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Abstract  

Type 2 diabetes is a massive public health issue that continues to grow. The rate of diabetic 

complication progression varies across individuals. Understanding factors that alter the rate of 

complication onset may uncover new clinical interventions and help prioritize individuals for 

more aggressive management. Here, we explore how various machine learning models and types 

of electronic health records can predict fast versus slow diabetic complication onset using only 

patient data prior to diabetes diagnosis. We find that optimized random forests generally perform 

best among the tested models and combining all data sources yields the best predictive 

performance. A key differentiator of our study is our model interpretation, which identifies 

specific patient metrics from each dataset that play a unique role in the progression of each 

complication. Overall, our clinical interpretation of machine learning models can identify 

patients at risk for poorer outcomes years in advance of their diabetic complication. 
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Introduction 

According to the 2020 National Diabetes Statistics Report, an estimated 34 million (or 13%) of 

the United States (US) adult population has diabetes[1], and the prevalence of diagnosed diabetes 

among US adults is projected to rise to 61 million (or 18%) by the year 2060[2]. Diabetes is the 

most expensive chronic condition in the US; one of every four US health care dollars is spent on 

care for people with diabetes[3]. Globally, the direct health expenditure on diabetes in 2019 was 

$760 billion, which is projected to rise to $845 billion in 2045, with the largest expenditure in 

individuals 60-69 years old[4]. The prevalence of diabetes is highest among adults over 65 years, 

and the expected rise in diabetes is partially due to a decline in mortality in the diabetes 

population[2]. 

 

Long-term complications of diabetes are categorized as either microvascular, including 

nephropathy, neuropathy, and retinopathy, or macrovascular, including cardiovascular and 

peripheral vascular disease. Diabetes is the leading cause of new cases of blindness and kidney 

failure in the US, and was the 7th leading cause of death in 2017[5]. There is also a growing list 

of newly recognized complications causally linked to diabetes, namely cancers, dementia, 

infections and liver disease[6]. The development of complications is influenced by various risk 

factors, including chronic hyperglycemia, obesity, dyslipidemia, hypertension, inflammatory 

cytokines, and altered miRNA expression causing accumulation of excess extracellular matrix in 

organs affected by diabetes[7]. Targeted therapies that delay or inhibit progression of diabetic 

complications are lacking and there remains a need for a better understanding of the 

pathophysiology underlying diabetic complications[8]. 
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Maintaining blood glucose, blood pressure, and cholesterol levels within therapeutic goals is 

critical to reducing the risk of diabetic-related complications[9][10][11][12][13][14][15][16]. For 

example, every percentage point reduction in glycosylated hemoglobin(HgbA1c) can reduce the 

risk for microvascular complications by 40%[16]. However, twenty-one percent of US adults 

with diabetes who met laboratory criteria for diabetes were unaware of or did not report having 

diabetes[1], thus type 2 diabetes mellitus(T2DM) is often undiagnosed until irreversible diabetic 

complications have developed[9][16]. If detected and treated early, as much as 90% of blindness 

due to diabetic retinopathy may be preventable[16]. More accurate identification of individuals 

with T2DM at risk for complications would allow clinicians the chance for early intervention, 

leading to improved health outcomes for patients.  

 

Electronic health records (EHR) are a powerful tool in understanding trends in disease 

development and creating prediction models that allow early interventions or modification of 

treatment options to improve patient outcomes. With the increasing use of EHR, large-scale 

patient data has become more accessible[17]. Machine learning (ML) has been a powerful tool 

aiding in clinical decision-making, identification of patients at risk for diseases (e.g., septic 

shock[18]), as well as repurposing of drugs for new indications[19]. As opposed to past 

algorithms built using a limited number of patient attributes (e.g., age, sex, smoking status, 

cardiovascular disease)[20], a ML model will learn the attributes with the most importance, 

allowing for identification of previously unknown risk factors of disease development. ML 

algorithms can be trained using a set of patient attributes (or features) and health outcomes given 

a clinical scenario, and then used to predict outcomes when provided previously unseen patient 

profiles.  
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A number of ML studies have investigated the development of diabetic-related complications 

using EHR data. Designing a model intended for use in the real-world clinical setting warrants 

evaluation of whether the model in fact learned what the user had intended. For example, how do 

the important features learned by the model align with established risk factors[21]? However, 

most ML studies focus on predictive performance and rarely provide meaningful explanation of 

their models[22], that is, patient characteristics that led to the prediction[23]. Model 

interpretation is arguably as or more important than model performance metrics[21]. Due to 

overwhelming evidence indicting poor reproducibility and reporting of clinical ML models, a 

2020 paper made several recommendations for transparent and comprehensible reporting of 

results from ML studies that are directed at clinical researchers[24]. They recommend presenting 

high impact predictors of the model in a summary/tabular format and a narrative focusing on 

these variables[24]. Additionally, authors should discuss clinical interpretation of these variables 

with respect to the model outputs, including potential for translation to health care[24].  

 

SHAP(SHapley Additive exPlanations) is a popular and effective approach published in 2017 for 

understanding each features’ contribution to a model’s predictions[21]. SHAP is unique in that it 

provides insights into the magnitude of importance for a feature as well as the direction a feature 

shifts a predicted outcome. Of six studies published after 2017 using ML to predict one or more 

diabetic complications, only one study displayed feature importance results using SHAP[17]. 

