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Abstract 32 

Background: Endometrial cancer is the most common gynaecological cancer in high-income countries. 33 

Elevated body mass index (BMI) is an established modifiable risk factor for this condition and is 34 

estimated to confer a larger effect on endometrial cancer risk than any other cancer site. However, the 35 

molecular mechanisms underpinning this association remain unclear. We used Mendelian 36 

randomization (MR) to evaluate the causal role of 14 molecular risk factors (hormonal, metabolic, and 37 

inflammatory markers) in endometrial cancer risk. We then evaluated and quantified the potential 38 

mediating role of these molecular traits in the relationship between BMI and endometrial cancer.  39 

Methods and Findings: Genetic instruments to proxy 14 molecular risk factors and BMI were 40 

constructed by identifying single-nucleotide polymorphisms (SNPs) reliably associated (P < 5.0 x 10
-8

) 41 

with each respective risk factor in previous genome-wide association studies (GWAS). Summary 42 

statistics for the association of these SNPs with overall and subtype-specific endometrial cancer risk 43 

(12,906 cases and 108,979 controls) were obtained from a GWAS meta-analysis of the Endometrial 44 

Cancer Association Consortium (ECAC), Epidemiology of Endometrial Cancer Consortium (E2C2), and UK 45 

Biobank. SNPs were combined into multi-allelic models and odds ratios (ORs) and 95% confidence 46 

intervals (95% CIs) were generated using inverse-variance weighted random-effects models. The 47 

mediating roles of the molecular risk factors in the relationship between BMI and endometrial cancer 48 

were then estimated using multivariable MR. In MR analyses, there was strong evidence that BMI (OR 49 

per SD increase: 1.88, 95% CI: 1.69 to 2.09, P = 3.87 x 10
-31

), total testosterone (OR per inverse normal 50 

transformed nmol/L increase: 1.64, 95% CI: 1.43 to 1.88, P = 1.71 x 10
-12

), bioavailable testosterone (OR 51 

per inverse normal transformed nmol/L increase: 1.46, 95% CI: 1.29 to 1.65, P = 3.48 x 10
-9

), fasting 52 

insulin (OR per natural log transformed pmol/L increase: 3.93, 95% CI: 2.29 to 6.74, P = 7.18 x 10
-7

) and 53 

sex hormone-binding globulin (SHBG, OR per inverse normal transformed nmol/L increase: 0.71, 95% CI: 54 
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0.59 to 0.85, P = 2.07 x 10
-4

) had a causal effect on endometrial cancer risk. Additionally, there was 55 

suggestive evidence that total serum cholesterol (OR per mg/dL increase: 0.90, 95% CI: 0.81 to 1.00, P = 56 

4.01 x 10
-2

) had an effect on endometrial cancer risk. In mediation analysis using multivariable MR, we 57 

found evidence for a mediating role of fasting insulin (19% total effect mediated, 95% CI: 5 to 34%, P = 58 

9.17 x 10
-3

), bioavailable testosterone (15% mediated, 95% CI: 10 to 20%, P = 1.43 x 10
-8

), and SHBG (7% 59 

mediated, 95% CI: 1 to 12%, P = 1.81 x 10
-2

) in the relationship between BMI and endometrial cancer 60 

risk. The primary limitations of this analysis include the assumption of linear relationships across 61 

univariable and multivariable analyses and the restriction of analyses to individuals of European 62 

ancestry. 63 

Conclusions: Our comprehensive Mendelian randomization analysis provides insight into potential 64 

causal mechanisms linking BMI with endometrial cancer risk and suggests pharmacological targeting of 65 

insulinemic and hormonal traits as a potential strategy for the prevention of endometrial cancer.  66 
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Introduction 67 

Endometrial cancer is the most common gynaecological cancer in high-income countries and the 68 

second most common globally [1, 2]. In 2020, there were 417,367 new cases diagnosed and 97,370 69 

endometrial cancer-related deaths worldwide [3]. In contrast to several other cancer types where 70 

incidence rates have been declining over the past two decades, the global incidence of endometrial 71 

cancer continues to increase [4-8].  72 

Elevated body mass index (BMI) is an established risk factor for endometrial cancer and is 73 

estimated to confer a larger effect on risk of this malignancy than any other cancer type [9-11]. A recent 74 

meta-analysis of 30 prospective studies reported that each 5 kg/m
2
 increase in BMI was associated with 75 

a 54% (95% CI: 47 to 61%) higher risk of endometrial cancer [12-14]. It is estimated that excess adiposity 76 

accounts for 34% of global endometrial cancer cases, with the increasing incidence of endometrial 77 

cancer mirroring rising levels of obesity worldwide [15-17]. Lifestyle and dietary interventions 78 

encouraging maintenance of a healthy weight therefore remain cornerstones for the primary prevention 79 

of endometrial cancer [9]. Alongside weight management strategies, greater characterisation of the 80 

molecular mechanisms underpinning an effect of excess adiposity on endometrial cancer could provide 81 

a complementary approach to cancer prevention through the development of pharmacological 82 

interventions targeting these traits in high-risk groups. 83 

Observational epidemiological studies have reported associations between several hormonal, 84 

metabolic, and inflammatory factors linked to obesity and endometrial cancer, including bioavailable 85 

testosterone, sex hormone-binding globulin (SHBG), oestradiol and fasting insulin [18-22]. However, 86 

conventional observational studies are susceptible to residual confounding (due to unmeasured or 87 

imprecisely measured confounders), reverse causation, and other forms of bias which undermine robust 88 
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causal inference. Therefore, the causal nature of these risk factors, and thus their suitability as effective 89 

intervention targets for endometrial cancer prevention, remains unclear.  90 

Mendelian randomization (MR) is an analytical approach that uses germline genetic variants as 91 

instruments (“proxies”) for risk factors to evaluate the causal effects of these factors on disease 92 

outcomes in observational settings [23, 24]. Since germline genetic variants are randomly assorted at 93 

meiosis, MR analyses should be less prone to confounding by lifestyle and environmental factors than 94 

conventional observational studies. Furthermore, since germline genetic variants are fixed at 95 

conception, MR analyses are not subject to reverse causation bias. The statistical power and precision of 96 

MR analysis can be increased by employing a “two-sample MR” framework in which summary genetic 97 

association data from two independent samples – one representing genetic variant-exposure 98 

associations and one representing genetic variant-outcome associations – are synthesised to estimate 99 

causal effects [25]. 100 

Recent MR studies have suggested potential causal relationships between circulating levels of 101 

several molecular traits, including low-density lipoprotein (LDL) cholesterol, insulin, total and 102 

bioavailable testosterone, and sex hormone-binding globulin (SHBG) and endometrial cancer risk, and 103 

have confirmed a causal role of BMI in endometrial cancer risk [17, 26-32]. However, many previously 104 

reported molecular risk factors for endometrial cancer from conventional observational studies remain 105 

untested in an MR framework, meaning the causal relevance of these factors in disease onset is unclear. 106 

Additionally, no MR studies to date have attempted to quantify the potential mediating role of these 107 

factors in the relationship between BMI and endometrial cancer risk.  108 

Given the unclear causal relevance of previously reported molecular traits in endometrial cancer 109 

aetiology, we used a two-sample MR approach to evaluate the causal role of 14 endogenous sex 110 

hormones, metabolic traits, and inflammatory markers in endometrial cancer risk (overall and in 111 
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 112 

endometrioid and non-endometrioid subtypes). We then used multivariable MR to evaluate and 113 

quantify the mediating role of these molecular traits in the relationship between BMI and endometrial 114 

cancer risk.   115 
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Methods 116 

