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ABSTRACT 99 

Importance: People conceived using assisted reproductive technology (ART) make up an 100 

increasing proportion of the world’s population, and their numbers are expected to continue 101 

rising.  102 

Objective: Investigate association of ART conception with growth and adiposity outcomes 103 

from infancy to early adulthood in offspring from a large multinational multi-cohort study. 104 

Design: 26 population-based cohort studies. 105 

Setting: Europe, Asia-Pacific, and North America 106 

Participants: Infants, children, adolescents, and young adults born from 1984 to 2018, with 107 

mean ages at assessment of growth/adiposity outcomes ranging from 0.6 month to 27.4 years. 108 

Exposures: Conception by ART (conventional in vitro fertilisation and intracytoplasmic 109 

sperm injection) versus natural conception (NC). 110 

Main Outcomes and Measures: Length/height, weight, and body mass index (BMI). Each 111 

cohort was analysed separately with adjustment for maternal BMI, age, smoking, education, 112 

parity, ethnicity, and offspring sex and age. Cohort results were combined in random effects 113 

meta-analysis for thirteen age groups. 114 

Results: Up to 158,066 offspring (4,329 conceived by ART) were included in each age-115 

group meta-analysis; 47.6% to 60.6% were female. Compared with NC, ART-conceived 116 

offspring were slightly shorter, lighter, and thinner from infancy to early adolescence. The 117 

differences in growth/adiposity outcomes were largest at the youngest ages and attenuated 118 

with older child age, e.g., adjusted standardised mean differences (95% confidence intervals) 119 

in offspring weight at age ‘<3 months’, ‘17 to 23 months’, ‘6 to 9 years’, and ‘14 to 17 years’ 120 
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were -0.27 standard deviation (SD) units (-0.39 to -0.16), -0.16SD (-0.22 to -0.09), -0.07SD 121 

(-0.10 to -0.04), and -0.02SD (-0.15 to 0.12), respectively. There was no evidence that results 122 

were driven by parental subfertility or of difference between conventional in vitro fertilisation 123 

and intracytoplasmic sperm injection however, smaller offspring size appeared to be limited 124 

to offspring conceived by fresh but not frozen embryo transfer, compared with NC. More 125 

marked but less precise differences were observed for body fat measurements. There was 126 

imprecise evidence that offspring conceived by ART may develop greater adiposity by early 127 

adulthood. 128 

Conclusions and Relevance: People conceiving or conceived by ART can be reassured that 129 

differences in early growth and adiposity are small and no longer evident by late adolescence. 130 

 131 

KEYWORDS  132 

BMI; Cohort; Height; IVF, Weight 133 

 134 
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KEY POINTS 136 

Question Is conception by assisted reproductive technology associated with growth and 137 

adiposity from infancy to early adulthood?  138 

Findings In this multi-cohort study of up to 158,066 European, Asian-Pacific, and Canadian 139 

infants, children, adolescents, and young adults, those conceived using assisted reproductive 140 

technology were on average shorter, lighter, and thinner from infancy up to early adolescence 141 

when compared with their naturally conceived peers though differences were small across all 142 

ages and reduced with older age. 143 

Meaning Parents conceiving or hoping to conceive through assisted reproductive technology 144 

and their offspring should be reassured that differences in early life growth and adiposity are 145 

small and no longer apparent by late adolescence.  146 



 

8 
 

Public 

Assisted reproductive technology (ART), which mainly involves in vitro fertilisation (IVF) 147 

and intracytoplasmic sperm injection (ICSI), has resulted in over 8 million births worldwide 148 

during the last four decades (1, 2), and use of ART is expected to continue rising for several 149 

reasons, including increasingly delayed childbearing (3, 4). Ever since the first ART birth in 150 

