
Article 

Does the Heart Fall Asleep? – Diurnal Variations of 

Heart Rate Variability in Patients with Disorders of 

Consciousness 

Monika Angerer 1,2*, Frank H. Wilhelm 3, Michael Liedlgruber 3, Gerald Pichler 4, Birgit Angerer 5, 

Monika Scarpatetti 4, Christine Blume 6,7† and Manuel Schabus 1,2†* 

1 University of Salzburg; Department of Psychology; Laboratory for Sleep, Cognition and Consciousness 

Research; Salzburg, Austria  
2 University of Salzburg; Centre for Cognitive Neuroscience Salzburg (CCNS); Salzburg, Austria 
3 University of Salzburg; Department of Psychology; Division of Clinical Psychology and Psychopathology; 

Salzburg, Austria; frank.wilhelm@plus.ac.at (F.W.); michael.liedlgruber@plus.ac.at (M.L.) 
4 Geriatric Health Care Centres of the City of Graz; Graz, Austria; gerald.pichler@stadt.graz.at (G.P.); 

monika.scarpatetti@stadt.graz.at (Mo.S.) 
5 Private Practice for General Medicine and Neurology; Leibnitz, Austria; leibnitz@braindoc.at 
6 Centre for Chronobiology; Psychiatric Hospital of the University of Basel; Basel, Switzerland; 

christine.blume@unibas.ch 
7 Transfaculty Research Platform Molecular and Cognitive Neurosciences; University of Basel; Basel, 

Switzerland 

 
† Christine Blume and Manuel Schabus contributed equally to this work. 

* Correspondence: monika.angerer@plus.ac.at (M.A.), manuel.schabus@plus.ac.at (Ma.S.) 

Abstract: The current study investigated heart rate (HR) and heart rate variability (HRV) across day 

and night in patients with disorders of consciousness (DOC). We recorded 24-h ECG in 26 patients with 

DOC (i.e., unresponsive wakefulness syndrome [UWS; n=16] and (exit) minimally conscious state 

[(E)MCS; n=10]). To examine diurnal variations, HR and HRV indices in the time, frequency, and 

entropy domains were computed for periods of clear day- (forenoon: 8am-2pm; afternoon: 2pm-8pm) 

and nighttime (11pm-5am). Results indicate that patients’ interbeat intervals (IBIs) were larger during 

the night than during the day indicating HR slowing. Additionally, higher HRV entropy was associated 

with higher EEG entropy during the night. Patients in UWS showed larger IBIs compared to patients in 

(E)MCS, and patients with non-traumatic brain injury showed lower ECG entropy than patients with 

traumatic brain injury. Thus, cardiac activity varies with a diurnal pattern in patients with DOC and 

can differentiate between patients’ diagnoses and etiologies. Moreover, also the interaction of heart and 

brain appears to follow a diurnal rhythm. Thus, HR and HRV seem to mirror the integrity of brain 

functioning and consequently might serve as supplementary measures for improving the validity of 

assessments in patients with DOC. 

Keywords: disorders of consciousness; brain injury; ECG; heart rate; heart rate variability; diurnal 

variation 

 

1. Introduction 

Severe brain injury can cause coma and, upon recovery, changes in consciousness often persist. 

These states are subsumed under the term ‘disorders of consciousness’ (DOC). In a simplified approach, 

two major components are thought to be necessary for consciousness: wakefulness (i.e., the level of 

arousal) and awareness of the environment and the self (i.e., contents of consciousness) [1]. In patients 

living with DOC, wakefulness is preserved but awareness is only intermittently present or completely 

absent. More specifically, while patients with an unresponsive wakefulness syndrome (UWS) show 
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some return of arousal (i.e., phases of sleep [closed eyes] and wakefulness [open eyes]) without signs of 

awareness during behavioral assessment, patients in a minimally conscious state (MCS) show 

inconsistent but reproducible signs of awareness that can be differentiated from reflexive behavior (e.g., 

response to commands, visual pursuit, intentional communication) [2,3]. If patients can communicate 

functionally and use objects adequately, their state is denoted as emergence from minimally conscious 

state (EMCS) [4]. Thus, while patients with UWS are assumed to be unconscious, patients in MCS and 

EMCS are assumed to be (minimally) conscious. 

Clinical diagnoses are usually based on observations of the patients’ behavior using for instance 

the Glasgow Coma Scale [5] for acute situations or the Coma Recovery Scale-Revised (CRS-R) [6] for 

tracing their development during recovery. Unfortunately, behavioral assessments involve the risk of 

underestimating the level of consciousness. This is because patients may be unable to respond 

behaviorally (and thus give evidence of their consciousness) for example due to sensory or motor 

impairments. Finally, the fluctuating levels of consciousness carry the risk of examinations taking place 

during windows of unconsciousness [7]. Consequently, the absence of evidence for consciousness must 

not be mistaken for evidence of its absence. Hence, distinguishing between UWS and (E)MCS continues 

to be a challenge in clinical practice, and the rate of misdiagnoses is high (i.e., ~40%) [8]. Approaches 

based on neuroimaging methods such as functional magnetic resonance imaging (fMRI) or 

electroencephalography (EEG) have been used as additional tools to improve the validity of DOC 

diagnoses [9,10]. However, they require special expertise, come with high time and financial 

requirements and often rely on tasks that are still challenging for patients [11]. Therefore, researchers 

and clinicians are looking for alternative or adjunct measures that (i) do not rely on patients’ behavioral 

responses, (ii) are time and cost efficient, (iii) and can be easily applied at beside. Last (iv), they should 

be useable during longer-term recordings thereby taking the problem of fluctuating consciousness 

levels over the circadian day into account. 

