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Summary 36 

Although insulin resistance often leads to Type 2 Diabetes Mellitus (T2D), its early stages remain 37 

often unrecognized thus reducing the probability of successful prevention and intervention. 38 

Moreover, treatment efficacy is affected by the genetics of the individual patient. We used gene 39 

expression profiles from a cross-sectional study to identify potential candidate genes for the 40 

prediction of diabetes risk and intervention response. Using a multivariate regression model, we 41 

linked gene expression profiles of human skeletal muscle and intermuscular adipose tissue (IMAT) 42 

to fasting glucose (FG) and glucose infusion rate (GIR). Predictive potential of identified candidate 43 

genes was validated with muscular gene expression data from a longitudinal intervention study. We 44 

found that genes with a strong association to clinical measures clustered into three distinct 45 

expression patterns. Their predictive values for insulin resistance varied strongly between muscle 46 

and IMAT. Moreover, we discovered that individual gene expression based classifications may 47 

differ from those classifications based predominantly on clinical parameters indicating a potential 48 

incomplete patient stratification. Out of the 15 top hit candidate genes, we identified ST3GAL2, 49 

AASS, ARF1 and the transcription factor SIN3A as novel candidates for a refined diabetes risk and 50 

intervention response prediction. Our results confirm that disease progression and a successful 51 

intervention depend on individual genetics. We anticipate that our findings may lead to a better 52 

understanding and prediction of the individual diabetes risk and may help to develop individualized 53 

intervention strategies. 54 

 55 

 56 

Introduction  57 

Obesity is a frequent precondition for the development of chronic metabolic diseases like insulin 58 

resistance (IR) and type 2 diabetes (T2D). Based on the recently published results from the 2017–59 

2018 National Health and Nutrition Examination Survey (NHANES) 42.5% of U.S. adults are 60 

currently obese and are thus all individuals at high risk for developing T2D and its complications  61 

[1]. Moreover, the International Diabetes Federation (IDF) predicts an 51% increase from 463 to 62 

700 million individuals with diabetes worldwide by 2045 and indicates that 1 in 2 adults with 63 

diabetes  remain undiagnosed at presence [2]. Although current assessment of diabetes and 64 

prediabetes is based on purely glycemic indicators it is important to emphasize that the risk for 65 

developing diabetes is also dependent on age, sex, fat tissue distribution, genetic, environmental, 66 

and ethnic characteristics. Depending on these individual risk factors and on the inclusion criteria of 67 

the studied cohorts a wide heterogeneity in the progression from prediabetes to diabetes has been 68 

observed. Emerging evidence from a population-based study with 381,363 participants indicates 69 

that even people referred to as metabolically healthy obese are at a substantially higher risk to 70 
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develop diabetes and its complications [3]. Although interventions, medically or by change of 71 

lifestyle (diet, exercise) reduce the risk for severe complications evidence is emerging in 72 

population-based cohorts that treatment efficacy also depends on individual’s genetics [4-6]. 73 

Meaning that patients treated with glucose-lowering interventions vary in their response with some 74 

gaining a considerable benefit, others no benefit; and some getting limiting side effects. The 75 

prevalent opinion in the field is that there are many factors impacting this variation, but one key 76 

factor is a heritable trait [7]. Taken together, it is becoming increasingly clear that the current 77 

clinical standards to define the metabolic health status of an individual is not adequate and new 78 

strategies for the effective prevention of diabetes have become critically important to reduce the 79 

impact of this disease burden. A deeper understanding of the individual features and a precise 80 

phenotyping of prediabetes may improve stratification of disease risk and optimize the benefit/risk 81 

ratio and cost-effectiveness of any therapeutic approach for the prevention, intervention and 82 

improvement of T2D.  83 

Given that skeletal muscle is responsible for more than 85% of insulin-stimulated whole-body 84 

glucose disposal [8], and that any dysfunction impairing glucose metabolism in this tissue will 85 

affect whole-body glucose homeostasis ultimately contributing to the development of diabetes [9] 86 

mechanistic studies mostly focus on this very tissue to elucidate metabolic adaptation and its 87 

regulation. More recently, evidence is pointing to intermuscular adipose tissue (IMAT) 88 

accumulation as another local regulator of muscular IR and the progression to diabetes [10, 11]. We 89 

thus hypothesized in this study that tissue specific gene expression profiling of muscular and/or 90 