1978, the primary research focus has been on improving live-birth rates (5). Now that ART is 151 

acknowledged as an effective procedure for infertility treatment, attention has shifted towards 152 

identifying and reducing any adverse effects of ART on maternal or offspring health. Studies 153 

examining growth-related outcomes have mostly considered perinatal measures, with results 154 

showing an increased risk of low birthweight, small-for-gestational-age, and preterm birth in 155 

those conceived using ART (6-9). Furthermore, studies comparing ART procedures suggest 156 

perinatal differences between conventional IVF and ICSI (10), and between fresh and frozen 157 

embryo transfers (11-14). 158 

Besides perinatal outcomes, long-term associations between ART conception and offspring 159 

growth and adiposity remain largely unknown, with the few studies that have examined these 160 

mostly limited by small sample size, short follow-up, and limited adjustment for confounders 161 

or overadjustment for possible mediators (15-17). A recent study which examined trajectories 162 

of change in height, weight, and body mass index (BMI) from birth to age 7 years (n=81,461 163 

offspring with 1,721 conceived by ART) in the Norwegian Mother, Father and Child Cohort 164 

Study (MoBa) found that ART-conceived offspring started smaller and grew faster than NC 165 

offspring (18). Another more recent but considerably smaller Singaporean birth cohort study 166 

(n=1,180 offspring with 85 conceived by ART) discovered smaller height and lower skinfold 167 

thickness at age 6 years in ART-conceived than NC offspring (19). 168 

Our primary aim was to conduct a multi-cohort study to provide evidence on the associations 169 

of ART conception (compared with NC) with offspring growth and adiposity from infancy to 170 
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early adulthood. We additionally compared results according to parental subfertility status, in 171 

males and females, in ICSI and conventional IVF, and in fresh and frozen embryo transfers.  172 

 173 

METHODS 174 

This multi-cohort study was carried out within the newly established Assisted Reproductive 175 

Technology and future Health (ART-Health) consortium, following a pre-specified analysis 176 

plan (https://osf.io/qhwvc/), and is reported in line with The Strengthening the Reporting of 177 

Observational Studies in Epidemiology (STROBE) Statement guidelines (20). 178 

 179 

Cohort studies 180 

Eligible cohorts were identified from the European Union Child Cohort Network (21-23) and 181 

by searching cohort profile papers. We targeted population-based cohorts without selection or 182 

oversampling of ART-conceived offspring to reduce potential for selection bias and to ensure 183 

identical growth and adiposity assessments for ART-conceived and NC offspring. All cohorts 184 

from any geographical region with birth years from older to more contemporary cohorts were 185 

eligible for inclusion provided they had data on whether offspring were conceived by ART or 186 

NC, and one or more offspring growth or adiposity outcome measures assessed from age one 187 

month (including repeated measurements). A total of thirty cohorts were invited to participate 188 

and 26 were included in this study (eTable 1). Detailed description of the 26 included cohorts 189 

is provided in the eMethods. 190 

All cohorts had ethical approval from the relevant local or national ethics committees and all 191 

offspring gave informed consent/assent to participate in the respective cohorts and secondary 192 

data analyses. Details on ethics approvals and consent are in eMethods. 193 
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 194 

Mode of conception and fertility treatment 195 

Fertility treatment use was defined according to the International Glossary on Infertility and 196 

Fertility Care (1). Information on mode of conception and fertility treatment was collected 197 

using questionnaires or by record linkage (eMethods). This information was used to identify 198 

if offspring were conceived by ART (i.e., IVF or ICSI) or were naturally conceived (NC) i.e., 199 

without any fertility treatment. We additionally identified (i) if ART conception involved IVF 200 

or ICSI, (ii) whether fresh embryo transfer (ET) or frozen-thawed embryo transfer (FET) was 201 

used, and (iii) whether NC offspring were born to fertile or sub-fertile parents, depending on 202 

a time to pregnancy of within 12 months or >12 months after they begun trying, respectively 203 