Among these measures, heart rate (HR) and heart rate variability (HRV) have been suggested to 

fulfill these criteria [12]. Specifically, HR indicates the average time interval between adjacent heartbeats 

(i.e., interbeat interval; IBI), while HRV quantifies the variability in these time intervals. These variations 

occur at different frequencies and reflect dynamics of autonomic nervous system regulation, being 

related to sympathetic and parasympathetic activity, breathing, thermo-, and blood pressure regulation, 

as well as changes in the vasomotor, and renin-angiotensin system [13; cf. Box 1]. Furthermore, HR/HRV 

may mirror the interaction between the (injured) brain and the heart and thus represent a ‘peripheral’ 

window to ‘central’ functioning. The neural structure that enables the bidirectional communication of 

the heart and central nervous system has been described as the central autonomic network, which has 

been suggested to be involved in cognitive, emotional, and autonomic regulation, and linked to 

HR/HRV and cognitive performance [14]. 

In patients with severe brain injury, a decrease of HRV parameters in the time and frequency 

domain has been associated with a worse clinical outcome [e.g., 15,16]. When looking at HRV entropy, 

it has been shown that patients with UWS show lower approximate entropy (ApEn) values than healthy 

controls [17]. Furthermore, higher complexity values, which were associated with higher CRS-R scores, 

were observed in patients in MCS as compared to patients with UWS [12]. Interestingly, no differences 

between patients with UWS and healthy controls has been found in any of the linear parameters (i.e., 

root mean square of successive differences between adjacent heartbeats [RMSSD], standard deviation 

of IBIs [SDRR], ratio between low and high frequencies [LF/HF ratio]) [17]. 

Importantly, like other physiological signals (such as body temperature and hormone secretion), 

HR/HRV in healthy populations shows strong alterations between sleep and wakefulness [18-20]; so-

called circadian variations (i.e., rhythms with a period length of approximately 24 h). In patients with 

severe brain injury, it has been shown that circadian temperature, melatonin, or motoric activity 

rhythms often deviate from the healthy norm, and that a better integrity of the patients’ circadian 

rhythm is associated with a better clinical state [7,21,22]. Until now, it remains unclear how day vs. night 

variation affects HR/HRV of patients with DOC and to what degree the existence of diurnal variation is 

linked to the patients’ clinical state. 

Thus, our aim was to explore HRV in patients with DOC in the time, frequency and entropy 

domains during day and night periods. Specifically, as light is the most important zeitgeber for the 

internal biological clock [23], we also took the lighting conditions in the patients’ room into account. 
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Additionally, we investigated whether there is an association between the patients’ heart and brain 

activity. 

 
 

Box 1. Methodologically, HRV can be evaluated in the frequency, time, and entropy domains. In the frequency 

domain, researchers usually compute a fast Fourier transform for three specific frequency bands that can be 

related to functions of the autonomic nervous system: high (HF; 0.15-0.4 Hz), low (LF; 0.04-0.15 Hz), and very 

low frequency (VLF; 0.003-0.04 Hz). While the HF band represents parasympathetic activity, the LF band reflects 

both parasympathetic and sympathetic activity and is particularly related to blood pressure regulation. The VLF 

band is mainly related to the thermoregulation, vasomotor, and renin-angiotensin system. In the time domain, 

variation of IBIs can be quantified by different parameters such as the root mean square of successive differences 

between adjacent heartbeats (RMSSD), which is used to estimate variation mainly related to the HF band 

(pointing to parasympathetic activity; for other time-domain parameters, see [13]). By using non-linear methods 

(i.e., entropy domain), the complexity and irregularity of the IBI signal can be investigated. Approximate entropy 

(ApEn), detrended fluctuation analysis scaling exponent (DfaAlpha), Hurst exponent (Hurst), and sample 

entropy (SampEn) are amongst the most commonly used non-linear methods for HRV analysis [13,24,25]. 
Besides HRV, also heart rate (HR) provides information about autonomic nervous system regulation. 

Specifically, HR is a basic measure of overall cardiovascular arousal, which is influenced by both sympathetic 

activation and parasympathetic withdrawal. 
 

2. Materials and Methods 

2.1. Patients 

From a total of 38 non-sedated and spontaneously breathing patients with DOC, nine patients had 

to be excluded from the analyses due to severe cardiac arrhythmias. Three further patients were 

excluded because they were exposed to constant 24-h light. Thus, 26 patients (8 women) between 16 and 

80 years old (mdn = 51.61) with different etiologies (traumatic brain injury [TBI]: n = 11, non-traumatic 

brain injury [NTBI]: n = 15) from clinics in Austria (n = 12) and Belgium (n = 14) were included in the 

analyses. The patients’ behavioral state was assessed with the CRS-R [6]. While 16 patients were 

diagnosed with UWS, nine patients were in an MCS and one was in an EMCS. MCS and EMCS patients 

were combined for statistical analyses. Note that data of both patient samples (i.e., Austria and Belgium) 

have been used in two previous publications, where we studied diurnal variations in EEG parameters 

[26], as well as circadian variations in skin temperature [27] of patients with DOC. However, these 

studies did not focus on diurnal variations in electrocardiogram (ECG) data. The studies have been 

approved by the local ethics committees and informed consent was obtained from the patients’ legal 

representatives. For details on the study sample, see Table 1. 