IMAT can achieve a more specific and detailed characterization and classification of individual 91 

physiological states than circulating parameters alone. We further presumed that the expression of 92 

individual genes might (i) allow for the prediction of individual disease related states, (ii) identify 93 

individuals with a high or low risk for diabetes, and (iii) assess beforehand the potential response of 94 

a given individual to a specific treatment strategy. 95 

To this end, we investigated herein interactions between gene expression and clinical diabetes 96 

markers in skeletal muscle and IMAT from overweight individuals with and without diagnosed 97 

T2D. We used multivariate regression to model the tissue specific gene expression impact on the 98 

two key IR markers, glucose infusion rate (GIR) during a hyperinsulinemic/euglycemic clamp and 99 

fasting glucose (FG). Out of the 65 top predictive genes, we identified three distinct gene clusters. 100 

Gene expression-based classification of our study participants led to a refined view on an 101 

individual’s metabolic state that partly differs from the clinical classification. In an independent 102 

lifestyle and exercise intervention study with diabetic patients, we could validate some selected 103 

candidates and identify four genes with the potential to predict individual intervention responses. 104 

 105 
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 106 

Methods 107 

Human transcriptional profiling dataset 108 

Human muscle and IMAT transcriptional profiles were taken from a cross-sectional study 109 

previously published by Sachs et al. [12]. To identify features suitable for characterization of 110 

individual pre-diabetic states and potentially predictive for disease progression we selected all 16 111 

participants with obesity (OB) and diabetes mellitus type two (T2D) for which paired samples were 112 

available. All participants were clinically characterized by determining insulin sensitivity via 113 

glucose infusion rate (GIR, mg/kg/min) during hyperinsulinemic-euglycemic clamp, fasting glucose 114 

(FG, mg/dl), age, BMI, relative fat mass (RelFat, % kg), fat free mass (FFM, kg), height (in), body 115 

weight (BW, kg) (Table 1, Figure 1AB, S1AB). 116 

 117 

Longitudinal Intervention dataset  118 

Seventeen individuals with obesity with and without pre-diabetes were recruited for this 119 

study. Subjects were asked to refrain from planned physical activity for 48 hours before the 120 

metabolic study and were given a standardized diet for 7 days prior to the first and second 121 

metabolic study. After overnight fasting a basal muscle biopsy was taken and followed by metabolic 122 

profiling including a 3-hour hyperinsulinemic euglycemic clamp. After the first metabolic study, 123 

volunteers entered a 12-week supervised weight loss and exercise training intervention. After the 3-124 

month intervention, subjects transitioned to a 2-week weight maintenance diet. Volunteers continued to 125 

exercise during the weight stabilization period. After completing the intervention and 2-week weight 126 

maintenance period volunteers then repeated the metabolic study with the muscle biopsy and 3-hour 127 

hyperinsulinemic euglycemic clamp (Table 2). Changes in metabolic parameters pre to post 128 

intervention were estimated using a paired t-test. Pre and post intervention biopsies were used for gene 129 

expression analysis. Due to the problem that RNA isolation of all IMAT samples tissue material was 130 

not sufficient or RNA RIN values did not match quality requirements for gene expression analysis 131 

we were forced to remove all IMAT samples and used only the remaining muscle samples for gene 132 

expression analysis. Pre to post differential gene expression was estimated using one way ANOVA. 133 

 134 

Models and Statistics 135 

To estimate the impact of gene expression on FG and GIR we utilized linear multivariate regression 136 

models. Thus we created a predictive model for each gene, simultaneously predicting clinical 137 

parameters based on gene expression in muscular and IMAT tissue.  Models can be formalized in 138 

matrix notation as: Y = βXj + ε, where Y is a matrix of the sampled response variables GIR (g) and 139 