(1, 24). 204 

 205 

Offspring growth/adiposity outcomes 206 

Primary outcomes for this study were length/height (centimetre (cm)), weight (kilograms 207 

(kg)), BMI (kg/m2), and secondary outcomes were waist circumference (cm), total body fat 208 

%, and fat mass index (FMI; kg/m2). Length/height and weight were obtained from research 209 

clinics, child health records, and maternal-/self-reports, with BMI calculated from these as 210 

weight in kilograms divided by height in metres squared. Waist circumference was mostly 211 

measured during research clinics. Body fat % was calculated from bioelectrical impedance 212 

analysis done during research clinics, and FMI was derived as fat mass in kilograms from 213 

dual-energy x-ray absorptiometry scans divided by height in metres squared. Details on 214 

outcome measurements and ages in each cohort are in the eMethods. Descriptive data on 215 

outcomes and ages at outcome assessments are in eTable 2. 216 
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Outcome age groups for this study were determined by available data from each cohort i.e., 217 

ages at outcomes assessment. Cohorts were allocated to meta-analysis age groups by mean 218 

age at outcome assessment with the aim of maximising cohort numbers in each age group 219 

meta-analysis. The primary outcomes were allocated to thirteen age groups, and secondary 220 

outcomes (available in 17/26 cohorts) were allocated to four age groups. If a cohort had >1 221 

outcome assessment in an age group, we selected the one with the biggest sample size. 222 

 223 

Confounders 224 

We used a Directed Acyclic Graph (eFigure 1) to identify and adjust for confounders i.e., 225 

anything that could plausibly cause ART use and influence offspring growth/adiposity (25, 226 

26). This process identified the following maternal factors as potential confounders: age at 227 

pregnancy/birth, socioeconomic position (education), pre/early-pregnancy BMI, pre/early-228 

pregnancy smoking, parity, and ethnicity. Nineteen cohorts were able to adjust for all these 229 

confounders, four did not adjust for ethnicity but were ethnically homogeneous, one did not 230 

adjust for parity because it only included nulliparous women, and two were unable to adjust 231 

for BMI and smoking. Details on the available confounders in each cohort is in eMethods.  232 

 233 

Statistical analysis  234 

Analyses were performed separately in each cohort applying standard statistical code, with 235 

results combined using meta-analysis. In cohort-specific analyses, we estimated associations 236 

of ART conception (versus NC) with offspring outcomes using linear regression adjusted for 237 

confounders (plus offspring age and sex). Analysis was done in offspring with data on mode 238 

of conception, ≥1 growth/adiposity outcome, and confounders. To facilitate comparison of 239 

results for different outcomes and ages, outcomes were analysed in age-, sex- cohort-specific 240 
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standard deviation (SD) units (mean=0, SD=1). Cohort results were subsequently combined 241 

by random-effects meta-analyses in sub-groups defined by mean age at outcome assessment. 242 

Variability in the pooled estimates that is due to between-cohort heterogeneity was quantified 243 

by the I2 statistic (27). Influential cohorts (i.e., whose exclusion led to considerable change in 244 

the meta-analysis model) were identified by repeating each meta-analyses with each cohort 245 

left out in turn. 246 

To separate effects of ART from any effects of parental subfertility, we repeated analyses 247 

comparing ART-conceived with NC offspring of sub-fertile parents and separately for NC 248 

offspring from fertile parents. Differences by sex and ART treatment types were explored by 249 

repeating analyses stratified by sex; comparing IVF/ICSI separately with NC; and comparing 250 

fresh ET/FET separately with NC. Lastly, we explored if results reflected effects on multiple 251 

births by repeating analysis in singletons and investigated if results were mediated by birth 252 

size and pregnancy duration by including extra adjustments (on top of confounders) for birth 253 

weight and gestational age.  254 

 255 

RESULTS  256 

A total of 26 cohorts with participants from Europe (n=20 cohorts), Australia (n=2 cohorts), 257 

and one each from New Zealand, China, Singapore, and Canada was included in this study 258 

