach of those 

evaluated for classifying insulin treated diabetes cases in population datasets, based on findings in 

UK Biobank: Classifying Diabetes for Research: Method Selector (newcastlerse.github.io). The 

optimal approach varies based on the research question being asked and the diabetes outcomes 

available in the dataset being used. ESM appendix 2 provides researchers the R code to implement 

all methods which is also provided within the online tool. 
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Discussion 

 

We evaluated the performance of approaches for classifying diabetes type in two different 

population level datasets: UK Biobank and DARE. Results were consistent across datasets despite 

using two different biological definitions of diabetes type. The impact of classification approach 

selection on study results and conclusions is highlighted by the marked variation in accuracy 

observed in our study. Across the two different datasets combining rapid insulin requirement with 

T1D models incorporating BMI and age at diagnosis (clinical model) and these features with lipids 

(lipid model) consistently achieved the highest accuracy for classifying all insulin treated participants 

(≥85%). Self-reported diabetes type showed similar accuracy in both UK Biobank and the DARE 

cohort but was only recorded in the minority (15%) of UK Biobank participants limiting its utility. 

 

Our results suggest that when available self-reported diabetes type can be used to classify 

population cohorts with insulin treated diabetes. When self-reported diabetes type is unavailable, as 

seen in UK Biobank in the majority of cases, probability models combined with rapid insulin 

requirement provide a highly accurate simple alternative. Approaches combining different variables 

had higher accuracy than cut-offs applied to single variables such as BMI or age at diagnosis. All 

approaches are improved by adding variables capturing either rapid insulin requirement or current 

OHA treatment. It was possible to identify pure T1D cohorts in both datasets though use of a 

combination of early insulin treatment and either high model probability or very young age at 

diagnosis.  

 

A key strength of our study was that performance was evaluated against biological definitions of 

diabetes type. This reduces the potential for inaccuracies and bias if testing against clinical 

definitions which are subject to both error and circularity (with features accurate for clinical 

classification reflecting features clinicians consider to be important)  [4, 5, 7]. The main analysis in UK 

Biobank was restricted to white European participants where the T1DGRS has been validated. As an 

exploratory analysis we evaluated all participants to show that the ranking of approaches remained 

similar (meaning the optimum approach remains valid) even if the absolute accuracy of approaches 

in all non-white European ethnicities should be interpreted with caution. Whilst all ethnicities were 

included in DARE 99% of participants were white European. 

 

Few studies have compared different classification methods to robust biomarker defined diabetes 

types. In a cohort with insulin treated diabetes, Hope et al evaluated the performance of age of 

diagnosis <35 to classify diabetes cases with T1D defined by C-peptide deficiency and cases with 

preserved C-peptide defined as T2D [7]. Age at diagnosis correctly classified 83% of all cases in their 

study comparable with in our study: 82% in UK Biobank and 79% in DARE. This remained comparable 

when age of diagnosis was combined with rapid insulin requirement: Hope et al study accuracy of 

85% versus 84% UK Biobank and 82% DARE. Model performance was also high when previously 

assessed against diabetes subtypes defined by pancreatic histology in the NPOD consortium [22]. 

Because knowledge of time to insulin treatment is not always available, we also evaluated absence 

of oral hypoglycemic treatment to define T1D showing this was only slightly less accurate than rapid 

insulin requirement. The importance of insulin treatment in helping initially determine diabetes type 

in population datasets is emphasized by the genetic susceptibility of all participants not currently 

insulin treated being consistent with little to no T1D in this group. In DARE absence of insulin 
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treatment was also almost never associated with C-peptide deficiency despite use of a pragmatic 

random sample, mirroring previous studies defining diabetes type using C-peptide [33].    

 

Limitations of our study include that T1DGRS is known to modestly reduce with increasing age of 

T1D diagnosis, [34-37] and our T1D reference T1DGRS cohort were all diagnosed with T1D under 17 

years of age [30]. In previous studies the mean T1DGRS of those with confirmed type 1 diabetes 

diagnosed over 30 years of age was 2.5% lower than those diagnosed <18 years [38].  In UK Biobank 

the majority (90% (3194/3534)) of insulin treated participants were aged >17 years at diagnosis, 

making our genetic estimates of T1D proportions slight underestimates. However, as all approaches 

were evaluated within the same dataset the comparative performance results remain robust and 

reassuringly similar results were also found defining diabetes type by C-peptide in DARE. Both the 