Table 1. Demographic information and highest CRS-R sum score/diagnosis. 

Patient ID Age Sex Etiology 
Time Since 

Injury (Months) 
Diagnosis 

CRS-R 

Sum Score 

P1 65 M NTBI  9 UWS  3 

P2 80 M NTBI  16 UWS  3 

P3 35 M NTBI  15 UWS  4 

P4 75 M NTBI  21 EMCS 21 

P5 55 F NTBI  24 UWS  4 

P6 60 M NTBI  26 UWS  4 

P7 80 M TBI  22 MCS  9 

P8 25 F NTBI  49 UWS  - 

P9 50 M TBI  8 UWS  5 

P10 80 M TBI  4 UWS  4 

P11 70 M NTBI  3 UWS  2 

P12 75 F TBI  5 UWS  4 

P13 20 F TBI  1 MCS 16 

P14 25 M TBI  7 UWS  6 
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P15 50 M NTBI  1 MCS 18 

P16 70 M NTBI  3 MCS 10 

P17 65 M NTBI  2 MCS 10 

P18 40 M TBI  6 MCS  6 

P19 75 F TBI  1 UWS  3 

P20 35 F NTBI  1 MCS 11 

P21 45 F TBI  6 MCS 21 

P22 65 F NTBI  1 UWS  6 

P23 40 M NTBI  9 UWS  5 

P24 35 M NTBI  240 UWS  8 

P25 35 M TBI  6 UWS  5 

P26 20 M TBI  36 MCS 13 

M = male; F = female; NTBI = non-traumatic brain injury; TBI = traumatic brain injury; UWS = 

unresponsive wakefulness syndrome; MCS = minimally conscious state; EMCS = emergence from 

MCS; CRS-R = Coma Recovery Scale-Revised (cf. Behavioral Assessment and Data Analysis). To prevent 

patient identification, age was rounded to 5 years and time since injury to full months. Please note 

that we could not obtain valid CRS-R assessments in one patient (P8) because not all subscales could 

be evaluated (i.e., due to eyes being closed and it being impossible to induce eye-opening even when 

physically stimulating the patient). In this case, we used the diagnosis that was obtained during a 

CRS-R assessment ten days earlier. While the diagnosis usually stays quite stable over time, CRS-R 

scores can slightly change. Thus, we did not use the CRS-R sum score of this earlier assessment for 

analyses. 

2.2. Study Protocol 

2.2.1. Austria 

In Austria, the study protocol comprised two within-subject conditions, namely the (i) habitual 

light (HL) and (ii) dynamic daylight (DDL) condition. Each condition lasted one week and orders were 

randomized. While patients were in a room with standard clinic room lighting in the HL condition, 

patients were in a room with a ‘biodynamic’ room light in the DDL condition. During both weeks, ECG, 

skin temperature, and actimetry were assessed continuously. The patients’ behavioral repertoire was 

assessed twice with the CRS-R at the end of each week, once in the morning and once in the afternoon, 

in all patients (n = 12). The data from the DDL condition are beyond the scope of this study. For the 

current analyses, the CRS-R assessments from the HL condition as well as the 24-h ECG data recorded 

at the beginning of the HL condition are of interest and were analyzed (for more details on the study 

protocol, see [27]). 

2.2.1. Belgium 

In Belgium, a 24-h polysomnography (PSG; including EEG, ECG, electromyogram [EMG], 

electrooculogram [EOG], and respiration) was performed in the patients’ usual clinical environment 

with standard clinic room lighting (i.e., HL). The CRS-R was performed twice (i.e., before and after the 

recording) in 9, and once in 5 of the 14 patients. 

 

For the current analyses, the data of the Belgian patient sample was combined with the HL data of 

the Austrian patient sample, as lighting conditions were comparable in these two datasets. Thus, we are 

looking at HR/HRV under standard clinic room lighting conditions. 

2.3. Behavioral Assessment and Data Analysis 

2.3.1. Coma Recovery Scale-Revised 

The behavioral state of the patients was assessed with the CRS-R [6], which is composed of six 

subscales reflecting auditory, visual, motor, oromotor, communication and arousal functions with a 

total of 23 items. While the lowest threshold item on each subscale represents reflexive behavior, the 

highest threshold item indicates cognitively mediated behavior. The CRS-R is performed in a 
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hierarchical manner, which means that the examiner starts with the highest item of each subscale and 

moves down the scale until the patient’s response meets the criteria for one item. When two CRS-R 

assessments were available, we used the CRS-R assessment where the patients showed the highest 

behavioral reactivity (i.e., the best diagnosis or highest sum score) as this is thought to best represent 

the ‘true’ state of the patient. The highest CRS-R score and diagnosis of each patient is shown in Table 1. 