(eTable 1). Most (n=23 cohorts) were population-based cohorts, two were twins register 259 

cohorts, and one was a clinical cohort of ART-conceived young adults and NC controls from 260 

the same source population. Birth years were from 1984-2018, with most (n=19 cohorts) born 261 

>2002. Mean age at outcome ranged from 0.6 month to 27.4 years. Fifteen cohorts included 262 

singletons and multiple births (proportion of multiple births across these ranged from 0.9% to 263 

12.9%), nine included singletons only, and two included twins only. Between 3 to 16 cohorts 264 
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were included in each meta-analysis with numbers of participants in each meta-analysis 265 

ranging from 158,066 (4,329 ART) for weight at age 3 to 5 months to 3,111 (151 ART) for 266 

FMI at age >17 years.  267 

Mean length/height was on average smaller in ART-conceived than NC offspring across all 268 

age groups, although for some ages, point estimates were close to the null value which was 269 

included in the CIs (Figure 1). The largest differences in length/height were at the youngest 270 

ages and these differences attenuated with older child age. ART-conceived offspring were 271 

more similar in height to NC older adolescents and young adults although estimates were 272 

imprecise (Figure 1). 273 

Mean weight was lower in ART-conceived than NC offspring from age <3 months up to age 274 

10 to 13 years though CIs included the null at ages 6 to 8 months, 9 to 11 months, and 10 to 275 

13 years (Figure 1). As for length/height, differences were greatest at the youngest ages and 276 

smaller at older offspring ages. The difference in mean weight was close to the null in older 277 

adolescents and mean weight in young adults was slightly higher in ART-conceived than NC 278 

offspring but with wide CIs (Figure 1). 279 

Differences in mean BMI followed a similar pattern to that of weight, with mean BMI lower 280 

in ART-conceived than NC offspring up to age 10 to 13 years, with differences being greatest 281 

at youngest ages but with wide CIs that included the null value for some results (Figure 1). 282 

As for weight, difference in mean BMI was closest to the null in older adolescents and mean 283 

BMI was somewhat slightly higher for ART-conceived than NC young adults although this 284 

was imprecisely estimated (Figure 1). 285 

Results for waist circumference, total body fat %, and FMI were like those observed for 286 

weight and BMI, with lower mean adiposity measurements in ART-conceived than NC 287 

offspring during childhood and adolescence, though with larger differences that were 288 
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imprecisely estimated for several time points (Figure 2). As for weight and BMI, adiposity 289 

measures were higher in ART-conceived than NC adults, but with larger mean differences 290 

and wider CI’s that included the null (Figure 2). 291 

Between-cohort heterogeneity was low to moderate for all outcomes at all ages, with a few 292 

exceptions. There was substantial between-cohort heterogeneity in results for length/height, 293 

weight, and BMI at ages <3 months and 3-5 months (Figure 1). Sensitivity analysis showed 294 

that results for outcomes at both ages were robust to influential cohorts, although they were 295 

slightly attenuated when the MoBa cohort was omitted (eFigure 8). 296 

For some additional analyses there were too few ART conceptions to include all older age 297 

groups. Results were similar when ART was compared with sub-fertile NC and fertile NC 298 

(Figure 3), when ICSI and IVF were compared with NC (Figure 4), and in females and 299 

males (eFigure 9). Mean length/height, weight, and BMI were on average lower in those 300 

conceived by fresh ET compared with NC offspring across all available age groups i.e., from 301 

age <3 months to age 6 to 9 years (Figure 5). Conversely, differences were closer to the null 302 

for FET compared with NC, though results were imprecise (Figure 5). The differences in all 303 

growth and adiposity outcomes were only partially attenuated when analyses were restricted 304 

to singletons (eFigure 10), whereas differences between ART-conceived and NC offspring 305 