Additionally, this study only summarized the mean absolute SHAP value per feature, thereby 

forgoing the opportunity to understand whether each feature generally increased or decreased a 

prediction. The five other studies did not present any analysis of feature importance 

[25][26][27][28][29].  
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In this paper, we describe a study using patient EHR data prior to diagnosis of T2DM to predict a 

binary outcome of fast versus slow onset of T2DM complications using ML. In other words, at 

the time a patient is diagnosed with T2DM, can we predict whether that individual will be 

diagnosed with a diabetic complication faster or slower than 50% of the study population? Our 

main objectives were to (1) compare the utility of different EHR data types, (2) compare 

different model architectures, and (3) focus on interpretation of the models. Our results indicate 

the different performance of each input dataset: vitals, demographics, international classification 

of diseases (ICD) codes, social history, and laboratory. The combination of all five datasets gave 

the best prediction. Through SHAP, we also identify the models’ top predictors, a series of 

unique patient markers that differentially affect the onset of a complication, and attempt to 

validate these findings with the existing literature. Lastly, we investigated the level of medical 

care received by both fast and slow complication onset groups as a potential opportunity for 

improved diabetes care. This knowledge can be leveraged to target individuals as early as their 

T2DM diagnosis who are at risk for rapid onset of a diabetic complication. 

 
Results 

Patient characteristics  

After filtering each data source for the last entry before or on the day of T2DM diagnosis, we 

selected 10,486 patients who had complete pre-diabetes data from all five EHR sources. Of these 

patients, 5,608 had nephropathy, 4,646 cardiovascular disease (CVD), 4,257 neuropathy, and 

3,074 ocular disease (Figure 1A). A patient may have had multiple complications present within 

the study period.  
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Key patient characteristics were recorded in Tables 1-4. Across complications, patients in the 

slow complication onset group were diagnosed with T2DM at a younger age, were majority 

female, and had diabetes diagnosed for a longer duration compared to the fast complication onset 

group. The most prevalent race in both groups was Caucasian, followed by African American; 

the percentage of African Americans was consistently higher in the slow onset group. Across 

complications, BMI was higher in the slow onset group. Several patient risk factors for 

progression of diabetic complications were higher in the fast onset group across all 

complications, including percentage of patients with essential hypertension, hyperlipidemia, 

cigarette use, and known smokeless tobacco use status (although not always statistically 

significant). Glucose levels were significantly lower in the fast onset group across all 

complications, except neuropathy. 

 

The histograms displayed in Figure 2 show the distribution of times to complications and the 

two outcome groups. Patients within each complication group were divided into either fast or 

slow complication onset groups based on whether the time to complication was shorter or longer 

than the median time for that group, respectively. All four complications exhibit skewed 

distributions with a median of approximately 3 years. CVD had the shortest time to complication 

(2.95 years) and neuropathy had the longest time (3.26 years).  

 

Model performance 

To understand the relative utility of different types of EHR, the six different input datasets 

collected prior to the date of T2DM (phenotypes, demographics, vital signs, social-lifestyle 

history, laboratory data, and all inputs combined) were used to train one of six machine learning 
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classification models (Gradient Boosting Decision Trees [GB], Support Vector Classification 

[SVC], Random Forest [RF], Extra Trees [ET], Logistic Regression [LR], and Adaptive 

Boosting [AdaBoost]) to predict one of four diabetic complications (Figure 1B). Data was split 

into 80% training and 20% test sets and models were optimized using a randomized search with 

5-fold cross validation for up to 1,000 iterations using area under the receiver operating curve 

(AUROC) as the scoring metric. Models were refit with the training set data using the 

maximized hyperparameters obtained from the randomized search, and the test set was used to 

evaluate generalization performance of the best model (Figure 1C). AUROCs across each model 

and dataset combination is shown in Table 5. Using all datapoints combined as the model input, 

RF performed best in predicting nephropathy and neuropathy onset. ET and AdaBoost performed 

best in predicting CVD and ocular disease onset, respectively. Model calibration was assessed by 

plotting calibration curves of the observed versus predicted probabilities for the positive class 

across 10 evenly partitioned bins (Supplementary Figure 1). The brier scores for calibration 

plots were low, ranging from 0.204 to 0.223, indicating accurate probabilistic predictions. 

 

Figure 3 displays overlayed AUROC plots for each complication with individual lines 

representing a different health dataset input. Across all complications, using all datasets 

combined as an input allowed for the highest model predictive performance compared to using 

individual datasets alone. Models were most effective in distinguishing between fast versus slow 

nephropathy onset (AUROC=0.75) and least effective in distinguishing between fast versus slow 

CVD onset (AUROC=0.70). Of the individual datasets, use of social history or laboratory values 

alone as inputs led to the highest model performance. Using vitals, demographics, or phenotypes 

alone led to poorer performance. Phenotypes outperformed vitals and demographics in prediction 
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of nephropathy or neuropathy onset, however the demographics input was the strongest of these 

three inputs in predicting ocular disease or CVD onset.  

 

Visualization of feature importance  

SHAP was used to investigate how inputs to the model differentially affected the rate of diabetic 

complication onset (Figure 4). As suggested by the AUROC curves, this analysis revealed that 

the models predominately leveraged social history and laboratory values in making predictions. 

The only demographic information that was a top 10 predictor was age at diabetes diagnosis. 

Phenotype was present only once within the top 10 predictors (i.e. hyperlipidemia in predicting 

ocular disease onset). Vitals, if present, tended to be of lower feature importance. Known 

smokeless tobacco use status, higher anion gap, and older age at diabetes diagnosis were 

associated with a faster onset across all four complications. A lower estimated glomerular 

filtration rate (eGFR) and higher mean platelet volume (MPV) were important in predicting fast 

onset of nephropathy, neuropathy and CVD, but did not play a role in prediction of ocular 

disease. Features unique to predicting fast ocular disease onset were a higher monocyte 

percentage, higher serum calcium, presence of hyperlipidemia and lower bilirubin. Lower mean 

corpuscular hemoglobin concentration (MCHC) and higher red cell distribution width (RDW) 

were associated with faster nephropathy onset. Extended SHAP plots displaying the top 25 

predictors are presented in Supplementary Figures 2-5. 
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Medical care between T2DM and complication diagnosis 

We further investigated patient engagement in medical care and types of visits sought between 

the time of T2DM and diabetic complication diagnoses between groups. We hoped to understand 

whether a lack of medical follow-up attributed to the faster development of complications.  