FG (f) and X a matrix of the predictor values, the expression of gene j in muscle (m) and IMAT (i). 140 
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β forms the 2x2 matrix of the four estimated regression coefficients βmg, βmf, βig and βif  describing 141 

the four relationships between tissue specific gene expression and response variables. The residues 142 

or errors are formed in ε. Our model can be interpreted as a mixture model that allows us to jointly 143 

estimate four coefficients to predict insulin sensitivity and glucose homeostasis from gene 144 

expression in muscle and IMAT. Genes that contributed the most to insulin sensitivity and glucose 145 

homeostasis were then scored based on log-likelihood and negative log-likelihood of the single 146 

regression models (S1). Analysis was done using Matlab R2020a.  147 

Participant kNN-Networks were generated on cluster wise gene expression profiles with k = 3 148 

nearest neighbors, using Euclidean distance metric. Predictive classification score was calculated as 149 

ratio of each participant direct neighbor’s clinical classification.  150 

 151 

Further information, methods and protocols for genetic work and statistics are described in the 152 

Supplementary File S1. 153 

 154 

 155 

Results 156 

Multivariate regression unravels tissue specific gene expression patterns correlating with 157 

insulin resistance 158 

We first compared demographic and metabolic parameter of participants. As expected, we found 159 

gender specific differences for RelFat (p<0.05), FFM (p < 0.001) and height (p<0.01) and for 160 

participants with obesity and T2D we found significant differences in GIR (p<0.05) and FG 161 

(p<0.001) (Table 1, Figure 1AB, S1A). Additionally, as expected, we found that low GIR values 162 

correlate with high FG levels (Figure S1B). As shown in Figure 1B, individuals classified as OB 163 

(BMI > 30 & FG < 125 md/dl) exhibited a wide range of insulin sensitivity (GIR 0.8 – 11.1 164 

mg/kg/min). Some individuals with strong progressed insulin sensitivity (< 3 mg/kg/min) were still 165 

able to maintain FG levels below 125 mg/dl. In contrast, some diabetic individuals exhibited a 166 

better GIR with levels up to 4 mg/kg/min while being diagnosed as diabetic. To explore whether 167 

transcriptional changes in muscle and IMAT tissue at the transition from obesity with compensated 168 

insulin resistance (normoglycemia) to T2DM (hyperglycemia) may reflect the inconsistency 169 

between FG and GIR we performed a multivariate regression analysis to identify genes with a 170 

strong expressional link to insulin resistance and glucose homeostasis. 171 

After multivariate regression analysis we selected the 59 top genes (Figure S1C) contributing to 172 

GIR and FG and used k-means to cluster them into three clusters of 14, 23 and 22 genes with 173 

distinct expression patterns in muscle and IMAT (Figure 1C, S1D, Table S1). We compared the 174 

gene cluster corresponding β values and observed three distinct patterns (Figure 1D, S1E): Cluster 1 175 
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(blue) combines genes whose expression is positively associated with GIR and negatively with FG 176 

in both tissues, muscle and IMAT, thus correlating with a healthy glucose metabolism. Cluster 2 177 

contains genes that positively correlate with GIR and negatively with FG in muscle similarly to 178 

cluster 1, while no such effect was observed for these genes in IMAT. Cluster 3 to the contrary, 179 

contains genes with an opposing effect to GIR and FG exclusively in muscle while again no such 180 

impact was observed in IMAT.  181 

Our results suggest that these largely different gene expression profiles of muscle and IMAT are 182 

associated with varying impact on glucose metabolism changes. In particular, expression of PDK4, 183 

which has been linked to diabetes and glucose metabolism previously [13], shows a high correlation 184 

with GIR and FG in muscle but almost none in IMAT (Figure 1D). We also identified genes with 185 

opposing effects on glucose metabolism in muscle compared to IMAT, such as UBTD1 and 186 

ST3GAL2: Both genes show strong positive coefficients with FG and negative coefficients with GIR 187 

in muscle whereas in IMAT we observe negative β values with FG and positive with GIR (Figure 188 