(eFigure 11), and between fresh ET and NC offspring (eFigure 12) were considerably 306 

attenuated after further adjustment for birth weight and gestational age, particularly at 307 

younger ages. 308 

 309 

DISCUSSION 310 

We used data from 26 multinational cohort studies to investigate the association between 311 

ART conception and offspring growth and adiposity. The large number of offspring, and 312 
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length of follow-up, allowed us to explore findings in subgroups by age from infancy to early 313 

adulthood. We found that offspring conceived by ART were on average shorter, lighter, and 314 

thinner from infancy to early adolescence than NC offspring. Differences were largest earlier 315 

in life but were small in magnitude across all ages. There was little evidence that differences 316 

were driven by parental subfertility given similar results when we compared ART with NC 317 

where parents conceived after 12 months and where conception occurred within a shorter 318 

period since start of trying. Those conceived from fresh embryos were smaller than NC 319 

offspring whereas frozen-thawed embryos were comparable to NC. Results appeared 320 

independent of multiple births and were at least partly mediated by birth weight and 321 

gestational age, particularly at younger ages.  322 

Our findings are in line with previous studies and reviews of outcomes at birth and in young 323 

children (6, 15-17). Although not directly comparable with our study, our finding of smaller 324 

associations among older children is consistent with results from a recent study that found 325 

more rapid growth from birth to 3 years in ART-conceived than NC offspring (18). That 326 

study also examined outcomes at age 17 years in individuals screened for conscription in 327 

Norway and found no difference between ART-conceived and NC offspring at that age, 328 

which is consistent with our finding of no difference in growth in older adolescence.   329 

Our results for fresh ET and FET are consistent with previous studies showing smaller birth 330 

weight in fresh ET compared with NC, and higher birth weight and large-for-gestational-age 331 

in FET compared with fresh ET (12, 13). Our study also agrees with results from a UK record 332 

linkage study that assessed birth size and body size at 6-8 weeks and 5 years in offspring born 333 

between 1997-2009, showing that compared with NC, offspring born by fresh embryos were 334 

lighter, and those born by FET were heavier at birth and 6-8 weeks, and that all groups had 335 

similar weight at 5 years (16). 336 
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The reasons for lower birth weight and higher risk of small-for-gestational-age shown in 337 

previous studies (8, 15) and the (modestly) smaller infant/child size in our study in ART-338 

conceived offspring are not fully understood. The gametic and embryonic manipulations 339 

associated with ART may impact embryonic/fetal development in a manner that is reflected 340 

in different growth patterns relative to NC individuals. Growth differences could also reflect 341 

physiological responses to ART-induced lower birth size (and gestational age), and unlikely 342 

to be sex-specific or differ by ART type given our finding of broadly similar results in males 343 

and females and conventional IVF and ICSI. This is supported by our finding that differences 344 

attenuate by adjustment for birthweight and gestational age, though, this should be interpreted 345 

with caution since assumptions for such analyses and potential for collider bias makes them 346 

difficult to interpret (25, 26, 28). Other possible explanations include effects of ART-induced 347 

epigenetic alterations (29, 30), and effects of the ovarian stimulating hormones administered 348 

prior to ART. The different findings for fresh ET and FET may reflect effects of ovarian 349 

stimulation on endometrium and corpus luteum when using fresh embryos (31) or the impact 350 

of freezing on embryos. 351 

Ours is the first study to date to explore long-term associations with waist circumference, 352 

body fat % and FMI, with results suggesting ART-conceived individuals had lower central 353 

and total adiposity in childhood, and possibly higher levels in adulthood. Our early life results 354 

agree with findings from 85 Singaporean ART-conceived offspring showing smaller skinfold 355 

thickness than NC offspring at 6 years (19). Our finding suggestive of an association between 356 