Biobank algorithm (developed in UK Biobank) and the T1D clinical model (developed in a cohort that 

included DARE) were evaluated in the same cohorts they were developed in. Reassuringly both 

methods performed comparatively well in the alternative data set they were not developed in 

suggesting any bias was minimal. Despite using both T1D probability models in all participants even 

though they were developed in adults aged 18-50 they were consistently high performing 

approaches in both datasets [12, 15]. It is possible accuracy could have been further improved by 

varying cutoffs in older adults however this would have risked being over fitted. Lipids in UK Biobank 

were also unfasted, in contrast to the model development dataset, and it is therefore possible 

performance would increase where fasted lipids are available [15]. Using genetic predisposition to 

T1D can be helpful in diabetes classification; in the original development of the clinical model adding 

T1DGRS improved performance [12] and we would recommend using this when genetic data is 

available,  however as T1DGRS was our outcome we were unable to evaluate this approach. Islet 

autoantibodies used in combination with clinical models also improve performance [12], but are 

rarely available in population data as is the case in UK Biobank. Classifying diabetes as only being 

T1D or T2D will miss other types of diabetes. Reassuringly in DARE just 2% (29/1241) of the cohort 

had a clinician diagnosis which was not T1D or T2D. Finally we have only tested one of a number of 

published algorithms for using primary care electronic healthcare records (available only in a subset 

of UK Biobank participants, and unavailable in the DARE cohort). The approach proposed by Klompas 

using primary care data [11] has been extensively used, and therefore was included as an example of 

an approach that makes use of the additional data available in electronic healthcare records. 

 

Our results are important for all researchers studying type 1 or 2 diabetes. The considerable 

differences in pathophysiology, treatment and associated risks of T1D and T2D means inadvertently 

studying mixed cohorts could lead to misleading study findings [39]. Our results allow determination 

of the optimal approach for classifying insulin treated diabetes cases whilst also confirming that non-

insulin treated cases of over three years duration can confidently be labelled as having T2D. 

Approaches can be selected based on which diabetes specific outcomes are available and the 

research question being asked. An added advantage of our study is that researchers can understand 

the accuracy of the approach used and how this might impact their results and their relatability to 

other studies where different approaches may have been used. For ease our findings have been 

translated into an online tool allowing researchers to determine and then implement the optimal 

approach for their research question and dataset. 

 

Conclusion: 
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Within two separate population datasets and using two different biological definitions of diabetes 

we show the performance of approaches for classifying insulin treated diabetes type for research 

studies and translate this into an online tool for optimal approach selection for researchers. Self-

reported diagnosis and models combining continuous features are the most accurate methods of 

classifying insulin treated diabetes in research datasets without measured classification biomarkers. 
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Figures 

Table 1: Diabetes specific factors required for each approach and the different cut offs 

required for classifying all cases, or defining type 1 diabetes or type 2 diabetes. Where 

available cut offs were taken from existing literature [7, 10-12, 16-18]. * For the models 

previously published cut offs were not available for selecting pure T1D and T2D cohorts so 

pragmatic values were chosen from published data aiming for 100% and >90% PPV for T1D 

classification and 100% PPV for T2D classification [12].  

 

  Cut offs used  and reference code 

Reference name 
(approach 
number)  

Clinical information required 
Whole Cohort 

For defining type 1 diabetes 
remainder type 2 diabetes 

For defining type 
1 diabetes only 

For defining 
type 2 diabetes 

only 

Age (1) Age at diagnosis  <35 years 
(7)

 ≤20 years 
(11)

 ≥40  years 
(7)

 

BMI (2)  Current BMI ≤25 kg/m
2 (11)

 ≤23 kg/m
2 (7)

 ≥28 kg/m
2 (7)

 

Clinical model (3) Current BMI, age at diagnosis 
Model probability 

≥12% 
(12)

 

Model probability 
≥80% * 

Model 
probability 

<5% * 

Lipid model (4) 
Current BMI, age at diagnosis, 

Sex, HDL, triglyceride, total 
Cholesterol 

Model probability 

≥12% 
(12)

 

Model probability 
≥80% * 

Model 
probability 

<5% * 

ICD codes (5) 
(ICD 10 or 9 code), OHA, Age at 
diagnosis, DKA episode history Algorithm Type 1 diabetes 

(18)
 N/A N/A 

UK Biobank 
Algorithm (6) 

Age at diagnosis, time to Insulin, 
non metformin OHA, self-report 

of type 1 diabetes, ethnicity 

Possible and probable type 1 

diabetes
 (10)

 

Probable type 1  

diabetes 
(10)

 

Probable type 2  

Diabetes 
(10)

 

Self (7) Self reported diabetes type Self reported type 1 diabetes N/A N/A 

Diagnosis Codes 
algorithm (8) 

Diabetes diagnosis codes, non 
metformin OHA, prescription for 
glucagon, prescription for urine 

acetone strip 

Ratio of type 1 diabetes to type 2 
diabetes diagnosis codes >0.5 with 
either glucagon or non metformin 

OHA prescription or prescription of 

urine acetone strip alone  
(11)

 

N/A N/A 

Diagnosis code + 
age (9) 

Diabetes diagnosis codes and 
age at diagnosis. 