2.3.2. Electrocardiography 

For recording ECG in the patient sample from Austria, an ambulatory three-channel ECG device 

(eMotion Faros 180°, Mega Electronics Ltd, Kuopio, Finland) with self-adhesive Ambu® BlueSensor SP 

electrodes (AMBU A/S, Ballerup, Denmark) was used. Two electrodes were placed in an infraclavicular 

position on the right and left body side, and one on a rib on the lower left thoracic wall. The sampling 

rate was 1,000 Hz. 

In the patient sample from Belgium, the ECG was recorded as part of the PSG. For PSG recordings, 

BrainProducts amplifiers (BrainProducts, Gilching, Germany) were used. All PSG signals were recorded 

with a sampling rate of 500 Hz. For ECG recordings, two goldcup electrodes were used. One electrode 

was affixed in an infraclavicular position on the right body side and one on a rib on the lower left 

thoracic wall using EC2 electrode gel (Astro-Med® Inc., West Warwick, USA). 

2.3.3. Heart Rate and Heart Rate Variability 

To explore diurnal variations in HR/HRV, we used continuous 24-h ECG data from each patient, 

and divided the ECG recording into periods of clear daytime (i.e., forenoon: 8am-2pm, afternoon: 2pm-

8pm) and nighttime (i.e., 11pm-5am) using BrainVision Analyzer 2.0 Software (Brain Products GmbH, 

Gilching, Germany). Importantly, all three periods were of equal length (i.e., 6 h). Periods with 

conditions of twilight (i.e., dawn: 5-8am, dusk: 8-11pm) were excluded from the analyses. 

HRV analyses were conducted in ANSLAB 2.6 [28]. Accurate automatic R peak detections 

(obtained with the software’s algorithms) were carefully visually checked for the entire data of each 

patient and corrected whenever necessary. In a second and important preprocessing step, the IBI data 

was visually inspected for arrhythmias (e.g., ectopic beats) as single spikes in the IBI signal can seriously 

distort the spectral estimates of HRV [29]. While single spikes were interpolated with the software’s 

algorithm (i.e., mean of the adjacent IBIs), longer phases of arrhythmia were marked and excluded from 

the analyses (i.e., set to missing). In total, we removed per patient and daytime on average 0.3% (min = 

0%, max = 7.2%) of the data points (for the amount of individual patients’ missing data, see Supplementary 

material: Table S1). 

Patients’ HRV data were analyzed in the frequency, time, and entropy domains. Due to obvious 

non-stationarities in the IBI signals (i.e., sudden shifts in the mean and/or standard deviation) we used 

complex demodulation (CDM) for quantifying the HRV frequency parameters. CDM produces 

equivalent results to fast Fourier transform but is less affected by non-stationarity (a prerequisite for 

accurate fast Fourier transform) [30,31]. 

We computed the mean IBI oscillation amplitude (in ms) for the very low (VLF; 0.003-0.04 Hz), low 

(LF; 0.04-0.15 Hz), and high (HF; 0.15-0.4 Hz) frequency bands for each minute. During the export of 

the mean IBI oscillation amplitude, ANSLAB automatically interpolates segments that were set to 

missing. Thus, we post-hoc excluded all segments that were automatically interpolated using R version 

3.6.1. [32]. Mean IBI (in ms; i.e., the time interval between two successive R-peaks), mean HR (equivalent 

to 60,000/IBI; in beats/min), and mean RMSSD (in ms) were also computed for each minute. For 

statistical analyses of HR/HRV parameters, all one-minute segments within each 6-h period (i.e., 8am-

2pm, 2pm-8pm, and 11pm-5am) were averaged using R. Thus, we arrived at one value per patient and 

HR/HRV parameter for forenoon, afternoon, and night. For quantifying the complexity of the patients’ 

HR variations, approximate entropy (ApEn), detrended fluctuation analysis scaling exponent 

(DfaAlpha), sample entropy (SampEn), and the Hurst exponent (Hurst) were computed for the whole 

6-h segments (i.e., forenoon, afternoon, and night). ApEn describes the likelihood that patterns remain 

similar for subsequent comparisons, with higher ApEn values indicating higher irregularity and 

complexity in time-series data. DfaAlpha quantifies the presence or absence of fractal correlation 

properties in non-stationary time-series data, with higher DfaAlpha values suggesting fractal-like HR 

dynamics. SampEn describes the probability that two sequences of 1-5 consecutive data points (i.e., 

SampEn1-5) that are similar to each other will remain similar when one consecutive point is included. 
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Higher SampEn indicates frequent incidence of dissimilarities in the time-series data. The Hurst 

exponent is a quantification of long-range dependence, with values of 0.5-1 indicating a long-term 

positive correlation meaning that a high value in the series will probably be followed by another high 

value, values of 0-0.5 indicating time series with long-term negative correlation or switching between 

high and low values, and a value of 0.5 suggesting that the series are uncorrelated. For more details on 

non-linear HRV analyses, see [24,25]. 

2.3.4. Respiration 

Since DOC may be related to respiratory alterations [33] and as low respiration rates (i.e., <9 cycles 

per minute [cpm] = <0.15 Hz) can affect the HF estimates of HRV via shifts in the respiratory sinus 

arrhythmia to the LF band [34], we analyzed the respiratory signal in a subsample of patients (n = 12) 

for whom respiration was simultaneously recorded via a respiration belt around the thorax. Mean 

respiratory rate for each minute was computed in ANSLAB and averaged for 5-minute segments using 

R. We found that only one 5-min segment (i.e., 1.39% of 6-h recordings) of two patients (i.e., P17: 

forenoon; P26: night) was <9 cpm. Thus, we decided that there was no need to control the HF parameter 

for respiration in our patient sample. Although respiration data was only available from a subset of 

patients, it is unlikely that breathing patterns in the other patients were appreciably different. 