ART and higher adiposity in young adults agrees with results from a Nordic registry study 357 

showing slightly increased obesity risk in young ART-conceived adults (32). One possible 358 

reason for this result is that the rapid infant growth we observed in ART-conceived offspring 359 

continues (at a decelerating rate) for extended time. This is consistent with prior evidence of 360 
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an association between rapid infant growth and adult overweight and obesity (33), and with 361 

cardiovascular disease risk in later adulthood (34). 362 

It is important to note that our pooled effect sizes were small across all age groups, including 363 

at the youngest ages where they were largest in magnitude. For example, when expressed in 364 

its natural units, the largest differences in weight, observed at age <3 months, was 183 grams 365 

(95%CI: 105 to 261) lower in those conceived by ART. Therefore, it is unlikely that these 366 

differences will result in any clinically meaningful differences at any age. It is also worth 367 

acknowledging that our pooled results represent average differences in outcomes across all 368 

populations from all included cohorts, and there was some evidence of heterogeneity for 369 

some outcomes. However, sensitivity analyses indicated results were robust to influential 370 

cohorts and heterogeneity was due to differences in directionally consistent effect sizes. 371 

Strengths of this study include the large sample size and inclusion of cohorts from different 372 

geographic regions which should make our findings generalisable to more populations. The 373 

large numbers allowed an assessment of heterogeneity in the main results, an exploration of 374 

potential roles of subfertility, different ART treatments, multiple births, and indirect effects 375 

through prematurity. Use of birth cohorts with comparison with NC children from the same 376 

underlying population as those conceived by ART and with identical baseline data collection, 377 

follow-up periods, and assessments in ART-conceived and NC children, is another important 378 

strength. Many previous studies compared clinical ART cohorts with a comparator group 379 

selected at the time of outcome assessment, thus lacking early data on potential confounders, 380 

and these were often selected from relatives/friends of the couples undergoing ART, which 381 

may introduce a selection bias (17). Record linkage studies mostly avoid this selection bias 382 

but are generally limited in the extent to which they can adjust for confounding or explore 383 

role of sub-fertility.  384 
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Limitations include low precision/power at older ages, which highlights the importance of 385 

measuring outcomes in adult life. Those with outcomes at older ages were exposed to ART 386 

some decades ago using treatments and embryo culture techniques that are less relevant to 387 

contemporary practices, thus making it difficult to know the extent to which findings would 388 

generalise to more recently born cohorts. Therefore, there is a need to promote collection of 389 

data on mode of conception from birth cohorts and to ensure those conceived by ART are 390 

included so that future analyses can continually add new cohorts to examine changes in 391 

associations by birth years and age. Our analysis was restricted to those with complete data 392 

on mode of conception, outcomes, and confounders which may have reduced precision of 393 

estimates and introduced bias due to missing data. Residual confounding by unmeasured 394 

factors (e.g., paternal health) is possible and might influence our findings. 395 

In conclusion, we found that ART-conceived offspring were on average slightly smaller and 396 

had modestly lower adiposity than NC offspring during early life, with associations reduced 397 

with older child age, with some imprecise evidence for higher adiposity by early adulthood 398 

with ART conception. Overall, our findings are reassuring since differences in early growth 399 

were small though, there is a need for additional follow-up and studies with larger numbers 400 

into older ages to is investigate the possibility of greater adiposity in adulthood.  401 

 402 
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 516 

FIGURE LEGENDS 517 

Figure 1 Parts A-C. Mean difference in (A) length/height, (B) weight, and (C) body mass 518 

index between ART-conceived and NC offspring. Figure shows the pooled adjusted mean 519 

differences in SD units [and 95% confidence intervals] in (A) length/height, (B) weight, and 520 

(C) body mass index at each age group between ART-conceived and NC offspring (ART 521 

minus NC). Cohort-specific results were adjusted for maternal age, parity, BMI, smoking, 522 

education, ethnicity/country of birth, plus offspring sex and age. St. is the number of cohort 523 

studies; NC is the number of NC ofspring; ART is the number of ART-conceived offspring; 524 

