
 1 

Disentangling Socioeconomic Status and Race in 
Infant Outcomes: A Neural Network Analysis 

 
Kathryn Sarullo,1 Deanna M. Barch,2,3,4 Christopher D. Smyser,3,5 Cynthia Rogers,4 

Barbara B. Warner,5 J. Philip Miller,6 Sarah K. England,7 Joan Luby,4 S. Joshua 
Swamidass1,8* 

 
1 Washington University in St. Louis, McKelvey School of Engineering, 

Department of Computer Science and Engineering, Saint Louis, MO, USA 
 

2 Washington University in St. Louis, School of Arts & Sciences, 
Department of Psychological & Brain Sciences, Saint Louis, MO, USA 

 
3 Washington University School of Medicine in St. Louis, School of Medicine, 

Department of Neurology, Saint Louis, MO, USA 
 

4 Washington University School of Medicine in St. Louis, School of Medicine, 
Department of Psychiatry, Saint Louis, MO, USA 

 

5 Washington University School of Medicine in St. Louis, School of Medicine, 
Department of Pediatrics, Saint Louis, MO, USA 

 
6 Washington University School of Medicine in St. Louis, School of Medicine, 

Division of Biostatistics, Saint Louis, MO, USA 
 

7 Washington University School of Medicine in St. Louis, School of Medicine, 
Department of Obstetrics & Gynecology, Saint Louis, MO, USA 

 

8 Washington University School of Medicine in St. Louis, School of Medicine, 
Department of Pathology and Immunology, Saint Louis, MO, USA 

 
*Corresponding Author. Email: swamidass@wustl.edu 

 
Abstract 

Race is commonly used as a proxy for multiple features including socioeconomic status. It 
is critical to dissociate these factors, identify mechanisms that impact infant outcomes, 
such as birthweight, and direct appropriate interventions and shape public policy. 
Demographic, socioeconomic, and clinical variables were used to model infant 
birthweight. Non-linear neural networks better model infant birthweight than linear 
models  (R! = 0.172 vs. R! = 0.145, p-value=0.005). In contrast to linear models, non-
linear models ranked income, neighborhood disadvantage, and experiences of 
discrimination higher in importance while modeling birthweight than race. Consistent with 
extant social science literature, findings suggest race is a linear proxy for non-linear 
factors. The ability to disentangle and identify the source of effects for socioeconomic 
status and other social factors that often correlate with race is critical for the ability to 
appropriately target interventions and public policies designed to improve infant outcomes 
as well as point out the disparities in these outcomes.  
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Introduction 
Socioeconomic status (SES) is currently the most robust predictor of child developmental 
and health outcomes (1–3). Experiences of deprivation and trauma known to be associated 
with low SES play a key role in the process by which adversity negatively impacts brain 
development and health behaviors (4–7). The drivers of racial disparities in health remain 
less well understood, in part due to the high collinearity between race and SES in many 
study samples, particularly those in the US, making it difficult to distinguish these effects 
from each other and often leading to race being determined as an essential risk factor for 
health in medicine. In addition, members of minority racial groups experience forms of 
discrimination and related obstacles that bring unique psychosocial stresses, as well as 
decreased access to necessary services and opportunities. These types of structural and 
social stressors have deleterious effects on health trajectories (8). Despite the complexity 
of these interrelationships, it has become clear from a variety of carefully conducted 
studies that accounting for SES attenuates the relationships of race to health outcomes (9). 
However, in previous work that used traditional statistical methods, race and low SES 
often interact because of the compounding of structural racism with economic 
disadvantage in the US, leading to associations between race and health even after 
adjustment for SES (10,11). More work is needed to elucidate and identify the factors that 
account for these residual relationships of race, particularly various forms of 
discrimination, trauma, and adversity. 
 