2.3.4. EEG Permutation entropy 

For analyzing heart-brain interaction, we correlated HRV with EEG entropy in the Belgian patient 

sample (n = 14) where PSG was recorded. As the EEG data of the Belgian sample was already used in a 

previous study, where EEG permutation entropy (PE) had been computed, we used the EEG entropy 

values of the respective patients from that publication [26]. More specifically, PE of the entire EEG signal 

was computed for day (i.e., 8am-8pm) and night (i.e., 11pm-5am). PE quantifies the level of irregularity 

or unpredictability of an EEG signal. Higher PE values indicate more complex and/or random signals. 

For further information on the preprocessing of the EEG signal and the entropy analyses, see [26]. 

2.4. Statistical Analyses 

Statistical analyses were done in R. As not every variable was normally distributed (i.e., Shapiro-

Wilk test for normality: p < .001; cf. Supplementary material: Table S2), we used an advanced semi-

parametrical statistical approach. The significance level was set to α = .05 (two-sided) for all analyses. 

As suggested by Wasserstein et al. [35], we interpreted the overall pattern rather than focusing on 

individual p-values. Therefore, we also interpreted p-values .05 < p ≤ .10 if they were in line with the 

overall pattern of results, and also ‘credible’ from a Bayesian point of view. More specifically, we 

additionally tested all trends of our post-hoc comparisons and correlations analyses with Bayesian 

multilevel regression models via the Stan-based ‘brms’ package available for R [36,37]. We report 

regression coefficients and the 95% credible intervals (CIs; i.e., Bayesian confidence intervals). The CI 

describes the interval in which a parameter value falls with a 95% probability given the data observed, 

prior and model assumptions. Thus, an effect is considered to significantly differ from zero if zero is not 

included in the CI. We used weak- or non-informative default priors whose influence on results is 

negligible. For all computed regression models no divergent transitions occur, Rhat (i.e., potential scale 

reduction factor on split chains) was < 1.01, and effective sample size (ESS) was > 400. 

For the analyses of differences in HR/HRV parameters (i.e., IBI, HR, RMSSD, VLF, LF, HF, ApEn, 

DfaAlpha, Hurst, and SampEn) and EEG entropy (i.e., PE) between different times of the day (i.e., 

within-subjects factor; forenoon, afternoon, night), diagnoses [i.e., between-subjects factor; (E)MCS vs. 

UWS], etiology [i.e., between-subjects factor; TBI vs. NTBI], or sex [i.e., between-subjects factor; female 

vs. male], we used advanced non-parametric analyses for repeated measures designs as implemented 

in the ‘MANOVA.RM’ package available for R [38]. We report the resampled Wald-type statistic (WTS). 

As a resampling method, the function ‘perm’ was used, which randomly permutes all observations. The 

number of iterations used to calculate the resampled statistic was 10,000. To correct for multiple tests, 

p-values of post hoc comparisons were adjusted using the method of Benjamini and Hochberg (BH) [39] 

as implemented in the ‘p.adjust’ function in R. For correlation analyses of HR/HRV parameters, CRS-R 

sum score, and EEG entropy we report Kendall’s Tau. 
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3. Results 

3.1. Interbeat Interval and Heart Rate 

Analyses of the IBIs of 26 patients revealed a trend towards a main effect for time (FWTS(2)=6.52, 

p=.068) and a significant effect for diagnosis (FWTS(1)=5.8, p=.028), but no significant time × diagnosis 

interaction (FWTS(2)=1.36, p=.523). Specifically, patients showed larger IBIs during the night as compared 

to forenoon (FWTS(1)=7.76, p=.027) and afternoon (FWTS(1)=4.74, p=.059; b=-37.44, 95%CI=[-67.46, -7.42]). 

No differences could be observed in the patients’ IBIs between fore- and afternoon (FWTS(1)=0.21, p=.648; 

cf. Figure 1a). Further, patients in UWS showed larger IBIs as compared to patients in (E)MCS 

(FWTS(1)=5.8, p=.028; cf. Figure 1b). 

 

Figure 1. Interbeat interval (IBI) separately for time and diagnosis contrasts. (a) While patients’ IBIs were larger 

during the night as compared to the day (i.e., forenoon, afternoon), they did not differ between fore- and afternoon. 

(b) Patients in UWS showed larger IBIs than patients in (E)MCS. Error bars represent the mean and 95% confidence 

interval. *p < .05, +p ≤ .1, ns = not significant. Abbreviations: (E)MCS = (emergence from) minimally conscious state, 

UWS = unresponsive wakefulness syndrome, ms = milliseconds. 

This effect was supported by correlation analyses of IBIs and CRS-R sum scores of 25 patients, 

showing that lower CRS-R sum scores were associated with larger IBIs during fore- (r𝜏(23)=-0.34, p=.02; 

cf. Figure 2a) and afternoon (r𝜏(23)=-0.38, p=.009; cf. Figure 2b) and by trend during the night (r𝜏(23)=-

0.27, p=.07; cf. Figure 2c). However, we refrain from interpreting the effect during the night as it is does 

not appear robust from a Bayesian point of view (b=-12.34, 95%CI=[-25.79, 1.16]). 