I² represents the percentage of total variability that is due to between cohort heterogeneity. 525 

Cohort-specific results are provided in eFigure 2-4. 526 
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Figure 2 Parts A-C. Mean difference in (A) waist circumference, (B) body fat %, and 527 

(C) fat mass index between ART-conceived and NC offspring. Figure shows the pooled 528 

adjusted mean differences in SD units [and 95% confidence intervals] in (A) waist 529 

circumference, (B) body fat %, and (C) fat mass index at each age group between ART-530 

conceived and NC offspring (ART minus NC). Cohort-specific results were adjusted for 531 

maternal age, parity, BMI, smoking, education, ethnicity/country of birth, plus offspring sex 532 

and age. St. is the number of cohort studies; NC is the number of NC ofspring; ART is the 533 

number of ART-conceived offspring; I² represents the percentage of total variability that is 534 

due to between cohort heterogeneity. Cohort-specific results are provided in eFigure 5-7. 535 

Figure 3. Mean difference in growth and adiposity outcomes between ART-conceived 536 

and NC offspring, separately for NC offspring of sub-fertile and fertile parents. Figure 537 

shows the pooled adjusted mean differences in SD units and 95% confidence intervals in 538 

growth and adiposity outcomes at each age group between ART-conceived and NC offspring 539 

(ART minus NC) of fertile parents (≤12 months to pregnancy and sub-fertile parents (>12 540 

months to pregnancy). Cohort-specific results were adjusted for maternal age, parity, BMI, 541 

smoking, education, ethnicity/country of birth, plus offspring sex and age. The number of 542 

offspring at each age for the primary outcomes (length/height, weight and BMI) varied from 543 

2,955 ART, 93,877 fertile NC, and 11,153 sub-fertile NC for weight at age 3 to 5 months to 544 

51 ART, 3,350 fertile NC, and 494 sub-fertile NC for BMI at >17 years. 545 

Figure 4. Mean difference in growth and adiposity outcomes between ART-conceived 546 

and NC offspring, separately for offspring conceived by conventional IVF and ICSI. 547 

Figure shows the pooled adjusted mean differences in SD units and 95% confidence intervals 548 

in growth and adiposity outcomes at each age group between ART-conceived and NC 549 

offspring (ART minus NC), separately for offspring conceived by conventional IVF and 550 

ICSI. Cohort-specific results were adjusted for maternal age, parity, BMI, smoking, 551 
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education, ethnicity/country of birth, plus offspring sex and age. St. is the number of cohort 552 

studies. The number of offspring at each age for the primary outcomes (length/height, weight, 553 

and BMI) varied from 1,517 conventional IVF, 1,382 ICSI, and 102,386 NC for weight at age 554 

3 to 5 months to 105 conventional IVF, 37 ICSI, and 11,164 NC for BMI at age 14 to 17 555 

years. 556 

Figure 5. Mean difference in length/height, weight, and body mass index between ART-557 

conceived and NC offspring, separately for offspring conceived using fresh and frozen-558 

thawed embryo transfer. Figure shows the pooled adjusted mean differences in SD units 559 

and 95% confidence intervals in length/height, weight, and body mass index at each age 560 

group between ART-conceived and NC offspring (ART minus NC), separately for offspring 561 

conceived using fresh embryo transfer and frozen-thawed embryo transfer. Cohort-specific 562 

results were adjusted for maternal age, parity, BMI, smoking, education, ethnicity/country of 563 

birth, plus offspring sex and age The number of offspring at each age varied from 1,904 fresh 564 

embryo transfer, 303 frozen-thawed embryo transfer, and 78,128 NC for weight at age 3 to 5 565 

months to 433 conventional fresh embryo transfer, 84 frozen-thawed embryo transfer, and 566 

15,490 NC for BMI at age 17 to 23 months. 567 
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