Our analytical strategy was as follows: first, we attempted to corroborate previous MR findings 117 

that there was evidence of a causal relationship between BMI and endometrial cancer risk (overall and 118 

by histological subtype); second, we examined evidence for a causal relationship between previously 119 

reported molecular factors and endometrial cancer risk (overall and by histological subtype); third, we 120 

evaluated the causal relationship between BMI and those molecular risk factors that were confirmed to 121 

influence endometrial cancer risk (overall and by histological subtype); finally, we performed a 122 

mediation analysis to quantify the proportion of the total effect of BMI on endometrial cancer risk that 123 

was mediated by each identified trait.  124 

 125 

Endometrial cancer study population 126 

Summary genetic association data on overall and subtype-specific endometrial cancer risk were 127 

obtained from a genome-wide association study (GWAS) of 12,906 cases (including 8,758 endometrioid 128 

and 1,230 non-endometrioid endometrial cancer cases) and up to 108,979 controls of European 129 

ancestry [31]. This meta-GWAS combined 17 previously reported studies from the Endometrial Cancer 130 

Association Consortium (ECAC), the Epidemiology of Endometrial Cancer Consortium (E2C2), and UK 131 

Biobank, with four studies contributing samples to more than one genotyping project. Participants were 132 

recruited from Australia, Belgium, Germany, Poland, Sweden, the UK, and the USA and associations 133 

were adjusted for principal components of ancestry. Genotyping was performed using one of several 134 

Illumina arrays and imputation was performed using the 1000 Genomes Phase 3 reference panel [33]. 135 

Further information on this meta-GWAS including study-specific genotyping, imputation, and quality 136 

control procedures is provided in S2 Appendix.  137 
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 138 

Identification of previously reported molecular risk factors for endometrial cancer 139 

We performed two pragmatic searches of the literature using PubMed. The first search 140 

identified previously published MR analyses of molecular risk factors for endometrial cancer. The second 141 

search identified narrative or systematic reviews of potential molecular mechanisms underpinning the 142 

relationship between obesity and endometrial cancer (additional information on search strategies used 143 

in literature reviews is presented in S3 Appendix). Combined, these literature reviews identified 20 144 

unique molecular traits which could mediate the effect of BMI on endometrial cancer risk, of which 14 145 

had suitable genetic instruments available. These traits include nine metabolic factors (low-density 146 

lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, total serum cholesterol, 147 

triglycerides, blood glucose, fasting insulin, insulin-like growth factor 1 (IGF-1), adiponectin, and leptin); 148 

three endogenous sex hormones or traits that regulate their bioactivity (total and bioavailable 149 

testosterone, and SHBG); and two inflammatory markers (interleukin-6 (IL-6) and C-reactive protein 150 

(CRP), measured as high-sensitivity CRP) (Fig 1) [29, 34-41]. Summary genetic association data on BMI 151 

were obtained from a GWAS of 681,275 individuals of European ancestry [42]. Additional information on 152 

participant demographics and covariates included in adjustment strategies across each GWAS are 153 

presented in S4 Table. All studies contributing data to these analyses had the relevant institutional 154 

review board approval from each country, in accordance with the Declaration of Helsinki, and all 155 

participants provided informed consent. 156 

 157 

Statistical analyses 158 
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MR analysis can generate unbiased estimates of causal effects of risk factors on disease 159 

outcomes if the following assumptions are met: (i) the instrument strongly associates with the exposure 160 

(“relevance”), (ii) there is no confounding of the instrument-outcome relationship (“exchangeability”), 161 

and (iii) the instrument only affects the outcome through the exposure (“exclusion restriction”) (Fig. 2) 162 

[43].  163 

To construct genetic instruments for BMI and previously reported molecular risk factors, we 164 

obtained single-nucleotide polymorphisms (SNPs) reliably (P < 5 x 10
-8

) and independently (r
2
 < 0.001) 165 

associated with each trait. To construct a genetic instrument for leptin, we restricted genetic variants to 166 

cis-acting SNPs (i.e. in or within ±100kb from the gene encoding the protein). For leptin, IL-6 and CRP 167 

analyses, SNPs were permitted to be in weak linkage disequilibrium (LD) (r
2
 < 0.10) to maximise 168 

instrument strength. For all traits where instruments consisted of SNPs in weak LD (i.e. leptin, IL-6 and 169 

CRP), standard errors for causal estimates were inflated to account for correlation between SNPs with 170 

reference to the 1000 Genomes Phase 3 reference panel [33, 44].  171 

For traits instrumented by a single SNP, the Wald ratio was used to generate effect estimates 172 

and the delta method was used to approximate standard errors [45]. For traits instrumented by two or 173 

more SNPs, inverse-variance weighted (IVW) random-effects models were used to estimate causal 174 

effects [45]. A Bonferroni correction was applied as a heuristic to account for multiple testing in MR 175 

analyses for the 15 risk factors (14 molecular traits and BMI) investigated. Results below this threshold 176 

were classified as “strong evidence” (P < 3.33 x 10
-3

 (0.05/15 traits)), whereas results between this 177 

threshold and P < 0.05 were classified as “suggestive evidence”. 178 

When using genetic instruments, there is potential for horizontal pleiotropy - when a genetic 179 

variant influences an outcome through a biological pathway independent to the exposure, a violation of 180 

the “exclusion restriction” criterion [46]. We evaluated the presence of horizontal pleiotropy by 181 
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performing various sensitivity analyses. First, for instruments consisting of ≥ 10 SNPs, we re-calculated 182 

causal estimates obtained from IVW models using MR-Egger regression, weighted median estimation, 183 

and weighted mode estimation (additional information on these sensitivity analyses is provided in S2 184 

Appendix) [46-48]. Each of these models makes different assumptions regarding the nature of 185 

horizontal pleiotropy in the genetic instrument and therefore performing all three can provide 186 

complementary support to IVW models in evaluating the presence of horizontal pleiotropy. These 187 

models were not employed when instruments consisted of < 10 SNPs because of their reduced statistical 188 

power to detect horizontal pleiotropy in these settings (additional information on these sensitivity 189 

analyses is provided in S2 Appendix). Second, we performed “leave-one-out” analyses for all findings 190 

showing strong or suggestive evidence of effects in IVW models (P < 0.05) for traits where instruments 191 

consisted of ≥ 10 SNPs and findings were consistent across MR-Egger, weighted median, and weighted 192 

mode sensitivity analyses or where instruments consisted of < 10 SNPs. This approach sequentially 193 

removes each SNP from an instrument and then re-calculates the overall effect estimate to examine 194 

robustness of findings to individual influential SNPs in IVW models.  195 

Instruments were derived from sex-combined GWAS for all traits other than those related to 196 

endogenous sex hormones to maximise statistical power where there was limited evidence of sex-197 

specificity of SNP associations. As a sensitivity analysis we also re-performed MR analyses using sex-198 

specific instruments where possible. For BMI, all analyses with strong or suggestive evidence for an 199 

effect (P < 0.05) were repeated using genome-wide significant (P < 5.0 x 10
-8

) variants identified in 200 

female-specific analyses. Likewise, for fasting insulin and CRP analyses, the effect estimates and 201 

standard errors of SNPs used to instrument these traits were replaced with female-specific values where 202 

there was previous evidence of sex-specificity of associations (trait-specific criteria for identifying sex-203 

specific effects are presented in S2 Appendix). Findings from sex-specific sensitivity analyses are 204 

presented in Tables S8, S17, S28-29. Finally, Steiger filtering was performed across all analyses to 205 
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identify and subsequently remove any SNPs which explained more variance in the outcome than the 206 

exposure (i.e. suggesting misspecification of the causal direction between traits) [49].  207 