1D). This effect was mainly associated with cluster 3. In contrast, NAPB from cluster 2, shows 189 

exactly opposite associations.  In a third observation we found genes, here represented by SIN3A, 190 

that seem to have a relatively high predictive value for FG but low or none for GIR in muscle but 191 

completely opposing values in IMAT (high on GIR low on FG). 192 

Taken together, the here identified genes in three clusters show a striking association of muscle gene 193 

expression with GIR and FG, while only genes in cluster 1 also associate IMAT gene expression 194 

with glucose homeostasis and insulin sensitivity (Figure 1D, S1E). These results suggest that 195 

muscular gene expression profiles allow for a more specific and detailed characterization and 196 

classification of individual physiological states than serum based physiological parameters alone are 197 

able to.  198 

 199 

Gene expression based classification enables a refined view on the individual physiological 200 

state of obese patients. 201 

To test our hypothesis that gene expression patterns are superior in categorizing individual insulin 202 

resistance states compared to conventional clinical markers we performed a k-nearest-neighbor 203 

(kNN) classification for each tissue and gene cluster solely based on expression profiles. Thus, we 204 

generated six nearest neighbor networks (NNNs) representing expression based participant 205 

similarities for all 16 individuals (Figure 2A). Based on direct network neighbors we then 206 

calculated a predictive classification score for each individual (Figure 2A, S2). For muscle, we 207 

found for five of the 16 participants (two OB: Pb029, Pb043; three T2D: Pb034, PB053, Pb032) a 208 

non-unique classification over all three NNN. After averaging over the three clusters, one 209 

participant with obesity was classified as T2D and two participants with T2D were classified as OB. 210 
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For the IMAT tissue derived NNNs we found for seven participants a predicted classification that 211 

differs from the clinical (three OB: Pb048, Pb028, Pb043; four T2D: Pb034, Pb053, Pb033, Pb032). 212 

IMAT gene expression averaged over the clusters classified two participants different form clinical 213 

classification: Pb043 (OB) and Pb033 (T2D). Averaging over both tissues, we identified two 214 

participants with divergent classification: Pb043 and Pb053. Over all, classification for OB 215 

classified participants was more consistent than for T2D with only two participants consistently 216 

classified as T2D (Pb036, Pb052). 217 

When comparing NNN based classification to metabolic parameters, we found that the estimated 218 

probability of being predicted as T2D correlates with decreasing GIR rates (Figure 2B) for OB 219 

participants in both, muscle and IMAT tissue. In contrast, classification for hyperglycemic 220 

participants clinically classified as diabetic (FG > 125mg/dl), did not correlate with either GIR or 221 

FG in both tissues. These results suggest that beyond a binary clinical classification of T2D with FG 222 

levels > 125 mg/dl, there is a continuous development from insulin resistance to diabetes that 223 

follows individual traces with an individual diagnostic potential to predict a high or low risk for 224 

diabetes or the response interventions.  225 

 226 

ST3GAL2, SIN3A, ARF1 and AASS mRNA levels in muscle tissue predict intervention 227 

response 228 

To evaluate whether gene expression profiles within muscle and/or IMAT define individual health 229 

states with predictive potential for disease progression or modulation of insulin sensitivity, we 230 

analyzed 17 human individuals with obesity, with and without prediabetes, undergoing a combined 231 

weight loss and exercise training intervention study (Table 2). Clinical parameters such as GIR, FG, 232 

BW, RelFat, FFM and BMI were measured pre and post intervention. Almost all individuals showed 233 

an increase of GIR (p = 2.2*10-5) after the intervention and a decrease of BMI (p = 2.3*10-8), BW 234 

(p = 6.1*10-8), RelFat (p = 2.7*10-6) and FFM (p = 1.4*10-6). A general change of FG levels upon 235 

intervention could not be observed (p = 0.12) (Figure 3A). However, when correlating the relative 236 

pre/post change (Δ%) between all clinical parameters we found, a change of GIR did only 237 

significantly correlate with a change in BW (Figure S3). A decrease of FG in turn, was significantly 238 

correlated with a relative decrease in BMI, FFM and BW. 239 

Subsequently, to test if these physiological changes are linked to individual gene expression in 240 

muscle, biopsies taken before and after intervention were used for RNA expression analysis. Six pre 241 

and eight post intervention muscle samples did not match quality requirements and were removed 242 

from subsequent analyses. Out of the previously selected 59 top genes initially identified in our first 243 

patient cohort, we combined various criteria to select 15 candidate genes from all clusters for 244 

validation. Gene expression in muscle tissue was measured with quantitative RT-PCR (Table S1) 245 
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within this second independent intervention trial. Among those SIN3A, UBTD1, ST3GAL2 and 246 