Any diagnosis code of Type 1 

diabetes or age at diagnosis 
(16)

 
N/A N/A 

Majority 
diagnosis codes 

(10) 
Diabetes diagnosis codes 

Ratio of type 1 diabetes to type 2 

diabetes diagnosis codes >0.5 
(17)

 
N/A N/A 
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Table 2: Comparative performance of approaches classifying all insulin treated white 

European participants with diabetes in UK Biobank. Cases are classified as type 1 diabetes 

if they meet the stated criteria, and are otherwise classified as type 2 diabetes. Results 

ranked by accuracy (total correctly classified) then type 1 diabetes PPV. Brackets signify 95% 

CI, Positive predictive value (PPV). 

 

 Called Type 1 Diabetes Called Type 2 Diabetes  

Approach  (n) PPV  Sensitivity   (n) PPV  Sensitivity Accuracy  

Lipid model probability ≥12%  and 
insulin within year of diagnosis 

1169 87% (84-90) 79% (77-81) 2365 88% (86-91) 93% (92-94) 88% 

Clinical model probability ≥12% and 
insulin a within year of diagnosis 

1047 89% (86-92) 72% (70-75) 2487 86% (83-88) 95% (94-96) 87% 

Self reported diabetes type (n=519 
available) and insulin within a year 
of diagnosis 

224 85% (77-92) 86% (81-91) 295 89% (82-97) 89% (85-92) 87% 

Self reported diabetes type (n=519 
available) 

253 80% (73-87) 92% (88-95) 266 93% (86-101) 83% (79-87) 87% 

UK Biobank probable & possible 
type 1 diabetes and insulin within a 
year of diagnosis 

988 90% (87-93) 69% (66-71) 2546 84% (82-87) 96% (95-96) 86% 

ICD algorithm and insulin within a 
year of diagnosis 

1025 89% (86-92) 71% (68-73) 2509 85% (82-87) 95% (94-96) 86% 

UK Biobank probable & possible 
type 1 diabetes and insulin within a 
year of diagnosis (no self report) 

918 93% (89-96) 66% (63-68) 2616 83% (81-85) 97% (96-98) 85% 

ICD algorithm 1184 82% (79-85) 75% (73-78) 2350 86% (84-89) 91% (90-92) 85% 

Age diabetes diagnosed <35 years 
and insulin within a year of diagnosis 

867 93% (89-96) 62% (59-65) 2667 82% (79-84) 97% (96-98) 84% 

Lipid model probability ≥12%  1501 74% (71-77) 86% (84-88) 2033 91% (89-94) 83% (81-84) 84% 

UK Biobank probable & possible 
type 1 diabetes (no self report) 

1142 80% (77-83) 70% (68-73) 2392 84% (81-87) 90% (88-91) 83% 

UK Biobank probable & possible 
type 1 diabetes 

1231 78% (75-81) 74% (72-77) 2303 86% (83-88) 88% (87-89) 83% 

Clinical model probability ≥12% 1325 76% (73-79) 78% (76-80) 2209 87% (84-90) 86% (84-87) 83% 

Age diabetes diagnosed <35 years 1065 80% (77-84) 66% (64-69) 2469 82% (80-85) 91% (89-92) 82% 

BMI ≤25 (kg/m2) and insulin within a 
year of diagnosis 

511 80% (75-85) 32% (29-34) 3023 71% (68-73) 95% (95-96) 72% 

BMI ≤25 (kg/m2)  658 70% (65-74) 35% (33-38) 2876 71% (68-73) 91% (90-92) 71% 
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Table 3: Comparative performance of approaches classifying all insulin treated 

participants with diabetes in DARE. Cases are classified as type 1 diabetes if they meet the 

stated criteria, and are otherwise classified as type 2 diabetes. Results ranked by accuracy 

(total correctly classified) then type 1 diabetes PPV. Brackets signify 95% CI, Positive 

predictive value (PPV). Lipid model and Diagnosis codes not evaluated as unavailable in 

DARE. 