Analyses of HR yielded similar results (cf. Supplementary material: Figures S1 and S2), which is 

expected as HR is inverse proportional to the IBI signal. In both, IBI and HR, no differences for etiology 

(i.e., TBI vs. NTBI) or sex (i.e., male vs. female) were observed (cf. Supplementary material: Tables S3 and 

S4). 
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Figure 2. Correlation between interbeat interval (IBI) and CRS-R sum score separately for time. Larger IBIs were 

associated with lower CRS-R sum scores throughout the (a, b) day (i.e., forenoon, afternoon) and (c) night. Please 

note that the effect during the night is no longer ‘credible’ from a Bayesian point of view, and will not be 

interpreted.**p < .01, *p < .05. Abbreviations: (E)MCS = (emergence from) minimally conscious state, UWS = 

unresponsive wakefulness syndrome, ms = milliseconds. 

3.2. HRV Time Domain 

Analyses of the RMSSD of 26 patients did not reveal significant main effects for time (FWTS(2)=0.4, 

p=.828), diagnosis (FWTS(1)=0.37, p=.554) and time × diagnosis interaction (FWTS(2)=3.91, p=.174; cf. Figure 3). 

No differences for etiology (i.e., TBI vs. NTBI) or sex (i.e., male vs. female) were observed (cf. 

Supplementary material: Tables S3 and S4). 

 

Figure 3. Root mean square of successive differences between adjacent heartbeats (RMSSD). Patients’ RMSSD did 

not differ between times and diagnoses. Error bars represent the mean and 95% confidence interval. Abbreviations: 

(E)MCS = (emergence from) minimally conscious state, UWS = unresponsive wakefulness syndrome, ms = 

milliseconds. 

3.3. HRV Frequency Domain 

Analyses of VLF of 26 patients yielded a trend towards a main effect for time (FWTS(2)=6.63, p=.064), 

but no significant effect for diagnosis (FWTS(1)=1.74, p=.207) and the time × diagnosis interaction 

(FWTS(2)=1.08, p=.603). Post hoc comparisons of VLF between times of day did not yield significance 

anymore after correcting for multiple comparisons (i.e., fore- vs. afternoon: FWTS(1)=1.15, p=.295; 

forenoon vs. night: FWTS(1)=1.26, p=.295; afternoon vs. night: FWTS(1)=4.73, p=.111 [before BH-correction: 

p=.03]; cf. Figure 4a). 
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Analyses of LF of 26 patients revealed a trend towards a main effect for time (FWTS(2)=5.69, p=.088), 

but no significant effect for diagnosis (FWTS(1)=0.46, p=.51) and time × diagnosis interaction (FWTS(2)=0.36, 

p=.843). Post hoc comparisons of LF between times of day did not yield significance anymore after 

correcting for multiple comparisons (i.e., forenoon vs. afternoon: FWTS(1)=1.65, p=.213; forenoon vs. night: 

FWTS(1)=1.75, p=.213; afternoon vs. night: FWTS(1)=4.86, p=.108 [before BH-correction: p=.028]; cf. Figure 

4b). 

Analyses of HF of 26 patients did not reveal significant main effects for time (FWTS(2)=3.8, p=.191), 

diagnosis (FWTS(1)=0.57, p=.460), and time × diagnosis interaction (FWTS(2)=0.04, p=.980; cf. Figure 4c). 

No etiology or sex differences were observed for any frequency band (cf. Supplementary material: 

Tables S3 and S4). 

 

 

Figure 4. Very low (VLF), low (LF), and high frequency (HF) oscillation amplitude of the IBI signal computed by 

complex demodulation (CDM, see Heart Rate and Heart Rate Variability for details). Analyses of the (a) VLF and (b) 

LF band revealed significant main effects for time (i.e., forenoon, afternoon, night). However, post-hoc comparisons 

between times of day did not yield significance anymore after correction for multiple comparisons. (c) Patients’ HF 

did also not differ between times and diagnoses. Error bars represent the mean and 95% confidence interval. # = 

significant before correction for multiple comparisons, ns = not significant. Abbreviations: (E)MCS = (emergence 

from) minimally conscious state, UWS = unresponsive wakefulness syndrome, CDM = complex demodulation, ms 

= milliseconds. 

3.4. HRV Entropy Domain 

Analyses of ApEn of 26 patients revealed a significant main effect for time (FWTS(2)=21.35, p=.001), 

but no significant effect for diagnosis (FWTS(1)=1.79, p=.197) and the time × diagnosis interaction 

(FWTS(2)=1.99, p=.395). Specifically, patients showed a higher ApEn during forenoon as compared to 

afternoon (FWTS(1)=15.79, p<.001). No differences could be observed in the patients’ ApEn during night 

as compared to forenoon (FWTS(1)=2.19, p=.154) and afternoon (FWTS(1)=2.77, p=.154; cf. Figure 5). Analyses 

of other entropy parameters did not yield significant main effects for time and diagnoses, and the time × 

diagnosis interaction (cf. Supplementary material: Table S5). 
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Figure 5. Approximate entropy (ApEn). Patients showed a higher ApEn during forenoon as compared to afternoon. 