Machine learning (ML) demonstrates superior modeling performance in a variety of 
domains, such as imaging, text analysis, genetics and more. Due to this, ML has begun to 
revolutionize the field of medicine (12,13). Linear regression (LR), or other more common 
statistical methods like Structural Equation Modeling (SEM), are often preferred by the 
medical community because of greater ease of interpretation. However, LR and SEM 
methods only work well when the underlying relationships among variables of interest are 
linear. Machine learning, specifically neural networks (NN), can be as interpretable, 
expose important non-linear relationships in the data, and reveal structures otherwise 
missed that may contain critical information. Additionally, NN allow the inclusion of 
multiple highly correlated variables without reducing performance and without loss of 
robustness. The goal of the current analysis was to build an interpretable neural network 
that models the effects of birthweight, one of the very first indicators of later health (14–
19) and developmental outcomes with extremes of birthweight, such as small for 
gestational age (SGA; <10th percentile at birth) and large for gestational age (LGA; >90th 
percentile at birth), established as sensitive markers of cardiometabolic and 
neurodevelopmental risk into adulthood (14,15). Critically, data also suggest a relationship 
between birthweight within the normative spectrum to later childhood cognitive outcomes 
(16–18) and adult cognitive, educational, and earning achievements (19). Furthermore, 
this analysis will quantify the contribution of variables to the predictive power of models. 
The use of NN to accomplish these aims could have a high payoff by using the available 
data to understand the social determinants of infant outcomes. 

  
In the current study, we sought to investigate the differential relationship of SES and race, 
as well as other forms of adversity to the mother, to fetal development during pregnancy 
in a study of the social determinants of health called “Early Life Adversity and Biological 
Embedding of Risk for Psychopathology” (eLABE) (20). Previous work from this group 
using SEM demonstrated the central relationship of Social Disadvantage, a latent factor 
that included income-to-needs, insurance status, education, area deprivation, and maternal 
nutrition, to birthweight. While SEM is valuable in its ability to determine relationships 
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between variables, it remains limited by its requirement of linearity. It was unable to 
demonstrate dissociable relationships of race and SES to birth outcomes (20), due likely to 
high collinearity between SES and race in the sample as is common in many study 
samples worldwide. Drawing from prior work in social epidemiology and population 
health, we hypothesize that race often serves as a proxy for complex effects of social and 
economic disadvantage, and that such interrelationships may be non-linear, and thus often 
difficult to disentangle in studies using only linear statistical methods (21–25). Based on 
this finding and the central importance of the question, we investigate the utility of NN in 
disentangling the relationships of race and social adversity to infant outcomes versus a 
more standard linear regression approach. 
 

Results  
The non-linear model accounted for more of birthweight variance than the linear model 
(R! = 0.172 vs. R! = 0.145, p-value=0.005) (Figure 1). P-values here were calculated 
using a comparison of correlations from dependent samples described in Statistical 
Analyses (26). 

 
Feature Importance 
 
We empirically quantified the contribution of each variable to model performance (Figure 
2). The two most important variables for modeling birthweight, in both the linear and non-
linear models, were maternal medical risk and maternal BMI (Figure 2A). In contrast to 
the linear model, the non-linear model was less reliant on the race variable in predicting 
birthweight (Figure 2A). The linear model ranked race as the next most important 
variable, followed by maternal income and neighborhood disadvantage. In contrast, the 
non-linear model ranked area deprivation, discrimination, and income as more important 
than race. 
 
When holding out socioeconomic variables, the non-linear model becomes more 
dependent on the race variable (Figure 2B). Specifically, a holdout experiment was 
performed where household income, neighborhood disadvantage, and the discrimination 
survey were removed entirely (Figure 2B) from both models. Without those factors in the 
model, both the linear and non-linear model are more reliant on the race variable. 
 
Holding out other variables did not increase the non-linear model’s dependence on race 
over income (Figure 2C). Specifically, as a negative control, we held out stress, 
depression, and life events (Figure 2C). We found that income is still ranked higher than 
race by the non-linear model, while in the linear model race continues to be higher ranked 
than income. 
 