However, across all four complications, the fast complication onset group had significantly more 

medical visits per year (Figure 5). Average median visits per year between time of T2DM and 

complication diagnoses across four complications was 27.3 in the fast onset group and 14.0 in 

the slow onset group. The most frequent types of visits recorded (Figure 6) were outpatient in 

nature (e.g. telephone, office visit, and therapy) compared to visits necessitating a higher level of 

care (e.g. emergency or inpatient hospital encounter). Taken in consideration with the 

observation that glucose levels were significantly lower in the fast onset nephropathy, ocular 

disease, and CVD groups, these findings potentially indicate that the fast onset group was 

engaged in routine, outpatient diabetes care.  

 

Discussion 

Our study developed well-calibrated models that can predict the development of a progressive 

diabetic complication (neuropathy, nephropathy, CVD, or ocular disease) before or after the 

median time to onset for each complication. The models performed best in distinguishing 

between fast and slow onset of nephropathy (AUROC 0.75) and worst in distinguishing fast and 

slow onset of CVD (0.70). One strength of the study was the ability of our model to perform with 

acceptable predictive performance using a smaller cohort relative to similar studies and 

traditional ML algorithms, which may be more easily implemented in clinical practice requiring 

less data than deep learning methods. 
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Evaluation of each data sources’ predictive performance allowed for understanding the utility of 

each data source in predicting onset of different diabetic complications. The combination of all 

five data sources (vitals, demographics, phenotypes, laboratory, and social history) was best. Use 

of social history or laboratory values alone as inputs led to the highest model performance. 

Laboratory values were most useful in predicting onset of ocular disease and CVD, social history 

was most useful for predicting onset of neuropathy, and laboratory and social history contributed 

equally to prediction of onset of nephropathy.  

 

Unfortunately, there is lack of objective definitions of what makes a ML model ‘interpretable’ in 

clinical practice, and few works evaluate model usability for clinicians [30][31].  Well-

established associations identified were: 1) lower eGFR (or reduced kidney function) was linked 

to faster onset of nephropathy, 2) higher anion gap (or increase in ketoacids in uncontrolled 

diabetes[32]) was linked to faster onset of all four complications, and 3) hyperlipidemia (an 

established risk factor for diabetic retinopathy[16]) was linked to faster onset of ocular disease.   

 

Other less well-established findings from the SHAP analysis prompted further investigation. We 

were able to verify several predictors of diabetic complications identified by SHAP with the 

existing literature, although studies were often retrospective and included small patient cohorts.  

 

Smokeless tobacco use status, a social history variable, was unexpectedly the most important 

feature across complications. In our data, smokeless tobacco refers to chew and snuff.  

Individuals with unknown smokeless tobacco use had a slower onset of any diabetic 
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complication, and individuals who reported never using smokeless tobacco had faster onset of 

any complication. Across complications, the majority of patients in both groups were marked as 

having unknown smokeless tobacco use; when tobacco use was recorded, the percentages of 

cigarette and current smokeless tobacco users were higher among the fast onset complication 

group (Tables 1-4). It is widely accepted that cigarette smoking accelerates vascular damage and 

increases the risk of cardiovascular morbidity/mortality in patients with T2DM, however the link 

to microvascular complications is not as clearly defined in diabetics[33]. As the progression of 

complications varies widely between smokers with T2DM, phenotypic predictors of 

susceptibility in diabetics to the negative effects of smoking warrants further investigation[33]. 

Prevalence rates of smoking in diabetics are similar to those of the general population, indicating 

diabetics continue to smoke despite the well-known health risks[33]. Alternative strategies that 

lead to risk reduction include use of smokeless tobacco and electronic cigarettes, which have 

been shown to be less harmful than combusted cigarettes and more effective options in helping 

smokers quit compared to nicotine-replacement products, although their long-term effects are 

unknown[34][35]. Thus, our findings that “never users” of smokeless tobacco had faster onset of 

complications may indicate a potential link between use of alternative smoking cessation 

strategies and slowing of diabetic complication progression.  

 

Several laboratory values identified through SHAP had high importance in complication onset 

prediction but are non-traditional risk factors for diabetic complications. These may serve as new 

simple, cost-effective biomarkers for monitoring and prevention of diabetic complications, and 

further research is needed on reversibility of the complication with correction of the laboratory 

value.  
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First, higher MPV was associated with faster onset of nephropathy, neuropathy, and CVD in our 

study. A higher MPV is indicative of larger, younger, and more aggregable platelets that produce 

more pro-coagulants, such as thromboxane A2[36]. This platelet activation contributes to 

thrombogenesis, atherosclerosis, and production of oxidative substances like platelet-derived 

growth factor (PDGF) and vascular endothelial growth factor (VEGF) that cause local vascular 

lesions[36][37].  Small retrospective studies have shown that MPV and percentage of those 

developing diabetic complications were higher in patients with uncontrolled T2DM (HbA1c 

>7%) compared to those with controlled T2DM (HbA1c</=7%)[38,39]. Furthermore, improved 

glycemic control led to recovery in platelet activity, indicating the possibility of prevention of 

damaging platelet effects[40]. Overall, high MPV is associated with vascular damage in 

diabetics, and we may be able to prevent this damage through optimizing blood glucose control. 