NAPB showed notable β value profiles (Figure 1D). AASS,  DBNDD1, PDK4, PIGA, POLR3GL, 247 

SNAP23, SPCS2, SSU72 and UBTD1 could be linked to diabetes associated SNPs identified with 248 

the TD2M portal [14] and ARF1, BCAT2 and LDHD could be linked to skeletal muscle lipid 249 

metabolism and insulin resistance [15-17]. PDK4 was included as a well described marker for 250 

muscle insulin resistance and as a potential therapeutic target [18]. From these 15 genes, five 251 

(LDHD, ARF1 NAPB, POLR3GL and SNAP23) showed a significant change in expression between 252 

pre and post intervention (Figure 3B). Since we hypothesized that distinct gene expression states 253 

may refer to individual disease states, we tested selected genes on their predictive potential for 254 

individual intervention response. To this end, we correlated individual pre-intervention gene 255 

expression with the relative change (pre to post) of the clinical parameters BMI, BW, RelFat, FFM, 256 

FG and GIR (Figure 3C). ΔGIR and ΔRelFat mass could not be significantly with any of the genes 257 

tested. A change of the remaining parameters could be significantly predicted by the genes 258 

ST3GAL2 (FG, BW, FFM and BMI), SIN3A (FG, FFM and BMI), ARF1 (FG) and AASS (FFM) 259 

(Figure 1C, S4, Table S2). In contrast to the five genes that change expression after intervention 260 

(LDHD, ARF1, NAPB, POLL3GL, SNAP23), none of the four genes identified with predictive 261 

character appeared to be differentially expressed between pre- and post-intervention (Figure 3B). 262 

Together, these findings indicate that individual susceptibility to exercise intervention for the 263 

improvement of glucose homeostasis is independent of the individual clinical parameters, but 264 

correlates with individual gene expression profiles prior to intervention. We next compared these 265 

four identified genes with PDK4, a well-described muscle marker for insulin resistance. To our 266 

surprise, PDK4 was not significant associated with any intervention-induced change of metabolic 267 

parameters (Figure S4).  268 

Next, we found that low expression levels of three out of the four genes (AASS, ARF1 and SIN3A) 269 

were associated with a good health prognosis. In particular, ARF1 showed a significant decrease of 270 

expression upon exercise intervention. In turn, ST3GAL2 was the only gene for which increased 271 

expression levels in muscle tissue increases likeliness of an effective intervention. In summary, 272 

within this independent intervention trial we were able to validate our proposed predictive potential 273 

of muscle gene expression profiles for individual insulin resistance states. 274 

 275 

Discussion 276 

In this work, we showed that human transcriptional profiles of muscle and IMAT tissue from obese 277 

and diabetic individuals are differentially coupled to insulin resistance and glucose homeostasis. We 278 

identified predictive gene clusters that mirror genetic states reflecting a continuous progression 279 

from early insulin resistance to T2D following individual traits. From a subset, we identified the 280 
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genes AASS, ARF1, SIN3A and ST3GAL2 to predict individual exercise intervention response to 281 

improve impaired glucose metabolism. 282 

We started our analysis with the observation that there is a wide range of GIR measurements that 283 

overlap between OB and T2D. We hypothesized the binary clinical classification of T2D does not 284 

reflect individual underlying genetics and that specific gene expression patterns of skeletal muscle 285 

and/or IMAT tissue might have the potential to identify and predict individuals with a high or low 286 

risk to develop diabetes or to predict individual susceptibility to interventions.  287 

Our multivariate regression analysis, revealed a strong association of muscle to GIR and FG for all 288 

three gene clusters, while IMAT was associated with glucose homeostasis and insulin resistance 289 

only with the genes in cluster 1. Together with the observation that estimates for β coefficients of 290 

cluster 2 were contrary in muscle and IMAT we concluded that IMAT and muscle contribute 291 

differentially to glucose metabolism. However, we see higher variance in IMAT gene expression 292 