The linear model relies more on race while the non-linear model relies more on income to 
predict birthweight. Additional information is derived from the single-variable holdout R! 
performance of each model (Figure 2D). The linear model has a larger decrease in R! 
when race is removed, perhaps because it is linearly correlated to the infant outcome and it 
relies on that information for predictive performance. NN has a larger decrease in R! 
when income is removed, perhaps because there is a non-linear correlation between 
income and infant outcomes.  
 
Non-linear Responses and Interactions 
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The difference in performance and variable importance between NN and LR appears to be 
due to several subtle non-linear relationships. To better understand why the non-linear 
model outperformed the linear model, we first examined non-linear relationship of the 
predictors to the outcome. There are very subtle non-linear relationships of the various 
predictors to birthweight within the model (Figure S1A). The most non-linear univariate 
response was to BMI (RMSD (g) = 17.63) and depression (RMSD (g) = 14.94). The non-
linear model also captured several non-linear interactions (Figure S2A, Table ST1). The 
largest non-linear interaction was between depression (RMSD (g) = 32.75) and life events 
(RMSD (g) = 16.44) (Figure S2B, Figure S2C). Therefore, the non-linearities modeled are 
individually subtle; yet, collectively, they dramatically impacted the empirical importance 
of input variables. 
 

Discussion  
The goal of this work was to determine if non-linear neural networks could better 
dissociate the relationships of race versus a range of psychosocial and biological factors 
known to impact health, specifically birthweight, a key outcome known to be broadly 
predictive of health trajectories (14–19). We found that the non-linear model 
outperformed the linear model in terms of the amount of variance accounted for in infant 
birthweight. This suggests that there are non-linear relationships within these data that the 
NN can exploit while the linear model cannot. Though the non-linearity was subtle, 
meaning a relatively small RMSD in grams, the impact on variable importance was robust 
and large. This result was reproducible and implies that there are non-linear relationships 
not being captured by a linear model, however small they may be. It is common to employ 
linear models after ensuring there are no clear non-linear relationships between variables 
and the outcome variables. Our results show, however, that even subtle non-linear effects 
can have a large impact on assessments of variable importance and in being able to 
disentangle variables relevant to the social determinants of infant health. 
 
These findings have important implications for the understanding of which elements of the 
global experience of psychosocial adversity are driving risk for poor health outcomes. 
Refuting prior work that has made assumptions about the biological role of race, these 
findings demonstrate that race is acting as linear proxy for a variety of non-linearly 
correlated adverse experiences, including economic disadvantage and discrimination (21–
25). Here we show these relationships and associations to infant birthweight, one of the 
very first indicators of later health (14–19) and developmental outcomes associated with 
brain development (14,15), and later childhood cognition function (16–18) and adult 
cognitive, educational, and earning achievements (19). As such, there may be significant 
value in testing non-linear variable importance in clinical studies of other components of 
the social determinants of health . Perhaps with non-linear modeling, the mechanisms of 
disparate outcomes correlated with race can be better understood. 
 
These findings about the importance of income and discrimination have very powerful 
public health implications for the design of prevention programs that should be targeting 
discrimination and other forms of social adversity related to low SES. They also elucidate 
the importance of these factors during pregnancy and their effects on birth outcomes. 
These data highlight the importance of pregnancy as a key window of time for future 
health preventive interventions targeting the child. 
 
In terms of limitations, this dataset for this study is small compared to many studies that 
use neural networks. Due to this limitation, we used a rather simplistic neural network 
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with only one hidden layer with a width of 2 as opposed to a deep and wide neural 
network. However, the same size for the current study is relatively large for an infant 
outcome study. Further, it will be important to replicate these findings in additional data 
sets, such as those being collected as part of the Environmental Child Health Outcomes 
(ECHO) study or the upcoming Health Brain Cognitive Development Study (HBCD).    
 