  

Second, individuals with lower bilirubin, lower MCHC and higher serum calcium had faster 

onset of ocular disease in our study. High levels of bilirubin, a breakdown product of 

hemoglobin, may indicate liver damage[41]. However, bilirubin may also have the potential to 

suppress oxidation of lipids and lipoproteins, a protective property against development of 

diabetic complications[42]. Several studies, including a meta-analysis of 27 studies, have shown 

low levels of bilirubin were inversely related to the development of diabetic complications, 

including retinopathy[42][43][44][45].  Next, several observational studies have shown that low 

hemoglobin levels may accelerate microvascular damage in diabetes. Low hemoglobin 

concentrations are more common in diabetic patients than non-diabetics and hyperglycemia has 

been shown to decrease red cell survival by 13%[46]. Studies have found an increased risk of 

severe diabetic retinopathy in individuals with hemoglobin levels below 12 g/dL[47][48], 
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although this association diminished after adjusting for diabetes duration in another study[46]. 

Lastly, a cross-sectional study of over 3,000 patients found elevated serum calcium to be a risk 

factor for vision-threatening diabetic retinopathy[49], and in vivo histology of the retina revealed 

elevated serum calcium was associated with retinal photoreceptor apoptosis in diabetic 

retinopathy[50]. Low bilirubin and MCHC and high serum calcium in T2DM may be indicators 

of accelerated retinal damage in diabetics, providing clinicians with more personalized 

information for monitoring and modulating diabetes complication progression. 

 

Third, our findings that higher RDW and lower MCHC are associated with faster onset of 

nephropathy are also supported by existing studies. RDW, which measures the volume and size 

of red blood cells, is commonly used to help diagnose different types of anemia[51]. A 

retrospective study of individuals with biopsy-proven diabetic nephropathy showed that 

individuals with higher RDW had an increased risk of progression to end-stage renal disease[51]. 

Diabetic patients with low hemoglobin concentration had more rapid decline in glomerular 

filtration[52], and anemia was a risk factor for progression to end stage renal failure[53].  High 

RDW and low MCHC may be important markers for progression of kidney injury in diabetics. 

 

Of the demographic variables, only one, patient age at the time of diabetes diagnosis, was a top 

10 predictor. Older individuals had faster onset of diabetic complications, which may be 

explained by reduced end organ reserve due to aging and comorbidities leading to faster organ 

damage in the elderly[16].  
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Other features we identified through SHAP require further investigation in defining their 

relationship to diabetic complication progression. For example, our study showed a higher 

monocyte percentage was associated with faster onset of ocular disease. Limited and 

contradictory evidence exists regarding the role of elevated monocyte counts and their effects in 

retinal cells of diabetics[54][55]. We also found lower BMI and pulse were associated with faster 

onset of CVD and answering “never” or “no” to illicit drug use was associated with faster onset 

of neuropathy or CVD, respectively. Lastly, body temperature was positively associated with 

faster onset neuropathy or ocular disease in our study. Diabetes is associated with reduced ability 

to dissipate heat during thermal stress, however minimal research exists that evaluates the effect 

of thermoregulatory control and long-term consequences in diabetics[56]. These are unexpected 

but potentially impactful findings that require further research. 

 

Lastly, we explored follow-up care sought between the time of T2DM and complication 

diagnosis as a potential opportunity for improved diabetes care in the fast-onset group. However, 

we found that the fast-onset group had more medical visits (approximately biweekly compared to 

monthly in the slow-onset group) and the majority of visits were within the ambulatory setting. 

The Centers for Disease Control and Prevention (CDC) guidelines recommend a doctor visit and 

HgbA1c every 3 months if diabetes treatment goals are not being met, and every 6 months if 

goals are met[57]. As outpatient diabetes care may already be maximized, the focus may need to 

be switched to prevention of complication onset and the need for non-traditional, more 

personalized strategies.  
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This study has important limitations. First, data was collected from facilities across a single 

health network, so it is possible the models focused on features that are not as common or 

important in other institutions. The models should be implemented on a larger scale across 

different institutions to verify reproducibility. Second, data may not be reliably recorded in 

patient electronic records. For example, across complications, the majority of patients had 

‘unknown’ smokeless tobacco use. Asking about smokeless tobacco use may not be standard 

history-taking practice, and practice may vary across different facilities across the health 

network. Third, certain clinically relevant variables were excluded due to high missingness in the 

dataset (>50%), such as HgbA1c.  Lastly, further research is warranted to integrate other clinical 

risk indicators, such as medications, imaging and patient-specific proteomics data to create a 

more complete prediction model. 

 

In this study, ML models are able to accurately predict the onset of one of diabetic 

complications: neuropathy, nephropathy, ocular disease and CVD. SHAP provides an 

interpretation of key features’ contribution to each model, allowing clinicians to understand 

which patient markers place individuals at high risk of fast progression to a complication at the 

time of their T2DM diagnosis. Our study is unique in the realm of ML studies as it explores the 

relationship between patient biomarkers not routinely used in diabetes monitoring, such as 

bilirubin, calcium, and MPV, and onset to diabetic complications. These markers may serve as 

economical tests for more tailored monitoring and prevention of progression to a diabetic 

complication, and larger, more robust studies are needed to investigate these associations. In 

conclusion, a combination of ML and SHAP can serve as a starting point for better prediction 

and understanding of disease risk. 
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Methods 

Study population 

This was a retrospective study across an academic hospital network to predict rapid versus 

delayed onset of diabetic complications in individuals with T2DM. Retrospective, de-identified 

patient data was queried using the Medical College of Wisconsin (MCW) Clinical Research Data 

Warehouse using the Froedtert Health System’s Informatics for Integrating Biology and the 

Bedside (i2b2) tool and extracted using the Froedtert Health System Honest Broker. 30,854 

patients were identified who had a diagnosis code for T2DM followed by at least one of our 

complication codes. Extracted data spanned over 24 years from May 1997 to August 2021. 