 208 

Mediation analysis  209 

For all molecular traits that were identified as being on the causal pathway between BMI and 210 

endometrial cancer risk, we used multivariable MR to generate estimates of the direct effect (i.e. the 211 

remaining effect of the exposure on the outcome when the effect of the candidate mediator on the 212 

outcome has been adjusted for) and indirect effect (i.e. the effect of the exposure on the outcome 213 

through the candidate mediator) using the product of coefficients method [50]. The proportion of the 214 

total effect of BMI on endometrial cancer risk (“proportion mediated”) that was mediated by each 215 

molecular trait was calculated using these estimates. In the case of fasting insulin, due to weak 216 

instrument bias, several different approaches were employed to attempt to maximise conditional 217 

instrument strength (for further information on these analyses see S2 Appendix). Standard errors for 218 

the proportion mediated were calculated using the delta method [51]. In addition, we aimed to perform 219 

additional mediation analyses combining all mediators into a single model to examine the extent to 220 

which these mediators influenced endometrial cancer independently or via shared biological pathways 221 

(presumed relationships between BMI, fasting insulin, SHBG, bioavailable testosterone, and endometrial 222 

cancer risk are presented in Fig 3). When all putative mediators were combined into a single model with 223 

BMI, however, there was persistent weak instrument bias. Of various alternate approaches examined to 224 

minimise this bias, the restriction of models to pairs of mediators (without inclusion of BMI) was found 225 

to generate the largest conditional F-statistics for each mediator included in the model (for further 226 

information on these analyses see S2 Appendix).  227 
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 228 

Sample overlap sensitivity analyses 229 

There was moderate sample overlap (52.2-62.4%) across some analyses which can bias MR 230 

estimates toward the confounded observational estimate in the presence of weak instrument bias [52] 231 

(S5 Table). This bias can be inflated by “Winner’s curse”, in which weights for genetic instruments are 232 

derived from discovery samples that overlap with outcome samples. Though instruments in this analysis 233 

were constructed from genome-wide significant variants (P < 5.0 x 10
-8

) which should minimise the 234 

possibility of weak instrument bias, we performed the following sensitivity analyses to evaluate whether 235 

our findings could be influenced by sample overlap: i) for analyses examining the effect of blood glucose 236 

on endometrial cancer risk, we re-performed MR analyses using alternate GWAS data for this trait 237 

where there was no sample overlap [53, 54]; ii) for analyses examining the effect of BMI on total 238 

testosterone, bioavailable testosterone, SHBG and endometrial cancer, we re-performed MR analyses 239 

using alternate GWAS data for BMI where there was no sample overlap [55]; and iii) for analyses 240 

examining the effect of total testosterone, bioavailable testosterone, SHBG and IGF-1 on endometrial 241 

cancer (where suitable alternate GWAS data were not available), we re-constructed instruments for sex 242 

hormones using more conservative P-value thresholds (P < 5.0 x 10
-9

, P < 5.0 x 10
-10

) to minimise the 243 

potential for inclusion of weak instruments into analyses and then re-performed MR analyses. Similarly, 244 

in mediation analysis, due to the presence of sample overlap and possible influence of Winner’s curse, 245 

for any trait with sample overlap in the same multivariable MR model the analysis was repeated with a 246 

more stringent P value (P < 5.0 x 10
-9

) used for instrument construction.    247 

All statistical analyses were performed using R (Vienna, Austria) version 4.0.2. Additional 248 

information on statistical packages used across various analyses is presented in S2 Appendix. 249 
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Results 250 

Evaluating the effect of BMI on endometrial cancer risk 251 

In MR analyses, there was strong evidence for an effect of BMI on risk of overall endometrial 252 

cancer (odds ratio (OR) per SD (4.7 kg/m
2
) increase in BMI: 1.88, 95% confidence interval (CI): 1.69 to 253 

2.09, P = 3.87 x 10
-31

) (Fig 4, Table 2). This finding was consistent across sensitivity analyses examining 254 

evidence of horizontal pleiotropy, including MR-Egger, weighted median, and weighted mode models, in 255 

analyses using a female-specific BMI instrument, in analyses exploring potential Winner’s curse bias in 256 

instrument construction, and in the leave-one-out analysis (S7 Figure, S8 Table, S9 Table). 257 

In subtype-stratified analyses, there was evidence to support an effect of BMI on risk of both 258 

endometrioid (OR per SD (4.7 kg/m
2
) increase in BMI: 1.89, 95% CI: 1.65 to 2.16, P = 1.67 x 10

-20
) and 259 

non-endometrioid endometrial cancer (OR per SD (4.7 kg/m
2
) increase in BMI: 1.67, 95% CI: 1.19 to 2.35, 260 

P = 3.03 x 10
-3

) (Fig 4, Table 2). These findings were robust to sensitivity analyses for endometrioid 261 

endometrial cancer; however, findings were less consistent for non-endometrioid endometrial cancer in 262 

sensitivity analyses using female-specific BMI instruments (S10-11 Figure, S8-9 Table). Therefore, only 263 

overall and endometrioid endometrial cancer were included in follow-up analyses.   264 

  265 

Evaluating the effect of previously reported molecular risk factors on endometrial cancer risk 266 

When examining the effect of previously reported molecular risk factors on overall endometrial 267 

cancer risk, there was strong evidence for an effect of total testosterone (OR per increase in inverse-268 

normal transformed (INT) nmol/L total testosterone: 1.64, 95% CI: 1.43 to 1.88, P = 1.71 x 10
-12

), 269 

bioavailable testosterone (OR per increase in INT nmol/L bioavailable testosterone: 1.46, 95% CI: 1.29 to 270 

1.65, P = 3.48 x 10
-9

), fasting insulin (OR per increase in natural log transformed pmol/L fasting insulin 271 
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3.93, 95% CI: 2.29 to 6.74, P = 7.18 x 10
-7

), and SHBG (OR per increase in INT nmol/L SHBG 0.71, 95% CI: 272 

0.59 to 0.85, P = 2.07 x 10
-4

) on endometrial cancer risk (Fig 5; Table 3). In addition, there was suggestive 273 

evidence for an effect of total serum cholesterol (OR per increase in SD (41.7 mg/dL) total serum 274 

cholesterol 0.90, 95% CI: 0.81 to 1.00, P = 4.01 x 10
-2

) on overall endometrial cancer risk. These findings 275 

were consistent across sensitivity analyses (S12-S16 Figure, S17 Table, S8-S9 Table).  276 

In subtype-stratified analyses, there was strong evidence to support an effect of total 277 

testosterone (OR per increase in INT nmol/L total testosterone: 1.60, 95% CI: 1.36 to 1.87, P = 8.70 x 10
-

278 

9
), bioavailable testosterone (OR per increase in INT nmol/L bioavailable testosterone: 1.46, 95% CI: 1.29 279 

to 1.65, P = 3.48 x 10
-9

), fasting insulin (OR per increase in natural log transformed pmol/L fasting insulin: 280 

4.64, 95% CI: 2.30 to 9.36, P = 1.84 x 10
-5

), and SHBG (OR per increase in INT nmol/L SHBG: 0.65, 95% CI: 281 

0.54 to 0.80, P = 3.31 x 10
-5

) on endometrioid endometrial cancer risk (Fig 5; Table 3). Findings were 282 

consistent across all sensitivity analyses (S19-S22 Figure, S9 Table, S17 Table). 283 