 

 Called Type 1 Diabetes Called Type 2 Diabetes  

Approach  (n) PPV  Sensitivity   (n) PPV  Sensitivity  Accuracy 

Self reported diabetes type and 
insulin within a year of 
diagnosis 

310 89% (85-92) 82% (78-86) 474 88% (85-91) 92% (90-95) 88% 

Self reported diabetes type  335 86% (83-90) 87% (83-90) 449 90% (87-93) 90% (87-93) 88% 

UK Biobank probable & possible 
type 1 diabetes and insulin 
within a year of diagnosis 

325 86% (82-90) 84% (80-88) 459 88% (85-91) 90% (87-93) 87% 

Clinical model probability ≥12% 
and insulin a within year of 
diagnosis 

278 90% (86-93) 75% (70-79) 506 83% (80-86) 94% (91-96) 85% 

UK Biobank probable & possible 
type 1 diabetes and insulin 
within a year of diagnosis (no 
self report) 

257 90% (87-94) 69% (65-74) 527 81% (77-84) 94% (92-97) 84% 

UK Biobank probable & possible 
type 1 diabetes 392 76% (72-80) 89% (86-92) 392 91% (88-93) 79% (75-83) 83% 

Age diabetes diagnosed <35 
years and insulin within a year 
of diagnosis 

242 90% (86-94) 65% (60-70) 542 79% (75-82) 95% (93-97) 82% 

Clinical model probability ≥12% 346 78% (74-82) 81% (77-85) 438 85% (82-89) 83% (80-87) 82% 

UK Biobank probable & possible 
type 1 diabetes (no self report) 300 81% (77-85) 73% (68-78) 484 81% (78-85) 87% (84-90) 81% 

Age diabetes diagnosed <35 
years 280 80% (76-85) 67% (62-72) 504 78% (75-82) 88% (85-91) 79% 

BMI ≤25 (kg/m2) and insulin 
within a year of diagnosis 140 87% (82-93) 37% (31-42) 644 67% (63-71) 96% (94-98) 71% 

BMI ≤25 (kg/m2)  187 72% (66-79) 40% (35-46) 597 67% (63-70) 88% (85-91) 68% 
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Table 4: Comparative performance of approaches classifying type 1 diabetes in UK 

Biobank and DARE in insulin treated participants. Cases are classified as type 1 diabetes if 

they meet the stated criteria, and are otherwise classified as type 2 diabetes. Results ranked 

in UK Biobank by type 1 diabetes PPV then sensitivity for identifying type 1 diabetes. Analysis 

in UK Biobank restricted to White Europeans. Brackets signify 95% CI, Positive predictive 

value (PPV).  

 

 UK BIOBANK DARE 

Approach 
PPV of cases 
called type 1 

diabetes 

Sensitivity for 
identifying type 

1 diabetes 

PPV of cases 
called type 1 

diabetes 

Sensitivity for 
identifying type 1 

diabetes 

Age diabetes diagnosed  ≤20 years 
and insulin within a year of 
diagnosis 

100% (99-100) 33% (30-35) 96% (93-100) 40% (32-49) 

Clinical model probability ≥80% 
and insulin within a year of 
diagnosis 

99% (98-100) 37% (34-39) 96% (93-99) 47% (39-54) 

Lipid model probability ≥80%  and 
insulin within a year of diagnosis 97% (95-98) 40% (38-43) n/a n/a 

Lipid model probability ≥80%  92% (90-94) 42% (39-45) n/a n/a 

Age diabetes diagnosed  ≤20 years 92% (90-95) 34% (31-36) 96% (92-99) 40% (32-49) 
Clinical model probability ≥20% 
and insulin within a year of 
diagnosis 

91% (89-92) 67% (65-70) 91% (88-95) 70% (65-76) 

Clinical model probability ≥80% 91% (88-93) 37% (35-40) 93% (90-97) 47% (39-55) 
UK Biobank probable type 1 
diabetes and insulin within a year 
of diagnosis 

90% (88-92) 69% (66-71) 86% (82-90) 84% (80-88) 

Lipid model probability ≥20%  and 
insulin within a year of diagnosis 89% (87-91) 75% (73-77) n/a n/a 

UK Biobank probable type 1 
diabetes 89% (87-91) 70% (67-72) 84% (80-88) 88% (84-91) 

BMI ≤23 (kg/m2) and insulin 
within a year of diagnosis 82% (78-87) 16% (14-18) 90% (83-97) 19% (10-28) 

Self reported type 1 diabetes 80% (75-85) 92% (88-95) 86% (83-90) 87% (83-90) 
Lipid model probability ≥20%  80% (78-82) 81% (79-84) n/a n/a 
Clinical model probability ≥20% 80% (78-83) 71% (69-74) 84% (80-88) 74% (69-79) 
BMI ≤23 (kg/m2)  75% (70-80) 17% (15-19) 79% (70-87) 20% (11-28) 
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