 

Data collection  

T2DM diagnosis was defined as the date of the first ICD-9 code of 250.00 (T2DM without 

complications) or ICD-10 code of E11.9 (T2DM without complications). The US Department of 

Health and Human Services required the US transition to the use of only ICD-10 codes in 

October of 2015[58], thus an individual diagnosed prior to 2015 would be coded with 250.00; if 

the diagnosis occurred after 2015, an E11.9 would have been coded. In order to exclude 

individuals who had an occurrence of a diabetic complication prior to their first T2DM 

diagnosis, a temporal query was used to extract individuals who had a diagnosis of T2DM 

without complications (250.00 or E11.9) that occurred prior to a diagnosis of one of four 

complications[25][59]: 

� Nephropathy: 250.40, 403, 404, 581, 583, 584, 585, 586, 588, 593, E11.2, I12, I13, N04, 

N05, N08, N17, N18, N19, N25, N29 

� CVD: 250.70, 410, 412, 413, 414, 428, E11.5, I20, I21, I25, I50 
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� Ocular Diseases: 250.50, 362, 365, 366.41, E11.3, H35 

� Neuropathy: 250.60, 337.1, 353.5, 354.8, 354.9, 355.7, 355.8, 357.2, E11.4, G62.9, G63. 

 

Cerebrovascular disease was not included as a complication due to limited data (750 instances). 

Patients who had a time-to-complication less than one month were excluded from the study to 

avoid inclusion of patients who had diabetic complications diagnosed at the same time as their 

T2DM diagnosis. Per the American Diabetes Association (ADA) guidelines, a one month 

follow-up visit is advised for diabetes care for all patients with hyperglycemia in the inpatient 

setting; thus, if a patient was diagnosed with T2DM for the first time in the hospital, a follow-up 

and assessment of whether complications were present within one month is considered standard 

of practice[60]. After excluding these individuals, the number of individuals who had a diagnosis 

code for diabetes followed by at least one complication code decreased to 21,850 patients 

(Figure 1A). 

 

The study included data from multiple sources, including demographic information, laboratory 

results, social-lifestyle history, vital signs, and ICD-9/10 diagnosis codes. The data were linked 

using de-identified unique encoded patient numbers. Only ICD codes before or on the date of 

T2DM diagnosis were used as model inputs. Diagnosis codes included both ICD-9 and ICD-10 

versions. To unify across all patients, codes were replaced with the corresponding phenotype 

within the phecode system[61][62]. This also helped to prevent the model learning unintended 

associations linked to the longer existence of an ICD-9 versus an ICD-10 code rather than the 

code itself. Phecodes are distinct diseases or traits that map to ICD-9 or ICD-10 codes as a means 

to provide consistency across these codes over time as well as overlapping disease states [63]. 
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For example, 401.1 (ICD-9) and I10 (ICD-10) would both map to the phenotype ‘Essential 

hypertension’[26, 27]. 30,854 unique diagnosis codes were converted to 1,721 unique 

phenotypes. 

 

Demographics information comprised of seven input features: sex, age, ethnicity, race, 

employment status, marital status, and language. Demographics information did not change over 

time. 

 

Because patients had many entries for vitals, social-lifestyle history, and laboratory values, and 

to simulate how our models might be used in the real world, we used the last collected data 

before or on the day of the date of T2DM diagnosis. Vital signs included body mass index, 

diastolic blood pressure, systolic blood pressure, pulse, temperature and respiration rate. Social-

lifestyle history consisted of alcohol use, illicit drug use, tobacco use (cigarettes, pipes, and 

cigars) and  smokeless tobacco use (snuff and chew). Laboratory values consisted of aspartate 

aminotransferase (AST), alanine transaminase (ALT), bilirubin, alkaline phosphatase, calcium, 

glucose, bicarbonate, chloride, sodium, potassium, creatinine, eGFR, eGFR for African 

Americans, blood urea nitrogen, anion gap, platelet count, hematocrit, hemoglobin, red blood 

cell count, white blood cell count, MCHC, mean corpuscular volume, MPV, RDW, monocyte 

percentage, neutrophil percentage, eosinophil percentage, lymphocyte percentage, absolute 

neutrophil count, absolute lymphocyte count, absolute monocyte count, absolute eosinophil 

count, total protein, and albumin. HgbA1c was not included as a laboratory parameter since there 

was >50% missingness for this value in the dataset.    
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Data preprocessing  

Features with more than 50% of values missing were excluded. MissForest imputation was used 

to impute missing values[64]. Input data was filtered to only include values collected on a visit 

occurring the day of or prior to the initial T2DM diagnosis in order to mirror a clinical scenario 

where a clinician only has access to the patient’s baseline health records at the time of T2DM 

diagnosis. Categorical variables were one-hot encoded[65], continuous variables were 

normalized using Min-Max normalization, and counts of phenotypes for each column were 

binarized (Supplementary Figure 6). Any values +/- 3 standard deviations from the mean for a 

particular feature were set to N/A and then imputed because these values are likely reporting 

errors.  

 

Continuous patient baseline variables were reported as the median (inter-quartile range) and 

cohort differences were tested using a two-sided Mann-Whitney-U test. Categorical variables 

were reported as counts (percentages) and compared using chi-square test. Statistical significance 

was based on a two-tailed p-value of ≤ 0.05. 

 

Study outcomes 

The primary endpoint of the study was classification of a diabetic complication (neuropathy, 

nephropathy, CVD, or ocular disease) prior to or after the median time to complication (years). 