[12] which might also weaken a detectable correlation. Reason’s for IMAT’s increased variability 293 

may arise from technical difficulties to dissect IMAT from muscle resulting in less material for 294 

RNA extraction or a higher heterogeneity in IMAT tissue itself being composed of multiple cell 295 

types such as pre-adipocytes, adipocytes, adipocyte-like cells, myoblasts, stromal and vascular cells. 296 

Participant classification based on kNN-networks revealed that insulin sensitivity could be 297 

accurately predicted for non-diabetic subjects from gene expression patterns, whereas 298 

hyperglycemic subjects were scored differently from clinical classification in several cases. These 299 

observations are consistent with hyperglycemia usually being a consequence of pancreatic beta-cell 300 

failure, and insulin sensitivity is associated with multiple organ malfunctions and, in particular, the 301 

skeletal muscle as the primary organ for glucose uptake [19]. Although GIR measured with 302 

hyperinsulinemic-euglycemic clamp, is still the gold standard to directly measure insulin resistance 303 

it is highly invasive and time consuming and with very limited predictive potential. FG levels by 304 

themselves are unlikely to identify pre-diabetic or obese individuals with impaired insulin 305 

sensitivity, but rather individuals at late stages with an increased risk for irreversible damages of 306 

tissues and organs [20]. We thus conclude, that both parameters are not suitable for reliable for early 307 

diagnosis and disease progression prognosis. In contrast, with the here identified gene expression 308 

profiles that only represent a muscle specific state of individual insulin resistance, we could identify 309 

their predictive potential for the characterization of the individual insulin sensitivity. 310 

This predictive potential was finally tested on muscle tissue from an additional independent cohort 311 

of 18 individuals with impaired glucose metabolism undergoing 12 weeks of combined weight loss 312 

and exercise training. By correlating the pre-intervention expression levels of our candidate genes 313 

with the relative change of the clinical parameters upon intervention we identified 4 genes with 314 

significant predictive value: AASS, ARF1, SIN3A and ST3GAL2. AASS, ARF1 and SIN3A indicated 315 
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a positive prognosis with a lower level of expression. AASS encodes for the enzyme Aminoadipate-316 

Semialdehyde Synthase that is involved in mammalian lysine degradation and in hyperlysinemia 317 

[21], but was not described in the context of impaired glucose metabolism, insulin resistance or 318 

diabetes yet. Beside its predictive potential we also found that ADP Ribosylation Factor 1 (ARF1) 319 

expression was significantly reduced after intervention. The Ink4/Arf locus was recently linked to 320 

insulin resistance in mice [22] and ADP-ribosylation factor was linked to insulin signaling in 321 

Drosophila [23]. The transcription factor SIN3 Transcription Regulator Family Member A (SIN3A) 322 

was recently linked to glucose metabolism in murine β-cells [24]. It could be further shown that 323 

Sin3a is an insulin sensitive FOXO1 corepressor of glucokinase in murine livers [25]. Very recently, 324 

SIN3A was shown to negatively regulate insulin receptor (Insr) mRNA in mice and human muscle 325 

[26]. Finally, ST3 Beta-Galactoside Alpha-2,3-Sialyltransferase 2 (ST3GAL2) was the only gene 326 

that was identified to positively predict exercise response with a high expression. Mice lacking the 327 

ST3Gal-II protein, have been shown to develop obesity and insulin resistance after 7-9 month of 328 

age [27]. In summary, 3 of the 4 predictive genes identified by us have already been linked to 329 

insulin resistance and diabetes but their predictive potential has not been explored yet.  330 

We herein identified novel markers to predict impaired insulin sensitivity in the human muscle and 331 

found four markers that predict individual exercise intervention response in diabetic patients. These 332 

findings may help to classify and characterize obese, pre-diabetic or diabetic individuals more 333 

precisely than using FG alone. Clamp GIR measurements are highly invasive and may be partly 334 

replaced by use of our marker genes. Additionally we anticipate these findings may also help to 335 

develop precise and individualized interventions strategies for diabetic and obese risk patients. 336 
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 359 
 360 
Tables 361 