No significant differences were evident between night and day (i.e., night vs. forenoon or afternoon). Error bars 

represent the mean and 95% confidence interval. ***p < .001, ns = not significant. Abbreviations: (E)MCS = 

(emergence from) minimally conscious state, UWS = unresponsive wakefulness syndrome, arb. units = arbitrary 

units. 

However, analyses of the DfaAlpha and SampEn1 yielded a significant main effect for etiology, 

with higher DfaAlpha (FWTS(1)=4.59, p=.043; cf. Figure 6a) and SampEn1 (FWTS(1)=4.36, p=.049; cf. Figure 

6b) being observed in patients with TBI as compared to patients with NTBI. No etiology and sex 

differences were observed for the other entropy parameters (cf. Supplementary material: Tables S3 and S4). 

 

Figure 6. Detrended fluctuation analysis scaling exponent (DfaAlpha) and sample entropy 1 (SampEn1). Patients 

with TBI showed a higher (a) DfaAlpha and (b) SampEn1 as compared to patients with NTBI. Error bars represent 

the mean and 95% confidence interval. *p < .05. Abbreviations: NTBI = non-traumatic brain injury, TBI = traumatic 

brain injury, arb. units = arbitrary units. 

3.5. Correlation of EEG and HRV Entropy 

Correlation analyses in 14 patients showed that a higher ApEn was associated with a higher PE 

during the night (i.e., 11pm-5am; FWTS(1)=0.47, p=.019; cf. Figure 7b). No significant correlation was 

observed during the day (i.e., 8am-8pm, r𝜏(12)=0.3, p=.157, cf. Figure 7a). 
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Figure 7. Correlation between EEG permutation entropy (PE) and HRV approximate entropy (ApEn) separately 

for day and night. (a) While EEG PE and HRV ApEn did not correlate during the day (i.e., 8am-8pm), (b) a higher 

EEG PE was associated with a higher HRV ApEn during the night (i.e., 11pm-5am). *p < .05, ns = not significant. 

Abbreviations: (E)MCS = (emergence from) minimally conscious state, UWS = unresponsive wakefulness 

syndrome, arb. units = arbitrary units. 

4. Discussion 

In patients with DOC, variations in cardiac activity show a diurnal pattern. Specifically, we find 

preserved diurnal variations in the length of the patients’ IBIs. IBIs were larger during the night than 

during the day indicating that, as in healthy individuals [20], the heart slows down during the night 

due to parasympathetic dominance reflecting relaxation and sleep. Further, the complexity of patients’ 

HRV signal varies across wakefulness, with the signal being more irregular and complex (i.e., higher 

ApEn) during forenoon as compared to afternoon. This has also been found in healthy individuals [40], 

and might be due to an increased cardiac sympathovagal response in the morning after awakening. 

More specifically, it has been shown in healthy individuals that sleep-to-wake transitions in the morning 

are associated with higher sympathetic activation compared to those occurring during the rest of the 

day [20]. Thus, although patients with DOC often fluctuate between sleep and wake-like phases – hence 

experiencing several ‘awakenings’ throughout the day – results indicate that the awakening in the 

morning is probably the one associated with the most prominent change in arousal. Further, it might 

also be the case that patients show less frequent or temporally more regular (i.e., systematic) alterations 

of arousal and/or awareness in the afternoon, which may be associated with lower entropy values. This 

would go in line with our findings from a previous study, where patients tended to exhibit higher CRS-

R sum scores at a later daytime (i.e., afternoon) [7], which also requires more stable arousal and 

awareness levels. Another explanation for the entropy drop from fore- to afternoon might be the 

recovery from stressful events that possibly took place more frequently during forenoon (e.g., therapies, 

medical rounds, nursing activities). It has been shown in healthy controls that a stressful task leads to a 

significant reduction in entropy in the succeeding relaxation period [41]. Thus, the variation of cardiac 

activity over the day might be necessary for an optimal interaction and adaptation to changing demands 

in the environment. Interestingly, while we found that patients in UWS generally had larger IBIs (i.e., 

lower HRs) than patients in (E)MCS, lower IBIs were associated with higher behavioral reactivity (i.e., 

higher CRS-R sum scores) in patients with DOC only during the day, but not during the night. Looking 

at the data, one can see that this effect is mainly driven by the nocturnal slowing of the heart in patients 

in an (E)MCS, underlining that cardiac activity shows a diurnal pattern, particularly when patients have 

(partially) regained consciousness. Thus, our findings complement earlier research suggesting that 

better circadian rhythm integrity is associated with higher consciousness levels [7,21,22]. More 

specifically, we found in earlier studies that variations of peripheral biosignals, such as skin 

temperature, melatonin(-sulfate) and wrist actimetry, are better aligned to a healthy 24-h rhythm (i.e., 

circadian rhythm) and more pronounced in patients with a higher behavioral repertoire [7,21,22].  
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Concerning central biosignals, such as brain activity derived from EEG recordings, earlier studies 

have shown that more severely affected patients with UWS do not only show a stronger general slowing 

of the EEG, but also no clear diurnal pattern [26,42]. This is in line with findings we present here (i.e., 

lower HR/larger IBIs in patients with UWS) and possibly reflects the interaction between peripheral and 

central biosignals. Thus, we additionally investigated whether there is an association between the heart 

and central measures of brain activity, that is, EEG entropy (i.e., a measure describing the level of 

irregularity or unpredictability of the brain signal). We found that heart and brain activity are coupled 

during the night, but not during the day. Specifically, while during night, a higher EEG entropy (i.e., 

PE) was associated with a higher ECG entropy (i.e., ApEn), no such association was evident during the 

day. It might be the case that during the night (i.e., habitual sleep), and due to less disturbance by 

external cues from the environment and a stronger focus on internal processes, brain and body rhythms 

are better connected. Conversely, during the day, the brain focuses more on the processing of sensory 

signals in the environment, leading to a decrease in the synchrony between brain and body rhythms. 