 284 

Evaluating the effect of BMI on previously reported molecular risk factors 285 

When examining the effect of BMI on molecular traits confirmed to have a causal effect on 286 

endometrial cancer (either overall or endometrioid subtype), there was evidence for an effect of BMI on 287 

fasting insulin (change in natural log transformed fasting insulin: 0.17, 95% CI: 0.15 to 0.19, P = 1.51 x 10
-

288 

74
), SHBG (change in INT SHBG: -0.17, 95% CI: -0.19 to -0.16, P = 4.86 x 10

-125
), bioavailable testosterone 289 

(change in INT bioavailable testosterone: 0.26, 95% CI: 0.23 to 0.29, P = 9.97 x 10
-68

), total testosterone 290 

(change in INT total testosterone: 0.08, 95% CI: 0.05 to 0.11, P = 9.04 x 10
-10

), and CRP (change in ln-291 

transformed CRP: 0.35, 95% CI: 0.32 to 0.38, P = 2.67 x 10
-127

) (Fig 6; Table 4). The direction of effect in 292 

MR analyses examining the effect of BMI on total testosterone was inconsistent when employing a 293 

weighted mode model, suggesting the potential presence of horizontal pleiotropy. Although there was 294 
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little evidence for a causal effect of BMI on total serum cholesterol in the IVW model, there was some 295 

evidence for an effect across all three MR sensitivity analysis models, suggesting that horizontal 296 

pleiotropy may be biasing the IVW estimate towards the null. All other findings were consistent across 297 

the various sensitivity analyses (S23-S27 Figure, S8 Table, S17-S18 Table).  298 

 299 

Mendelian randomization mediation analysis 300 

In mediation analyses evaluating the potential mediating role of molecular traits previously 301 

shown to be on the causal pathway between BMI and endometrial cancer, there was evidence for a 302 

mediating role of bioavailable testosterone (15% mediated, 95% CI: 10 to 20%, P = 1.43 x 10
-8

), fasting 303 

insulin (11% of total effect mediated, 95% CI: 1 to 21%, P = 2.89 x 10
-2

), and SHBG (7% mediated, 95% CI: 304 

1 to 12%, P = 1.81 x 10
-2

) in the relationship between BMI and overall endometrial cancer risk (Table 5). 305 

There was also evidence for a mediating role of bioavailable testosterone (15% mediated, 95% CI: 9 to 306 

22%, P = 2.15 x 10
-6

) and fasting insulin (16% mediated, 95% CI: 1 to 21%, P = 2.89 x 10
-2

) in the 307 

relationship between BMI and endometrioid endometrial cancer risk (Table 5). Although there was little 308 

evidence for a mediating role of SHBG in the relationship between sex-combined BMI and endometrioid 309 

endometrial cancer (2% mediated, 95% CI: -9 to 14%, P = 6.87 x 10
-1

), in the female-specific BMI 310 

sensitivity analysis there was strong evidence for a mediating role of female-specific SHBG in the 311 

relationship between BMI and endometrioid endometrial cancer (8% mediated, 95% CI: 3 to 13%, P = 312 

3.38 x 10
-3

). Other than this, findings were consistent across sex-specific BMI, fasting insulin and CRP 313 

sensitivity analyses (S28-S29 Table).  314 

The conditional F-statistic for both fasting insulin (F=2) and BMI (F=6) in the multivariable MR 315 

performed to evaluate the “proportion mediated” by fasting insulin was < 10, indicating that there may  316 
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be weak instrument bias in these analyses (i.e. over- or underestimation of the “proportion mediated” 317 

by fasting insulin) [56]. When re-performing the “proportion mediated” analysis for fasting insulin using 318 

an alternative approach (i.e. using an alternative fasting insulin instrument with a larger sample size and 319 

limiting the number of SNPs included in the BMI instrument to the 100 with the strongest evidence of 320 

association using an LD threshold r
2
<0.001), we found that fasting insulin mediated 19% (95% CI: 5 to 321 

34%, P = 9.17 x 10
-3

) of the relationship between BMI and overall endometrial cancer risk and 21% (95% 322 

CI: 5 to 38%, P = 1.17 x 10
-2

) of the relationship between BMI and endometrioid endometrial cancer risk 323 

(S30 Table). 324 

In mediation analyses combining pairs of mediators into a single model, the effect of fasting 325 

insulin on overall endometrial cancer risk attenuated (~40% log OR reduction) when SHBG (a presumed 326 

downstream mediator of fasting insulin) was included in the model (OR per increase in natural log 327 

transformed pmol/L fasting insulin: 2.28, 95% CI: 1.34 to 3.86, P = 2.85 x 10
-3

). The effect of SHBG on 328 

overall endometrial cancer attenuated fully when bioavailable testosterone (a presumed downstream 329 

mediator of SHBG) was included in the model (OR per increase in INT nmol/L SHBG: 1.08, 95% CI: 0.86 to 330 

1.36, P = 5.00 x 10
-1

) (S34 Table). The effect of fasting insulin on overall endometrial cancer was strongly 331 

attenuated when bioavailable testosterone was included in the model (OR per increase in natural log 332 

transformed pmol/L fasting insulin: 1.22, 95% CI: 0.48 to 3.11, P = 6.78 x 10
-1

), which could reflect 333 

mediation of the effect of fasting insulin on endometrial cancer via bioavailable testosterone or the 334 

presence of conditionally weak instruments in this model. This could result in over- or underestimation 335 

of the proportion of the effect of fasting insulin mediated by bioavailable testosterone.  336 

For the endometrioid histological subtype, using the same approach, the effect of fasting insulin 337 

on endometrioid endometrial cancer did not markedly change (~14% logOR reduction) when SHBG was 338 

included in the model (OR per increase in natural log transformed pmol/L fasting insulin: 3.74, 95% CI: 339 
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0.74 to 19.01, P = 1.56 x 10
-1

). However, the effect of SHBG on endometrioid endometrial cancer 340 

attenuated fully when bioavailable testosterone was included in the model (OR per increase in INT 341 

nmol/L SHBG: 1.16, 95% CI: 0.81 to 1.65, P = 4.12 x 10
-1

). As with analyses of overall endometrial cancer, 342 

when fasting insulin and bioavailable testosterone were combined into a single model, the effect of 343 

fasting insulin on endometrioid endometrial cancer attenuated toward the null (OR per increase in 344 

natural log transformed pmol/L fasting insulin: 1.05, 95% CI: 0.36 to 3.03, P = 9.33 x 10
-1

), potentially 345 

reflecting mediation via bioavailable testosterone or persistent weak instrument bias in this model. 346 
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Discussion 347 

Our systematic Mendelian randomization (MR) analysis of 14 previously reported molecular risk 348 

factors and body mass index (BMI) in 12,906 endometrial cancer cases and 108,979 controls provided 349 

evidence for roles of elevated BMI, fasting insulin, total and bioavailable testosterone, and sex 350 

hormone-binding globulin (SHBG) in risk of overall and endometrioid endometrial cancer. In mediation 351 

analyses, we found evidence that fasting insulin, bioavailable testosterone concentrations, and SHBG 352 

partially mediated the effect of BMI on overall endometrial cancer risk. When combining pairs of 353 

mediators together into a single model, we found evidence that an effect of fasting insulin on 354 

endometrial cancer was partially mediated by SHBG levels and that an effect of SHBG on endometrial 355 

cancer was largely mediated by bioavailable testosterone levels. An effect of fasting insulin on 356 

endometrial cancer risk was also strongly attenuated upon adjustment for bioavailable testosterone 357 

levels which could reflect mediation of this effect by bioavailable testosterone or conditionally weak 358 

instrument bias for fasting insulin concentrations in this analysis.  Our analyses found little evidence that 359 

several previously reported molecular risk factors, including several metabolic factors (e.g. LDL-C, HDL-C, 360 