These results disentangle the relationships between race and SES to better inform 
interventions and public policy. It uses data about experiences of adversity and advantage 
during pregnancy and other factors to explore which variables were most important to one 
key infant outcome, birthweight. 
 
Non-linear models better modeled infant birthweight due to non-linear responses and 
interactions within the data.	In contrast to linear models, non-linear models ranked 
income, area deprivation index (ADI), and experiences of discrimination higher in 
importance than race. Even though the non-linearities modeled are individually subtle, the 
relative importance of variables can be importantly and robustly different. 
 
A comparison of the linear and non-linear models is consistent with race acting as a linear 
proxy of a non-linear combination of other variables in this dataset. By modeling the non-
linear relationships directly, non-linear models better disentangle the relationship between 
race and SES in this study of maternal adversity and birthweight. This will assist in 
understanding the disparities among the data and their origins. As such, these findings 
significantly extend our understanding of how to disentangle the complex relationships 
between race and SES in understanding maternal adversity and income outcomes by 
identifying non-linear relationships that reveal the importance of socioeconomic variables 
over race in predicting infant birthweight, one of the early outcomes of maternal adversity. 

 
 Future Work 
 

In future work, similar non-linear models and similar feature importance techniques can 
be used to examine relationships to other infant outcomes, such as brain structure and 
function at birth, potentially including birthweight and gestational age as input variables. 
In addition, future studies that employ experimental designs can explore disentangling 
groups of variables using causality. This could be very helpful in determining mediation 
or causality between those highly correlated variables and the output. More generally, it 
can be used to determine causality between any variable or set of variables a user wants to 
investigate with appropriate study designs. 

In terms of limitations, this dataset for this study is small compared to many studies that 
use neural networks. However, the same size for the current study is relatively large for an 
infant outcome study.  Simplistic techniques have been implemented to fill in missing 
data. To increase the size of the dataset, the existing data could be used to create synthetic 
patient data. More complex methods could be implemented, such as using available data 
to predict the missing variable. The size of the dataset could also be increased by using the 
existing data could be used to create synthetic patient data. There are tools that exist that 
create similar, yet different, patient data that resembles the existing data, hence increasing 
the size of your dataset. 

 
In summary, this work begins to disentangle the relationships between race and SES to 
better inform interventions and public policy. It uses data about experiences of adversity 
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and advantage during pregnancy and other factors to explore which variables were most 
important to one important infant outcome, birthweight. Non-linear models were able to 
better model infant birthweight due to non-linear responses and interactions within the 
data.	In contrast to linear models, non-linear models ranked income, area deprivation 
index (ADI), and experiences of discrimination higher in importance than race. The non-
linear model suggest that race is a proxy of a non-linear combination of other variables in 
this high-risk urban US study sample and that non-linear components are needed over 
linear to better model differential impacts on infant outcomes.  As such, these findings 
significantly extend our understanding of how to disentangle the complex relationships 
between race and SES in understanding maternal adversity and income outcomes. 
 

Materials and Methods 
 

The Early Life Adversity Biological Embedding and Risk for Developmental Precursors 
of Mental Disorders (eLABE) is a multi-wave, multi-method NIMH-funded study 
designed to investigate the mechanisms by which prenatal and early life adversity impact 
infant neurodevelopment. All study procedures were previously approved by the 
Washington University School of Medicine Institutional Review Board (WUSM IRB). 
Pregnant women who were participants in a large-scale study of preterm birth within the 
Prematurity Research Center at Washington University in St. Louis with negative drug 
screens (other than cannabis) and without known pregnancy complications or known fetal 
congenital problems, were invited for eLABE participation. The study recruited N=395 
women during pregnancy (N=268 eligible subjects declined participation) and their 
N=399 singleton offspring (N=4 mothers had 2 singleton births during the recruitment 
period). Out of those originally invited and interested in participation, N=26, were deemed 
ineligible (N=13 screened out prior to consent and N=13 consented subjects were deemed 
ineligible due to later discovery of substance abuse or the finding of a congenital 
anomalies). Women facing social disadvantage were over-sampled by increased 
recruitment from a clinic serving low-income women. The sample was also enriched for 
preterm infants with N=51 born preterm (<37 weeks gestation). After removing 
participants that were missing entire surveys, this left 351 infants included in the current 
analysis (Figure 3). 