Individuals who developed a complication prior to the median time were classified as having fast 

onset of a complication, those with a time to complication longer than the median were classified 

as having slow onset. Using the median time as the cut-off between the two groups allowed for 

balanced classification.  
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Machine Learning  

Six supervised machine learning methods were trained to generate a prediction model for onset 

of diabetic complications, including GB, SVC, RF, ET, LR, and AdaBoost. Each model was 

optimized separately to predict the four complications with one of six input datasets: phenotypes, 

demographics, vital signs, social-lifestyle history, laboratory data, and all inputs combined. A 

total of six models were optimized with the six potential inputs for each of the four 

complications, resulting in a total of 144 model/input/output combinations that were optimized.  

 

Data was split into 20% final test and 80% training data. The 80% training split was used to tune 

hyperparameters; each model was evaluated using a randomized search (RandomizedSearchCV) 

with 5-fold cross validation, up to 1,000 iterations, and AUROC metric used for scoring. The 

hyperparameters that maximized the average AUROC values obtained from the randomized 

search were used to refit a model on the 80% training dataset, and the test set was used to 

evaluate generalization performance of the best model. Best hyperparameters corresponding to 

the best model for each input are shown in Supplementary Table 1. AUROC scores reported in 

this study represent performance of the test set. The input and corresponding model with the best 

performance for each complication were calibrated via parametric ‘sigmoid’ method and 5-fold 

cross validation of the CalibratedClassifierCV class. Model calibration was assessed by plotting 

calibration curves of the observed versus predicted probabilities for the positive class across 10 

evenly partitioned bins. The brier scores for each calibration plot was calculated using the true 

class values and the predicted probabilities of the test set. 
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Model interpretation  

SHAP[21] [66] values were used identify features that contribute most to model prediction. For 

consistency, the random forest classifier models with all data as input were used for SHAP 

analysis of each complication.  

 

To better understand the relationship between number of medical visits and time of complication 

diagnosis, we used the patient encounters database to derive individuals’ inpatient and outpatient 

visits between their T2DM and complication diagnoses. Number of visits per year between slow 

and fast diagnosis groups were compared using a two-sided Mann-Whitney-U test. Statistical 

significance was based on a two-tailed p-value of ≤ 0.05. The number of each type of medical 

visit between the T2DM and complication diagnoses divided by patient years was further 

visualized to assess level of care obtained. Patient years, defined as the sum of the individual 

patient complication times in each group, was used to account for differences in the total years of 

follow-up between fast and slow complication onset groups.   

 

Statistical analysis 

All data cleaning, analysis, and model training were performed in Python version 3.7.11 (Scikit-

Learn[67], SciPy[68], SHAP[21]) and R (MissForest[64]).  

 

Code availability 

All code is available from github https://github.com/amandamomenzadeh/ML-Predict-T2DM-

Comp-Onset 
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Figures 

 

Figure 1 Flowchart depicting study development and analysis. a, Patients were selected from 
the Froedtert & MCW health network i2b2 de-identified patient database and multiple types of 
EHR were collected for each patient. Patients were divided into groups based on their diabetic 
complication, then further divided based on their rate of complication onset. b, Scheme showing 
the machine learning task concept with training inputs of EHR data and model outputs for an 
example patient. c, Scheme showing the machine learning model training strategy and the model 
evaluation with the test data.   
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Figure 2. Time to complication histograms. Patient counts by time to diagnosis of 
complication (years) for individuals developing nephropathy, neuropathy, ocular disease, or 
CVD within the study. Red lines represent median time to complication diagnosis in each 
histogram.   
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Figure 3. Overlayed area under receiver operating characteristic (AUROC) curves 
representing performance of each data source input for prediction of slow versus fast 
complication onset. AUROC’s corresponding to the best model are plotted for each input. 
AUROC of 0.5 (diagonal line) corresponds to a model that predicts the output with random 
chance and 1.0 corresponds to perfect classification. Data sources denoted in different colors: 
vitals (lime), demographics (orange), phenotypes (dark green), laboratory values (red), social 
history (purple), and all data sources combined (blue). 
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Figure 4. Top 10 features visualized using SHAP. Corresponding data source from which 
feature is derived is indicated by colored square. Individual patient contributions to the outcome 
are signified with red dots (high feature values), purple (intermediate), and blue (low). Y-axis 
represents importance of each feature. Dots with x values greater than and less than zero 
represent patients with a fast and slow complication onsets, respectively. MPV: mean platelet 
volume, eGFR: estimated glomerular filtration rate, RDW: red cell distribution width, MCHC: 
mean corpuscular hemoglobin concentration, BMI: body mass index. 
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Figure 5. Boxplots comparing number of patient medical visits per year between T2DM 
and complication diagnoses between fast and slow complication onset group. Horizontal line 
within each box represents median and the box spans the interquartile range(IQR), extending 
from the 1st (Q1) to the 3rd (Q3) quartile for each group’s distribution. Box whiskers denote 
maximum (Q3+1.5*IQR) and minimum(Q1-1.5*IQR); dots outside of whiskers are outliers.  
Horizontal bar denotes p-value using two-sided Mann-Whitney-U test. 
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Figure 6. Barchart exhibiting types of medical visit obtained by fast and slow complication 
onset groups between T2DM and complication diagnoses. Number of different medical visits 
per patient year was visualized to assess differences in level of care obtained between groups. 
Patient year was defined as the sum of the individual times to complication within each group.  
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Tables 
 

Variable Slow  Fast  P value 

Age at diabetes onset 
(years) 

 57.7 (48.3-68.3)  61.98 (51.4-71.3) <0.001 

Gender Female: 1,446 (51.6%) 
Male:  1,357 (48.4%) 

Female: 1,374 (49%) 
Male: 1,431 (51%) 