IGF-1, adiponectin, leptin) and inflammatory markers (CRP, IL-6), were causally implicated in overall or 361 

endometrioid endometrial cancer risk.  362 

Several of the findings in this analysis are consistent with evidence from prior conventional 363 

observational and MR analyses. For example, the effect of BMI on endometrial cancer risk and the 364 

stronger evidence of an effect on endometrioid, as compared to non-endometrioid, endometrial cancer 365 

is well-established in the literature and has been shown previously in an MR analysis that used an 366 

alternative strategy for instrument construction. Our findings supporting a causal effect of BMI on 367 

endometrial cancer risk (OR 1.88, 95% CI: 1.69 to 2.09 per SD (4.7 kg/m
2
) increase) are larger in 368 

magnitude than those from pooled analyses of conventional observational analyses (e.g. the World 369 
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Cancer Research Fund (WCRF) pooled analysis of 26 prospective studies: RR 1.50, 95% CI 1.42 to 1.59 370 

per 5.0 kg/m
2
 increase), consistent with previous comparisons of observational and MR estimates across 371 

other cancer sites [57, 58]. Smaller magnitudes of effect in observational analyses may reflect regression 372 

dilution bias from single time-point measurements of BMI and/or reverse causation from cancer-373 

induced weight loss, whereas MR estimates reflect accumulated exposure across the life-course and are 374 

unlikely to be influenced by reverse causation [59].  375 

In agreement with previous MR analyses, our results suggest a causal role of fasting insulin, total 376 

and bioavailable testosterone, and SHBG in endometrial cancer risk, although these previous reports 377 

either employed smaller sample sizes than this analysis (e.g. fasting insulin analyses were performed in 378 

1,287 endometrial cancer cases vs 12,906 cases in our analysis) or used somewhat differing methods to 379 

examine instrumental variable assumptions [28-30]. The restriction of an effect of BMI to bioavailable 380 

(and not total) testosterone is in agreement with previous observational studies which have suggested 381 

that BMI influences testosterone levels through decreased production of SHBG rather than a direct 382 

effect on testosterone production [60-64]. Additionally, important mediating roles of fasting insulin, 383 

bioavailable testosterone, and SHBG in the relationship between BMI and endometrial cancer are 384 

consistent with studies of bariatric surgery which have suggested protective effects of this procedure 385 

against endometrial cancer risk, along with reductions in insulin and bioavailable testosterone levels, 386 

and increases in SHBG levels [65-73]. Our findings supporting a role of BMI on these traits are also 387 

consistent with the important endocrine function of adipose tissue, which is involved in sex steroid 388 

metabolism [62, 74-79]. 389 

Potential aetiological roles of the molecular mediators identified in this analysis are consistent 390 

with the “unopposed oestrogen” hypothesis which postulates that endometrial carcinogenesis is driven 391 

by excess endogenous or exogenous oestrogen levels that are unopposed by progesterone [80-82]. We 392 
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were unable to incorporate oestrogen into this analysis as we were unable to identify reliable genetic 393 

instruments for this trait. All three of the molecular mediators highlighted in this analysis, however, are 394 

known to influence oestrogen: bioavailable testosterone is aromatized to oestradiol; SHBG binds with 395 

high-affinity to both oestradiol and bioavailable testosterone [82-87]; and insulin increases androgen 396 

and decreases SHBG production [88-91]. We found that an inverse effect of SHBG on endometrial cancer 397 

risk was largely attenuated upon adjustment for bioavailable testosterone, suggesting a protective 398 

effect of SHBG may be driven via binding of biologically active fractions of circulating testosterone. The 399 

attenuation of an effect of fasting insulin on endometrial cancer upon adjustment for bioavailable 400 

testosterone could reflect mediation of this effect or the presence of conditionally weak instrument bias 401 

in this model. In support of the latter explanation, there is biological evidence that hyperinsulinemia and 402 

insulin resistance influence endometrial cancer via oestrogen-independent pathways. For example, 403 

insulin has been shown to bind directly to endometrial cells and promote proliferation, and can activate 404 

two pathways known to have an important role in carcinogenesis – the phosphatidylinositol-3-kinase-405 

protein kinase B/Akt (PI3K-PKB/Akt) and Ras/Raf/mitogen-activated protein kinase (Ras/Raf/MAPK) 406 

pathways [91-96].  407 

Some findings from this MR analysis are not in agreement with evidence from previous 408 

conventional observational studies. For example, our analyses found little evidence to support causal 409 

roles of several metabolic traits (e.g. circulating HDL-cholesterol, triglycerides, adiponectin, leptin) and 410 

inflammatory markers (CRP, IL-6) in endometrial cancer risk, despite these traits being linked to 411 

endometrial cancer risk in conventional observational analyses [18-22]. Several of these traits (e.g. HDL-412 

cholesterol, LDL-cholesterol, triglycerides) represent highly correlated metabolic perturbations 413 

associated with the obese phenotype which may be too clustered to disentangle using conventional 414 

multivariable regression methods [97]. Consequently, some of the divergence in findings across previous 415 

conventional observational studies and this MR analysis could reflect residual confounding in the 416 
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former. Another potential explanation for divergence in findings is the susceptibility of conventional 417 

observational studies to reverse causation (i.e., latent, undiagnosed endometrial cancer influencing 418 

levels of a presumed exposure). For example, a previously reported association of circulating IL-6 419 

concentrations with endometrial cancer risk could reflect IL-6 secretion by endometrial cancer-420 

associated fibroblasts rather than a role of IL-6 in endometrial cancer development [98, 99].  421 

We were unable to replicate a previously reported MR-based inverse association of LDL 422 

cholesterol levels and endometrial cancer risk in the Endometrial Cancer Association Consortium (IVW 423 

OR per SD increase in LDL cholesterol: 0.90, 95% CI: 0.85 to 0.95, P = 8.39 x 10
-5

). In the previous 424 

analysis, SNPs were permitted to be in weak linkage disequilibrium (LD) (pairwise correlation r
2 

< 0.05 vs 425 

r
2 

< 0.001 in our analysis) and a Heterogeneity in Dependent Instruments (HEIDI) test was performed to 426 

identify potentially pleiotropic SNPs, resulting in the removal of 6 such SNPs from the 146 SNPs initially 427 

used as an instrument. We attempted to replicate these previously reported findings using a more 428 

stringent r
2
 threshold (i.e. r

2
<0.001) followed by use of the HEIDI test (resulting in the removal of 2 429 

potentially pleiotropic SNPs) which resulted in a causal estimate that was closer in magnitude to that 430 

previously reported (IVW OR 0.93, 95% CI: 0.86 to 1.00, P = 4.10 x 10
-2

) (S45 Table). However, there was 431 

greater imprecision in our estimate compared to this previous analysis which could reflect the more 432 

liberal LD threshold employed in this earlier analysis.  433 

Our MR analysis provides key insights into potential molecular pathways linking excess adiposity 434 

to endometrial cancer risk. This analysis has several strengths including the use of a systematic approach 435 

to collate previously reported molecular risk factors for endometrial cancer; the appraisal of their causal 436 

relevance in overall and endometrioid endometrial cancer aetiology using an MR framework which 437 

should be less prone to conventional issues of confounding and cannot be influenced by reverse 438 

causation; the employment of several complementary sensitivity analyses to rigorously assess for 439 
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violations of MR assumptions; and the use of a summary data-based MR approach which permitted us 440 

to leverage large-scale GWAS data from several studies, enhancing statistical power and precision of 441 

causal estimates.  442 

There are several limitations to our analysis. First, we were unable to evaluate the role of six 443 

previously reported molecular risk factors for endometrial cancer due to the absence of reliable genetic 444 

instruments for these traits. These six risk factors included oestradiol which is believed to be an 445 

important molecular mediator of the effect of BMI on endometrial cancer risk[9]. Second, some of the 446 

effect estimates for SNPs included in genetic instruments were obtained from discovery GWAS and have 447 

not been replicated in an independent sample which can result in “Winner’s curse” bias. There was 448 

sample overlap in this analysis across certain traits; however, the use of conventionally strong (P < 5.0 x 449 