Data 
 
As described, maternal depression, experiences of stress, as well as demographic 
information including insurance, education, address, and household composition were 
obtained from participants at each trimester during pregnancy. Maternal dietary and 
medical history were obtained from self-reported surveys and medical records while 
birthweight was obtained from delivery records. Mothers and their newborns were invited 
for an assessment shortly after birth which included neonatal MRI during which mothers 
completed a comprehensive measure of life stress and trauma (current and past) and 
discrimination (Table 1). 
 
Income to Needs ratio (I/N) was measured at each trimester. The I/N ratio utilizes self-
reported family income and household size compared to federal poverty thresholds, with a 
ratio of 1.0 being at the poverty line. Insurance status was collected at the time of 
enrollment through a medical record review and was verified in the third trimester or at 
delivery; Mother’s highest level of education was self-reported at the time of enrollment. 
Area Deprivation Index (ADI) or “ neighborhood disadvantage” as we refer to it, is a geo-
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tracking measure used to rank neighborhoods by socioeconomic disadvantage compared 
to the national average based on census block data, including factors for the domains of 
income, education, employment, and housing quality (27,28). ADI is represented as a 
national percentile with a higher value indicating greater disadvantage. Maternal nutrition 
was assessed using the Healthy Eating Index (HEI) during the third trimester or at 
delivery. This is a validated dietary assessment tool available through the National 
Institutes of Health used to measure diet quality based on U.S Dietary Guidelines for 
Americans (29,30). Dietary information for HEI calculation was obtained using the Diet 
History Questionnaire (DHQII) (31,32). In each trimester, mothers completed the 
Edinburgh Postnatal Depression Scale (EPDS) (33) and Perceived Stress scale (PSS) 
(34). STRAIN (35), a comprehensive measure of lifetime stressful and traumatic life 
events, was collected at the time of neonatal scan (N=255) or at a follow-up exam 
(N=108); no differences in STRAIN scores based on time of administration were found. 
Experiences of discrimination based on race were assessed using the Everyday 
Discrimination Scale (36) measured at neonatal scan. To control for maternal medical 
risks that might be confounded with social or psychological disadvantage, we assessed 
maternal age at delivery and pre-pregnancy body mass index from first prenatal visit 
based on self-reported pre-pregnancy weight and height. In addition, a Maternal Medical 
Risk Score (MMR), containing pre-existing and pregnancy-related medical conditions, 
was computed using a validated measure of maternal medical comorbidities extracted 
from the medical record that accounts for 22 medical conditions weighted by severity 
(37). Birthweight was collected from the medical record at the time of delivery. 
 
Models 
 
Linear regression (LR) is a widely used method that models data by fitting a linear 
equation, y, = mX + b. X is a matrix where every row represents specific patient 
information. The inputs are linearly combined	to output the predictions, y,. 
 
LR modeled birthweight as a linear combination of several clinical variables (Figure 4A). 
LR is a baseline for performance model since it is commonly used to model outputs in 
medicine. However, LR will only find linear relationships in the data. Likewise, LR will 
not fully control for non-linear confounding variables.  
 
Neural networks (NN) in machine learning make use of non-linear equations with more 
parameters. In the simplest form, each layer of a network is computed as, f(X) =
	σ(W"X + b), The data matrix X is linearly transformed by W and b, and then each 
element of the matrix is input to a non-linear function σ. Multiple layers, each with a 
different set of parameters, are cascaded to compute the final output. In this study, we use 
the tanh function as our non-linear function, and a single hidden layer (Figure 4B). Several 
other architectures were tested, but this one exhibited optimal performance (Figure S3).  
 