Interestingly, the effect in our data seems to be mainly driven by EEG entropy. Specifically, patients 

showed lower EEG entropy values during the night as compared to the day (see Supplementary material: 

EEG Entropy), which might be an effect of the dominance of slow oscillations during the night (i.e., more 

synchronized brain activity, and thus less signal complexity) and probably indicates the existence of a 

‘sleep-like state’ during the night. ECG entropy, however, does not differ between day and night. A 

reason for this could be that the patients spend most of the time in a lying position or a position where 

the upper body is raised in a 45° angle, which reduces events that usually influence HRV such as 

changes of posture or physical movements. The brain signal however, can still change independently – 

based on the patients’ clinical state. Specifically, while patients in an (E)MCS showed higher EEG 

complexity during the day than during the night, no diurnal variation was evident in patients with 

UWS (see Supplementary material: EEG Entropy). 

Additionally, cardiac activity does not only inform about the integrity of diurnal variations and the 

degree of behavioral reactivity in patients with DOC, but also differentiates between patients’ etiologies. 

Specifically, patients with TBI showed a higher DfaAlpha and SampEn1 than patients with NTBI, 

suggesting fractal-like (i.e., aperiodic) HR dynamics and higher dissimilarities in the HRV signal of 

patients with TBI. In other words, cardiac activity is less complex and variable in patients with NTBI. 

Reduced HRV complexity has been shown to be a predictor for mortality [43,44]. This is in line with 

previous findings showing that patients with NTBI often have a less favorable prognosis than patients 

with TBI [45-47]. 

When looking at the time (i.e., RMSSD) and frequency (i.e., VLF, LF, HF) domains of HRV, no 

differences between time of day, diagnoses and etiologies were evident. One reason might be of 

methodological nature. More specifically, the activity of the heart is not regular/periodic, but rather 

fluctuates in complex/aperiodic patterns. Thus, it has frequently been argued that non-linear measures 

(i.e., measures of mathematical chaos/entropy) might be more appropriate for the analysis of HRV data 

[48,49]. This is in line with findings from a study that showed a difference in HRV entropy between 

patients with UWS and healthy individuals (i.e., lower ApEn in patients with UWS), but no such 

differences in any of the linear parameters (i.e., IBI, SDRR, RMSSD, LF/HF ratio) [17]. 

5. Conclusions 

To summarize, patients with severe brain injuries – particularly those who (partially) regained 

consciousness – still had preserved diurnal variations as characterized by a heart rate slowing during 

the night. This suggests preserved integrity of circadian rhythms in the autonomic nervous system 

activity. Further, cardiac activity differentiated between patients’ etiologies and diagnoses. Patients 

with UWS had larger IBIs (i.e., lower heart rate) than patients in an (E)MCS, and patients with NTBI 

had a less complex HRV signal than patients with TBI. Thus, cardiac activity and its variations might 

represent a peripheral window to central (brain) functioning. Indeed, we found an interaction of heart 

and brain signal complexity, which also followed a diurnal pattern. Specifically, while a more complex 

brain signal was associated with a more complex heart signal during the night, no such association was 

found during the day. In conclusion, HR and HRV seem to mirror the integrity of brain functioning and 

consequently might serve as supplementary measures that aid the differentiation between clinical 

states. Ultimately, this has the potential to improve the validity of assessments in patients with DOC. 
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Abbreviations: 

ApEn Approximate entropy 

BH Benjamini-Hochberg correction for multiple comparisons 

CDM Complex demodulation 

CI Credibility interval 

Cpm Cycles per minute 

CRS-R Coma Recovery Scale – Revised 

DDL Dynamic daylight 

DfaAlpha Detrended fluctuation analysis scaling exponent 

DOC Disorders of consciousness 

ECG Electrocardiography 

EEG Electroencephalography 

EMCS Emergence from minimally conscious state 

EMG Electromyography 

EOG Electrooculography 

fMRI Functional magnetic resonance imaging 

HF High frequencies (0.15-0.4 Hz) 

HL Habitual light 

HR Heart rate 

HRV Heart rate variability 

Hurst Hurst exponent 

IBI Interbeat interval 

LF Low frequencies (0.04-0.15 Hz) 

LF/HF ratio Ratio between low and high frequencies 

MCS Minimally conscious state 

NTBI Non-traumatic brain injury 

PE Permutation entropy 

PSG Polysomnography 

RMSSD Root mean square of successive differences between adjacent heartbeats 

SampEn Sample entropy 

SDRR Standard deviation of interbeat intervals 

TBI Traumatic brain injury 

UWS Unresponsive wakefulness syndrome 
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VLF Very low frequencies (0.003-0.04 Hz) 

WTS Wald-type statistic 
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