Table 1. Subject demographics: Human transcriptional Profiling (N = 16) 362 

ClinPar OB T2D 

N subjects 10 6 

Age (years) 40.5 ± 2.44 45.67 ± 2.54 

BMI (Kg/m2) 36.65 ± 1.63 34.83 ± 1.73 

Fasting Glucose (mg/dl) 87.8 ± 3.18 183.17 ± 16.27* 

Insulin Sensitivity 
(mg/kg/min) 

5.13 ± 0.96 1.66 ± 0.68* 

RelFat (%) 38.23 ± 2.59 37.82 ± 2.68 

Fat free mass (kg) 71.92 ± 4.81 62.95 ± 4.52 

Height (in) 70.08 ± 1.6 67.15 ± 1.29 

Body Weight (kg) 116.78 ± 7.39 101.42 ± 6.4 

Values are means±SEM.  * = significantly different between OB and T2D, p<0.05 363 

 364 

Table 2. Subject demographics: Longitudinal Intervention Study (N = 21) 365 

 Pre-Intervention Post-Intervention 

Age (yrs) 46.5±2.2  

BMI (kg/m
2
) 34.7±1.0 30.7±1.0 * 

Body Weight (kg) 96.9±2.7 85.9±2.6* 

RelFat (%) 41.3±1.5 38.0±1.8 * 

Fat  free mass (kg) 56.7±1.8 52.9±1.5 * 

Fasting glucose (mg/dl) 93.2±2.7 90.5±2.6 

VO2peak (L/min) 2.2±0.1 2.5±0.1 * 

Insulin Sensitivity (mg/kg/min) 3.5±0.4 5.4±0.5 * 

Values are means±SEM.  * = significantly different from pre-intervention, p<0.05. 366 

  367 
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Figure Captions  368 

Figure 1: Multivariate regression analysis unravels tissue specific gene expression patterns 369 

correlating with insulin resistance. 370 

(A, B) Boxplot comparing Fasting Glucose and Insulin sensitivity (GIR mg/kg/min) distributions 371 

between subjects of different gender (A) and classifications (B). OB: obese, T2D: type 2 diabetic F: 372 

female, M: male. Red marked dots indicate outliers. (C) Heatmaps of muscle and IMAT genes 373 

correlating with insulin resistance identified by multivariate regression. Colors of left dendrogram 374 

refer to identified clusters 1-3. Bottom color bars indicate individual disease classification, Glucose 375 

Infusion Rate (GIR), Fasting Glucose levels and sex. Vertical color bars show the four estimated 376 

regression coefficients for each gene indicating four relationships between tissues and response 377 

variables (GIR & FGl). (D) Scatterplots comparing gene specific regression coefficients β for GIR 378 

and FGl for muscle and IMAT tissue. Dot colors refers to gene cluster assignment. 379 

 380 

Figure 2: Gene expression based participant classification reveals a refined view on 381 

physiological states. 382 

(A)  k-nearest-neighbor networks for the three cluster and two tissues respectively. Nodes refer to 383 

individual subjects. Node outer color refers to assigned clinical classification OB or T2D. Node 384 

inner color refers to estimated disease state based on connected individuals. (B) Scatter plot 385 

displays clinical parameter FG and GIR for all subjects. Node shape refers to assigned clinical 386 

classification OB (diamond) or T2D (dot). Node inner color refers to estimated disease state across 387 

all three gene cluster for muscle (left), IMAT (middle) and a combination of both tissues (right).  388 

 389 

Figure 3: ST3GAl2, SIN3A, ARF1 and AASS mRNA expression in muscle predict intervention 390 

response. 391 

(A) Clinical parameters pre and post intervention. Significance levels refer to paired t test.  (B) 392 

mRNA levels of selected genes pre and post intervention. Significant differences in pre/post 393 

expression was estimated using 1 way ANOVA.  (C) Correlation volcano plots for pre-intervention 394 

gene expression with relative change of clinical parameters between pre and post intervention. 395 

Significantly correlated mRNAs are colored orange. 396 

 397 

 398 
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