NN are particularly useful and can perform equivalent to, sometimes exceeding, human 
ability to analyze and annotate imaging data (38). In contrast with LR, NN use non-linear 
functions to model non-linear relationships. We aim to test if NN will be more effective at 
controlling for non-linear confounders in this dataset. 
 
NN are more complex than the LR, requiring more weights to be trained, but also have the 
possibility to outperform LR. For example, NN can model non-linear relationships 
between individual inputs and the target output (Figure 4C). Likewise, NN can model non-
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linear interactions between multiple inputs (Figure 4D). A NN can allow for improved 
correlation performance relative to LR if there are any such non-linear relationships. 
 
Statistical Analyses 
 
We used the TensorFlow (39) Adam optimizer with 10-fold cross validation to train both 
LR and NN models. The TensorFlow error function mirrors ordinary least squares 
estimation, which is commonly used to train LR. All performance was computed using 10-
fold cross-validated predictions. One tenth of rows were held out as validation set and the 
remaining observations are used as the training set. Ten models were trained with different 
hold-out sets, such that each observation was in the validation set once. Within each fold, 
each model was trained 20 times with a random restart, and the best performing model 
was automatically selected. This restart procedure ensured the results were robust. In cases 
where a specific patient datum was missing, the missing variable was filled in with the 
average value across all other patients for that variable. 
 
Models were first compared by their respective cross-validated R! performance, which 
describes the amount of variance accounted for while modeling birthweight. To calculate 
the p-values for significant differences between the R! values, a test of correlation 
differences from dependent samples was employed (26).  
 
For each model, we quantified which variables were important for predictive power. 
Individual variables or sets of variables were held out from the training data. The cross-
validated performance on the reduced dataset was computed using the same protocol. The 
decrease in R! quantifies the importance of the held-out variables. The larger the decrease, 
the more independent information that variable is contributing to R! performance. 
 
This procedure for measuring variable importance is related to a widely used approach 
called Shapley additive explanations or SHAP (40). SHAP is used to determine the 
importance of variables in machine learning algorithms by approximating SHAP values. 
These values explain how much an input variable impacts the output of model. However, 
when using non-linear models in SHAP, the results were not stable, producing very 
different results each run (Figure S4). In contrast, our approach measured the impact of 
variables on the global performance, not the model output, and yielded stable results 
across multiple runs. 
 
To quantify non-linear responses and interactions, we used a clamping test. First, to 
measure univariate non-linearity, we considering a range of fixed values for the test 
variable. In turn, the input matrix was transformed by clamping the test variables at the 
given fixed value, and the average output of a trained model on the clamped dataset was 
computed. A non-linear relationship between the average output and the fixed value 
indicates non-linearity. We quantified non-linearity as the root-mean-squared-deviation 
(RMSD) of the best fit line of these measurements. A line has no non-linearity, so a larger 
RMSD indicates more non-linearity, which was used to rank and quantify the degree of 
non-linearity in individual variables. 
 
Second, an analogous, bivariate non-linearity is computed in a similar way. Two variables 
are clamped at a range of values, covering a grid in 2D space. The input matrix was 
transformed to clamp the data of both variables at the given values, and the average model 
output is computed. quantified non-linearity as the RMSD of the best fit plane of these 
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measurements. A flat plan has no non-linearity, so increased RMSD indicates more non-
linearity in the interactions between two variables, and we used RMSD to rank pairs of 
input variables with the most non-linear response. 
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Figures and Tables 