10
-8

) instruments for these traits and the consistency of most findings in sensitivity analyses examining 450 

their robustness to potential Winner’s curse bias suggests that this phenomenon was unlikely to 451 

markedly influence the results presented in this analysis. Third, although sex-specific sensitivity analyses 452 

were performed where data were available, some prior GWAS used in this analysis did not examine for 453 

heterogeneity of SNP effects by sex which prevented evaluation of the effect of certain traits on 454 

endometrial cancer risk using sex-specific instruments. Fourth, univariable and multivariable MR 455 

analyses presented here assume that relationships between exposures and outcomes are linear, 456 

although it has been previously suggested that the relationship between BMI and endometrial cancer 457 

may best be explained by a non-linear model [12, 100]. Fifth, our analysis was almost exclusively 458 

restricted to individuals of European ancestry to minimise bias from population stratification, which may 459 

limit the generalisability of our findings to non-European populations. Finally, while various sensitivity 460 

analyses were performed to examine violations of exchangeability and exclusion restriction criteria, 461 

these assumptions are unverifiable. 462 
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With the global incidence of overweight and obesity projected to increase and challenges in 463 

implementing successful weight loss strategies, pharmacological approaches targeting molecular 464 

mediators of the effect of obesity on endometrial cancer development may offer a viable approach for 465 

cancer prevention in high-risk groups [101-105]. Metformin, a safe and inexpensive first-line treatment 466 

for type 2 diabetes, could serve as a promising chemoprevention agent for endometrial cancer as it 467 

increases insulin sensitivity, thus reversing insulin resistance and lowering fasting insulin levels, 468 

alongside inhibiting endometrial proliferation [9, 106]. In addition, unlike some other oral 469 

hypoglycaemic medications, metformin users show a tendency toward sustained weight loss [107] . 470 

Bioavailable testosterone and SHBG also present potential pharmacological targets, though the 471 

multifaceted function of these hormones means that targeting these traits may result in adverse effects 472 

[108-113]. Phase II clinical trials examining the efficacy of a combination of contraceptive intrauterine 473 

devices, metformin, and weight loss interventions as a non-invasive treatment option for individuals 474 

with obesity with early-stage endometrial cancer have had encouraging results, and weight loss has 475 

been shown to improve oncological outcomes in women with endometrial cancer undergoing progestin 476 

treatment [114, 115].  477 

Our systematic evaluation of 14 previously reported candidate mediators of the effect of BMI on 478 

endometrial cancer risk identifies fasting insulin, bioavailable testosterone, and SHBG as plausible 479 

mediators of this relationship. While we were unable to entirely disentangle the independent effects of 480 

these three traits, identification of a potential mediating role of these traits (and, in particular, fasting 481 

insulin) in endometrial carcinogenesis is nonetheless informative for the development of 482 

pharmacological interventions targeting these traits for cancer prevention. In this respect, future 483 

assessment of the effect of drugs which target molecular mediators identified in this analysis using a 484 

“drug-target Mendelian randomization” approach could inform on the potential efficacy of the 485 

repurposing of medications for endometrial cancer prevention.   486 
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Conclusion 487 

Our comprehensive Mendelian randomization analysis provides insight into potential causal 488 

mechanisms linking excess adiposity to endometrial cancer risk. We show that lifelong cumulative 489 

elevated BMI causes a larger increased risk than that reported in previous conventional observational 490 

studies. We found strong evidence for a mediating role of fasting insulin, bioavailable testosterone and 491 

SHBG in the effect of BMI on endometrial cancer risk. These results suggest pharmacological targeting of 492 

insulin-related and hormonal traits as a potential strategy for the prevention of endometrial cancer. 493 
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Figure Legends: 1017 

Fig 1. Flowchart detailing the process of identifying previously reported risk factors with suitable 1018 

genetic instruments. 1019 

TNF-α = tumour necrosis factor-α, IGFBP-1 = insulin-like growth factor-binding protein-1, LDL = low-1020 

density lipoprotein, HDL = high-density lipoprotein, IGF-1 = insulin-like growth factor-1, IL-6 = 1021 

interleukin-6, CRP = C-reactive protein, SHBG = sex hormone-binding globulin. 1022 

 1023 

Fig 2. DAG demonstrating the core assumptions of Mendelian randomization. 1024 

DAG = directed acyclic diagram, G = genetic instrument, E = exposure, O = outcome, C = confounding 1025 

factors. Arrows labelled 1, 2, and 3 represent the three core assumptions of MR: (1) the instrument 1026 

strongly associates with the exposure (“relevance”); (2) there is no confounding of the instrument-1027 

outcome relationship (“exchangeability”); and (3) the instrument only affects the outcome through the 1028 

exposure (“exclusion restriction”). MR uses genetic instruments to proxy exposures in order to 1029 

strengthen causal inference in observational epidemiological settings. As these genetic instruments are 1030 

randomly inherited at meiosis, they should not be affected by conventional confounding factors like 1031 

environmental, lifestyle, and behavioural traits. In addition, since germline genetic variants are fixed at 1032 

conception and cannot be altered by subsequent exposures, they are not susceptible to reverse 1033 

causation. Finally, germline genotype can be measured relatively precisely using modern genotyping 1034 

technologies which minimises measurement error. Collectively, these properties of germline genetic 1035 

variants (along with technologies that measure them) permit MR analyses to minimise many of the 1036 

sources of bias which can undermine robust causal inference in conventional observational 1037 

epidemiological analyses. 1038 

 1039 

 1040 
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Fig 3. DAG demonstrating the proposed causal interactions of BMI, SHBG, fasting insulin, and 1041 

bioavailable testosterone on endometrial cancer (overall and the endometrioid histological subtype). 1042 

DAG = directed acyclic diagram, BMI = body mass index, SHBG = sex hormone-binding globulin. 1043 