0.054 

Race  Caucasian: 1,811 (64.6%) 
African American: 855 
(30.5%) 
Asian: 36 (1.3%) 
American Indian/Alaska 
Native: 12 (0.4%) 
Native Hawaiian/Other Pacific 
Islander:  3 (0.1%) 
Multiracial: 3 (0.1%) 
Other: 83 (3%) 

Caucasian: 1,883 (67.1%) 
African American: 741 
(26.4%) 
Asian: 67 (2.3%) 
American Indian/Alaska 
Native: 14 (0.5%) 
Native Hawaiian/Other 
Pacific Islander:  2 (0.1%) 
Multiracial: 5 (0.2%) 
Other: 87 (3.1%) 

0.00054 

Duration of diabetes 
(years) 

10.27 (8-12.3) 5.67 (2.9-8.8) <0.001 

BMI (kg/m2) 33.78 (29.9-37.5) 32.87 (28.9-37.5) <0.001 

Essential hypertension 1807 (64.5%) 1921 (68.5%) 0.0016 

Hyperlipidemia 723 (25.8%) 873 (31.1%) <0.001 

Glucose (mg/dL) 163 (118-25) 155 (116-205) 0.0029 

Creatinine (mg/dL) 0.89 (0.8-1.1)  0.92 (0.82-1.1) <0.001 

Cigarette Use 588 (21%) 664 (24%) 0.017 

Smokeless tobacco 
use 

Current User: 12 (0.4%) 
Former User: 23 (0.8%) 
Never Used: 346 (12.3%) 
Unknown: 2,422 (86.4%) 

Current User: 25 (0.9%) 
Former User: 46 (1.6%) 
Never Used: 1,062 (37.9%) 
Unknown: 1,672 (59.6%) 

<0.001 

Table 1 Baseline characteristics of patients who developed nephropathy during study 
period. Continuous variables are reported as median (inter-quartile range) and compared using a 
two-sided Mann-Whitney-U test. Categorical variables are reported as counts (percentage) and 
compared with the chi-square test. P-value�0.05 was considered statistically significant. 
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Variable Slow  Fast  P value 

Age at diabetes 
onset (years) 

 55.7 (45.6-65)  58.9 (49-67.7) <0.001 

Gender Female:  1,138 (53.5%) 
Male: 990 (46.5%) 

Female: 1,090 (51.2%) 
Male: 1,039 (48.8%) 

0.15 

Race  Caucasian: 1,345 (63.2%) 
African American: 682 (32.1%) 
Asian 20 (0.9%) 
American Indian/Alaska Native:  
8 (0.4%) 
Native Hawaiian/Other Pacific 
Islander: 0 (0%) 
Multiracial: 3 (0.1%) 
Other: 70 (3.3%) 

Caucasian: 1,431 (67.2%) 
African American: 568 (26.7%) 
Asian:  38 (1.8%) 
American Indian/Alaska Native:  
7 (0.3%) 
Native Hawaiian/Other Pacific 
Islander: 4 (0.2%) 
Multiracial: 2 (0.1%) 
Other: 79 (3.7%) 

<0.001 

Duration of 
diabetes (years) 

10.7 (8.4-12.7) 6 (3.5-8.6) <0.001 

BMI (kg/m2) 34.1 (30.3-38) 33.6 (29.6-37.8) 0.047 

Essential 
hypertension 

1274 (59.9%) 1323 (62.1%) 0.14 

Hyperlipidemia 569 (26.7%) 660 (31%) 0.0024 

Glucose (mg/dL) 160.5 (119-205) 166.0 (121-209.7) 0.038 

Creatinine 
(mg/dL) 

0.9 (0.8-1)  0.9 (0.8-1) 0.97 

Cigarette Use 476 (22.4%) 546 (25.7%) 0.014 

Smokeless 
tobacco use 

Current User: 10 (0.5%) 
Former User: 14 (0.7%) 
Never Used: 255 (12%) 
Unknown: 1,849 (87%) 

Current User: 19 (0.9%) 
Former User: 40 (1.9%) 
Never Used: 915 (43%) 
Unknown: 1,155 (54.3%) 

<0.001 

Table 2 Baseline characteristics of patients who developed neuropathy during study period. 
Continuous variables are reported as median (inter-quartile range) and compared using a two-
sided Mann-Whitney-U test. Categorical variables are reported as counts (percentage) and 
compared with the chi-square test. P-value�0.05 was considered statistically significant. 
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Variable Slow Fast P value 

Age at diabetes 
onset (years) 

 57.6 (47.0-67.1)  61.6 (52.3-70.4) <0.001 

Gender Female: 868 (56.5%) 
Male: 669 (43.5%) 

Female: 804 (52.3%) 
Male: 733 (47.7%) 

0.023 

Race  Caucasian: 1,015 (66%) 
African American: 424 (27.6%) 
Asian 41 (2.7%) 
American Indian/Alaska Native: 4 
(0.3%) 
Native Hawaiian/Other Pacific 
Islander: 3 (0.2%) 
Multiracial: 1 (0.7%) 
Other: 49 (3.2%) 

Caucasian: 1,066 (69.4%) 
African American: 341 (22.2%) 
Asian: 49 (3.2%) 
American Indian/Alaska Native: 
7 (0.5%) 
Native Hawaiian/Other Pacific 
Islander: 1 (0.1%) 
Multiracial: 2 (0.1%) 
Other: 68 (4.4%) 
Unknown: 3 (0.2%) 

0.0076 

Duration of 
diabetes (years) 

10.8 (8.3-12.7) 7.9  (4.3-10.1) <0.001 

BMI (kg/m2) 33.2 (29.5-37.2) 33.0 (28.9-36.9) 0.23 

Essential 
hypertension 

927 (60.3%)  971 (63.2%) 0.11 

Hyperlipidemia 421 (27.4%) 554 (36.0%) <0.001 

Glucose 
(mg/dL) 