  
Figure 1: The non-linear model better fits the data (cross-validated 𝐑𝟐 = 𝟎. 𝟏𝟕𝟐 vs. 
𝐑𝟐 = 𝟎. 𝟏𝟒𝟓, p-value=0.005 (26)). This improvement in performance is robust and 
repeatable across several cross-validation splits and training protocols. This improvement 
over the linear models – 2.7% absolute R! increase and 18.6% relative R!	increase –
indicates there are important non-linear relationships that the NN exploits. 
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Figure 2: Race is less important in the non-linear model. Feature importance is 
robustly quantified by measuring the difference in R2 performance in models trained with 
and without the variable in question. (A) The non-linear model makes use of more 
variables than the linear model. Race is of reduced relative importance (3rd vs. 7th greatest 
effect) and is of reduced absolute performance (7.58% drop vs. 5.23% drop). Notably, 
income and discrimination variables are interrelated with race, and serve as a control, 
showing changes in the opposite direction as race in the non-linear model. (B) Both non-
linear and linear models rely more heavily on race when income, discrimination and 
neighborhood disadvantage are held out. (C) In a negative control experiment, the impact 
of race did not decrease when stress, depression, and life events were held out. (D) The R! 
performance degrades more with the removal of income (R! = 0.172	vs. R! = 0.158). 
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Figure 3: Participant flow from study enrollment to inclusion in current analysis. 
This flow diagram shows the number of initial participants and reasons for exclusion from 
this analysis. 
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Figure 4: A depiction of the linear and non-linear models used in this study. Models 
are depicted in diagrams that show how the modeled birthweight is computed from input 
variables, with vectors depicted as boxes and arrows indicating flow of information. (A) 
The linear regression (LR) computes the output as a linear transform of the input vector. 
(B) The neural network (NN) transforms the input vector into a hidden layer of variables, 
and this layer is transformed into the output. In practice, models operate on normalized 
data, so all inputs and outputs are Z-normalized. (C) The NN can represent non-linear 
relationships, such as non-linear responses, better than LR can. (D) The NN can represent 
non-linear relationships, such as non-linear interactions, better than LR can.  
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Variable N Mean (SD) 
or N (%) 

Demographic Information   
Log10 Income/Needs1 
   1st Trimester 
   2nd Trimester 
   3rd Trimester 

 
385 
305 
330 

 
0.24 (0.40) 
0.28 (0.41) 
0.26 (0.41) 

Area Deprivation Index (ADI, Neighborhood Disadvantage) 376 69.09 (24.84) 
Maternal Delivery Age (in years) 399 29 (5) 
Pre-Pregnancy BMI 307 29.05 (8.34) 
Race 
   Black 
   Not Black 

399 
 

 
249 (62%) 
150 (38%) 

Health Insurance2  
   Individual/Group 
   Medicaid 
   Medicare 
   Uninsured 
   VA/Military 

399  
200 (50%) 
145 (36%) 

7 (2%) 
45 (11%) 
2 (1%) 

Education3  
   Less than high school 
   High school grad 
   College grad 
   Post-grad degree 

355  
28 (7%) 

196 (55%) 
56 (16%) 
77 (22%) 

Surveys   
Healthy Eating Index (HEI) - 2016 Total Score  308 58.45 (9.90) 
Discrimination Survey4 364 1.62 (0.88) 
Edinburgh Postpartum Depression Scale (EPDS) 
   1st Trimester 
   2nd Trimester 
   3rd Trimester 

 
396 
331 
332 

 
5.25 (4.88) 
5.00 (4.94) 
4.38 (4.70) 

Perceived Stress Survey (PSS)  
   1st Trimester 
   2nd Trimester 
   3rd Trimester 

 
394 
304 
325 

 
13.69 (7.39) 
13.81 (7.68) 
13.25 (7.36) 

STRAIN (Life Events) 
   STRAIN-CT (count) 
   STRAIN-WTSEV (weighted severity) 

 
372 
372 

 
6.70 (5.31) 

22.67 (19.91) 
Maternal Medical Risk Score  385 1.27 (1.71) 
Birthweight 399 3134 (599) 

 

1 Log transformed because of skewed distribution of variable 
2 Analyzed as Individual/Group vs. all others 
3 Input as categorical values 
4 Score only if perceived as racial in nature, 0 otherwise 
 
Table 1: The aim is to model birthweight using these 20 variables.  
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Please see supplementary file. 
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