 1044 

Fig 4. Mendelian randomization analysis of BMI on overall and subtype-specific endometrial cancer 1045 

risk. 1046 

Results of MR analyses examining the effect of adult BMI on risk of overall and subtype-specific 1047 

endometrial cancer risk. 1048 

 1049 

Fig 5. Mendelian randomization analysis of total serum cholesterol, fasting insulin, total testosterone, 1050 

bioavailable testosterone, and sex hormone-binding globulin (SHBG) on overall and endometrioid 1051 

endometrial cancer risk. 1052 

LDL = low-density lipoprotein, HDL = high-density lipoprotein, IGF-1 = insulin-like growth factor-1, IL-6 = 1053 

interleukin-6, CRP = C-reactive protein, SHBG = sex hormone-binding globulin. (A) Results of MR analyses 1054 

examining the effects of previously reported molecular risk factors on risk of overall endometrial cancer 1055 

risk. (B) Results of MR analyses examining the effects of previously reported molecular risk factors on 1056 

risk of endometrioid subtype endometrial cancer risk. 1057 

 1058 

Fig 6. Mendelian randomization analysis of adult BMI on previously reported endometrial cancer risk 1059 

factors.  1060 

SHBG = sex hormone-binding globulin, LDL = low-density lipoprotein, CRP = C-reactive protein. 1061 
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Table 1. Details of the instruments used for exposures. 1062 

Exposure GWAS Sample size Number of SNPs R
2
 F-statistic Sex-specificity 

Adult BMI Yengo et al. [42] 681,275 507 0.078 57,847 Combined 

LDL-cholesterol Willer et al. [34] 188,577 81 0.182 15,002 Combined 

HDL-cholesterol Willer et al. [34] 188,577 89 0.055 10,978 Combined 

Triglyceride Willer et al. [34] 188,577 55 0.052 9,811 Combined 

Total serum 

cholesterol 

Willer et al. [34] 188,577 88 0.063 12,696 Combined 

Glucose Neale et al. [36] 361,194 109 0.036 11,776 Female 

Fasting insulin 

(unadjusted for 

BMI) 

Lagou et al. [116] 98,210 14 0.005 523 Combined 

Fasting insulin 

(adjusted for 

BMI) 

Chen et al. [117] 150,571 14 0.006 865 Combined 

IGF-1 (cis and 

trans variants) 

Sinnott-Armstrong 

et al. [37] 

358,072 413 0.036 13,367 Combined 

IGF-1 (cis 

variants) 

Larsson et al. 

[118] 

358,072 1 0.002 814 Combined 



 

 54

UOB Open 

IL-6 Georgakis et al. 

[38] 

204,402 7 0.004 911 Combined 

Adiponectin (cis 

and trans 

variants) 

Locke et al. [119] 14,172 3 0.023 328 Combined 

Adiponectin (cis 

variants) 

Locke et al. [119] 14,172 3 0.023 334 Combined 

Leptin Folkersen et al. 

[120] 

30,931 1 0.001 34 Combined 

CRP (cis and 

trans variants) 

Ligthart et al. [41] 204,402 45 0.035 7,414 Combined 

CRP (cis 

variants) 

C Reactive Protein 

Coronary Heart 

Disease Genetics 

Collaboration 

(CCGC) [121] 

105,476 4 0.010 1,030 Combined 

Total 

testosterone 

Ruth et al. [29] 230,454 131 0.052 10,103 Female 

Bioavailable 

testosterone 

Ruth et al. [29] 188,507 147 0.054 10,599 Female 



 

 55

UOB Open 

SHBG Ruth et al. [29] 189,473 215 0.122 26,286 Female 

BMI is scaled to an SD increase (4.7 kg/m
2
). For the analysis involving the plasma proteome, due to the 1063 

requirement of increased statistical power in order to overcome the multiple testing burden, alternative 1064 

summary genetic association data for BMI were obtained from a genome-wide association study of 1065 

681,275 individuals of European ancestry (note that this summary genetic data could not be used for 1066 

other analyses due to substantial overlap of participants with summary genetic data of other traits) [42]. 1067 

The CRP GWAS included some individuals of non-European ancestry and adjusted for ancestry where 1068 

applicable. BMI = body mass index, LDL = low-density lipoprotein, HDL = high density lipoprotein, IGF-1 = 1069 

Insulin-like growth factor-1, IL-6 = interleukin-6, CRP = C-reactive protein, SHBG = sex hormone-binding 1070 

globulin, LD = linkage disequilibrium. For instrument construction of IGF-1 (cis and trans variants), a P 1071 

value of 5 x 10
-6

 was used.  1072 
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Table 2. Results of MR analyses examining the effect of adult BMI on risk of overall and subtype-1073 

specific endometrial cancer risk 1074 

Outcome Method OR (95% CI) P value 

Overall 

endometrial 

cancer 

IVW 1.88 (1.69 to 2.09) 3.87 x 10
-31

 

Weighted median 1.89 (1.58 to 2.26) 5.18 x 10
-12

 

Weighted mode 1.82 (1.35 to 2.44) 9.88 x 10
-5 

MR Egger 2.03 (1.54 to 2.67) 8.41 x 10
-7

 

Endometrioid 

endometrial 

cancer 

IVW 1.89 (1.65 to 2.16) 1.67 x 10
-20

 

Weighted median 1.99 (1.60 to 2.46) 3.24 x 10
-10

 

Weighted mode 1.96 (1.42 to 2.69) 4.67 x 10
-5 

MR Egger 2.15 (1.52 to 3.03) 1.74 x 10
-5 

Non-endometrioid 

endometrial 

cancer 

IVW 1.67 (1.19 to 2.35) 3.03 x 10
-3 

Weighted median 2.29 (1.24 to 4.22) 8.24 x 10
-3 

Weighted mode 1.89 (0.77 to 4.63) 1.63 x 10
-1 

MR Egger 2.25 (0.99 to 5.07) 5.28 x 10
-2 

ORs are shown per increase in SD (4.7 kg/m
2
) BMI. BMI = body mass index, IVW = inverse-variance 1075 

weighted. 1076 

  1077 
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Table 3. Results of MR analyses examining the effect of previously reported and novel potential 1078 

molecular risk factors and overall and endometrioid subtype endometrial cancer risk. 1079 

Exposure Outcome Method OR (95% CI) P value 

LDL-

cholesterol 

Overall endometrial cancer IVW 0.95 (0.87 to 1.04) 3.05 x 10
-1

 

Weighted median 0.92 (0.82 to 1.03) 1.31 x 10
-1

 

Weighted mode 0.91 (0.82 to 1.02) 9.54 x 10
-2

 

MR Egger 0.90 (0.79 to 1.03) 1.35 x 10
-1

 

Endometrioid endometrial cancer IVW 0.98 (0.89 to 1.08) 6.70 x 10
-1

 

Weighted median 0.96 (0.84 to 1.10) 5.61 x 10
-1

 

Weighted mode 0.93 (0.83 to 1.06) 2.79 x 10
-1

 

MR Egger 0.93 (0.81 to 1.07) 3.31 x 10
-1

 

HDL-

cholesterol 

Overall endometrial cancer IVW 1.09 (0.97 to 1.23) 1.48 x 10
-1

 

Weighted median 1.10 (0.96 to 1.26) 1.89 x 10
-1

 

Weighted mode 1.07 (0.94 to 1.23) 3.11 x 10
-1

 

MR Egger 1.08 (0.86 to 1.35) 4.99 x 10
-1

 

Endometrioid endometrial cancer IVW 1.04 (0.90 to 1.19) 6.05 x 10
-1

 

Weighted median 0.99 (0.84 to 1.16) 8.76 x 10
-1

 

Weighted mode 1.03 (0.88 to 1.21) 7.23 x 10
-1

 

MR Egger 0.92 (0.71 to 1.20) 5.61 x 10
-1

 

Triglyceride Overall endometrial cancer IVW 0.95 (0.84 to 1.06) 3.55 x 10
-1

 

Weighted median 0.87 (0.75 to 1.01) 7.75 x 10
-2

 

Weighted mode 0.91 (0.79 to 1.04) 1.61 x 10
-1

 