167.9 (124-210)  161 (121-205) 0.033 

Creatinine 
(mg/dL) 

0.9 (0.8-1.0) 0.9 (0.8-1.1) 0.0016 

Cigarette Use 267 (17.4%) 290 (18.9%) 0.30 

Smokeless 
tobacco use 

Current User: 4 (0.3%) 
Former User: 7 (0.5%) 
Never Used: 191 (12.4%) 
Unknown: 1,335 (86.9%) 

Current User: 6 (0.4%) 
Former User: 21 (1.4%) 
Never Used: 527 (34.3%) 
Unknown: 983 (64%) 

<0.001 

Table 3 Baseline characteristics of patients who developed ocular disease during study 
period. Continuous variables are reported as median (inter-quartile range) and compared using a 
two-sided Mann-Whitney-U test. Categorical variables are reported as counts (percentage) and 
compared with the chi-square test. P-value�0.05 was considered statistically significant. 
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Variable Slow  Fast  P value 

Age at diabetes onset 
(years) 

 59.43 (50.2-68.3)  64.67 (55.3-73.4) <0.001 

Gender Female:  1,202 (51.8%) 
Male:  1,119 (48.2%) 

Female: 1,123 (48.3%) 
Male: 1,202 (51.7%) 

0.019 

Race  Caucasian: 1,565 (67.4%) 
African American: 656 
(28.3%) 
Asian: 26 (1.1%) 
American Indian/Alaska 
Native: 7 (0.3%) 
Native Hawaiian/Other 
Pacific Islander: 2 (0.1%) 
Multiracial: 1 (0.04%) 
Unknown: 1 (0.04%) 
Other: 63 (2.7%) 

Caucasian: 1,657 (71.3%) 
African American: 537 
(23.1%) 
Asian: 40 (1.7%) 
American Indian/Alaska 
Native:  13 (0.6%) 
Native Hawaiian/Other 
Pacific Islander: 3 (0.1%) 
Multiracial: 5 (0.2%) 
Other: 69 (3.0%) 

0.0021 

Duration of diabetes 
(years) 

10.17 (7.8-12.4) 5.91 (3.0-9.4) <0.001 

BMI (kg/m2) 33.8 (30.1-37.6) 33.0 (29.1-37.2) <0.001 

Essential 
hypertension 

1,536 (66.1%) 1,589 (68.3%) 0.12 

Hyperlipidemia 646 (27.8%) 697(30%) 0.11 

Glucose (mg/dL) 160 (118-205) 157 (117-205) 0.22 

Creatinine (mg/dL) 0.86 (0.8-1)  0.89 (0.8-1.1) <0.001 

Cigarette Use 525 (22.6%) 570 (24.52%) 0.14 

Smokeless tobacco 
use 

Current User: 5 (0.2%) 
Former User: 18 (0.8%) 
Never Used: 376 (16.2%) 
Unknown: 1,922 (82.8%) 

Current User: 10 (0.4%) 
Former User: 36 (1.6%) 
Never Used: 778 (33.5%) 
Unknown: 1,501 (64.6%) 

<0.001 

Table 4 Baseline characteristics of patients who developed CVD during study period. 
Continuous variables are reported as median (inter-quartile range) and compared using a two-
sided Mann-Whitney-U test. Categorical variables are reported as counts (percentage) and 
compared with the chi-square test. P-value�0.05 was considered statistically significant. 
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Complication Model Phenotypes Demographics Vitals Social Labs All 

Nephropathy SVC 0.618 0.577 0.579 0.674 0.682 0.730 

GB 0.615 0.581 0.585 0.677 0.661 0.736 

ET 0.633 0.559 0.575 0.684 0.674 0.739 

RF 0.625 0.577 0.593 0.670 0.684 0.747 

AdaBoost 0.589 0.593 0.564 0.673 0.665 0.737 

LR 0.612 0.580 0.567 0.671 0.672 0.728 

Neuropathy SVC 0.633 0.579 0.565 0.632 0.648 0.726 

GB 0.629 0.582 0.559 0.666 0.666 0.713 

ET 0.634 0.583 0.574 0.680 0.661 0.732 

RF 0.638 0.582 0.578 0.674 0.671 0.737 

AdaBoost 0.614 0.590 0.583 0.679 0.664 0.727 

LR 0.624 0.583 0.524 0.677 0.645 0.724 

Ocular 
Disease 

SVC 0.567 0.608 0.507 0.633 0.662 0.649 

GB 0.539 0.609 0.505 0.610 0.645 0.691 

ET 0.530 0.601 0.520 0.632 0.656 0.682 

RF 0.550 0.598 0.527 0.631 0.624 0.696 

AdaBoost 0.502 0.612 0.508 0.599 0.586 0.707 

LR 0.566 0.619 0.473 0.620 0.669 0.671 

CVD  SVC 0.609 0.634 0.538 0.633 0.648 0.672 

 GB 0.603 0.637 0.516 0.606 0.634 0.694 

 ET 0.609 0.616 0.559 0.642 0.623 0.699 

 RF 0.613 0.623 0.542 0.599 0.626 0.693 

 AdaBoost 0.597 0.633 0.531 0.626 0.618 0.688 

 LR 0.603 0.632 0.539 0.619 0.647 0.679 

Table 5 Test set AUROCs corresponding to each model input using six different ML 
models for each complication. Best AUROCs for each input (phenotypes, demographics, vitals, 
social-lifestyle history, laboratory, and all inputs combined) are bolded. SVC: Support Vector 
Classification, GB: Gradient Boosting Decision Trees, ET: Extra Trees, RF: Random Forest, 
AdaBoost: Adaptive Boosting, LR: Logistic Regression.   
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