MR Egger 0.83 (0.69 to 1.00) 6.03 x 10
-2

 

Endometrioid endometrial cancer IVW 0.95 (0.83 to 1.09) 4.65 x 10
-1

 



 

 58

UOB Open 

Weighted median 0.92 (0.78 to 1.08) 3.21 x 10
-1

 

Weighted mode 0.91 (0.77 to 1.08) 2.87 x 10
-1

 

MR Egger 0.87 (0.70 to 1.07) 2.02 x 10
-1

 

Total serum 

cholesterol 

Overall endometrial cancer IVW 0.90 (0.81 to 1.00) 4.01 x 10
-2

 

Weighted median 0.80 (0.71 to 0.90) 2.08 x 10
-4

 

Weighted mode 0.82 (0.73 to 0.91) 5.97 x 10
-4

 

MR Egger 0.84 (0.71 to 0.98) 3.09 x 10
-2

 

Endometrioid endometrial cancer IVW 0.91 (0.82 to 1.02) 9.31 x 10
-2

 

Weighted median 0.81 (0.71 to 0.93) 3.40 x 10
-3

 

Weighted mode 0.84 (0.74 to 0.97) 1.64 x 10
-2

 

MR Egger 0.86 (0.72 to 1.01) 7.60 x 10
-2

 

Glucose Overall endometrial cancer IVW 0.95 (0.79 to 1.14) 5.64 x 10
-1

 

Weighted median 0.97 (0.80 to 1.17) 7.36 x 10
-1

 

Weighted mode 0.93 (0.78 to 1.11) 4.47 x 10
-1

 

MR Egger 0.99 (0.73 to 1.34) 9.29 x 10
-1

 

Endometrioid endometrial cancer IVW 0.90 (0.73 to 1.11) 3.26 x 10
-1

 

Weighted median 0.98 (0.77 to 1.23) 8.31 x 10
-1

 

Weighted mode 0.98 (0.80 to 1.20) 8.29 x 10
-1

 

MR Egger 0.94 (0.67 to 1.33) 7.39 x 10
-1

 

Fasting 

insulin 

Overall endometrial cancer IVW 3.93 (2.29 to 6.74) 7.18 x 10
-7

 

Weighted median 3.49 (1.60 to 7.62) 1.67 x 10
-3

 

Weighted mode 3.55 (0.85 to 14.78) 1.06 x 10
-1

 

MR Egger 8.28 (0.67 to 102.10) 1.25 x 10
-1

 

Endometrioid endometrial cancer IVW 4.64 (2.30 to 9.36) 1.84 x 10
-5
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Weighted median 3.93 (1.56 to 9.93) 3.80 x 10
-3

 

Weighted mode 3.28 (0.69 to 15.62) 1.61 x 10
-1

 

MR Egger 21.59 (0.78 to 593.93) 9.66 x 10
-2

 

IGF-1 (cis and 

trans 

variants) 

Overall endometrial cancer IVW 0.93 (0.85 to 1.06) 2.60 x 10
-1

 

Weighted median 1.01 (0.85 to 1.20) 8.96 x 10
-1

 

Weighted mode 1.22 (0.89 to 1.67) 2.28 x 10
-1

 

MR Egger 1.17 (0.85 to 1.60) 3.49 x 10
-1

 

Endometrioid endometrial cancer IVW 0.89 (0.77 to 1.03) 1.12 x 10
-1

 

Weighted median 1.03 (0.84 to 1.25) 8.06 x 10
-1

 

Weighted mode 1.32 (0.92 to 1.90) 1.30 x 10
-1

 

MR Egger 1.22 (0.85 to 1.76) 2.75 x 10
-1

 

IGF-1 (cis 

variants) 

Overall endometrial cancer Wald ratio 1.20 (0.79 to 1.82) 3.92 x 10
-1

 

Endometrioid endometrial cancer Wald ratio 1.40 (0.85 to 2.28) 1.84 x 10
-1

 

IL-6 (scaled 

to natural log 

transformed 

mg/L change 

in CRP) 

Overall endometrial cancer IVW 0.90 (0.66 to 1.21) 4.80 x 10
-1

 

Endometrioid endometrial cancer IVW 0.86 (0.60 to 1.23) 4.01 x 10
-1

 

Adiponectin 

(cis and trans 

variants) 

Overall endometrial cancer IVW 0.92 (0.79 to 1.08) 3.17 x 10
-1

 

Endometrioid endometrial cancer IVW 0.94 (0.78 to 1.13) 4.99 x 10
-1

 

Adiponectin 

(cis variants) 

Overall endometrial cancer IVW 0.95 (0.83 to 1.08) 3.94 x 10
-1

 

Endometrioid endometrial cancer IVW 1.00 (0.86 to 1.16) 9.92 x 10
-1

 

Leptin Overall endometrial cancer Wald Ratio 1.03 (0.68 to 1.54) 8.96 x 10
-1
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Endometrioid endometrial cancer Wald Ratio 0.88 (0.54 to 1.42) 5.99 x 10
-1

 

CRP (cis and 

trans 

variants) 

Overall endometrial cancer IVW 1.07 (0.94 to 1.22) 3.03 x 10
-1

 

Weighted median 0.97 (0.84 to 1.12) 6.76 x 10
-1

 

Weighted mode 1.02 (0.91 to 1.14) 7.80 x 10
-1

 

MR Egger 0.96 (0.80 to 1.16) 6.99 x 10
-1

 

Endometrioid endometrial cancer IVW 1.12 (0.96 to 1.30) 1.39 x 10
-1

 

Weighted median 1.03 (0.87 to 1.23) 6.92 x 10
-1

 

Weighted mode 1.04 (0.90 to 1.20) 6.34 x 10
-1

 

MR Egger 0.97 (0.78 to 1.20) 7.69 x 10
-1

 

CRP (cis 

variants) 

Overall endometrial cancer IVW 0.98 (0.85 to 1.13) 7.52 x 10
-1

 

Endometrioid endometrial cancer IVW 0.98 (0.83 to 1.16) 8.02 x 10
-1

 

Total 

testosterone 

 

Overall endometrial cancer IVW 1.64 (1.43 to 1.88) 1.71 x 10
-12

 

Weighted median 1.67 (1.39 to 2.01) 3.95 x 10
-8

 

Weighted mode 1.74 (1.38 to 2.20) 8.33 x 10
-6

 

MR Egger 1.81 (1.38 to 2.38) 4.17 x 10
-5

 

Endometrioid endometrial cancer IVW 1.60 (1.36 to 1.87) 8.70 x 10
-9

 

Weighted median 1.81 (1.45 to 2.26) 2.05 x 10
-7

 

Weighted mode 1.88 (1.42 to 2.48) 2.34 x 10
-5

 

MR Egger 1.74 (1.26 to 2.41) 1.02 x 10
-3

 

Bioavailable 

testosterone 

Overall endometrial cancer IVW 1.46 (1.29 to 1.65) 3.48 x 10
-9

 

Weighted median 1.47 (1.20 to 1.82) 2.46 x 10
-4

 

Weighted mode 1.51 (1.19 to 1.93) 1.16 x 10
-3

 

MR Egger 1.90 (1.46 to 2.47) 5.63 x 10
-6

 

Endometrioid endometrial cancer IVW 1.46 (1.26 to 1.69) 3.08 x 10
-7
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Weighted median 1.42 (1.14 to 1.76) 1.97 x 10
-3

 

Weighted mode 1.60 (1.20 to 2.13) 1.59 x 10
-3

 

MR Egger 1.79 (1.31 to 2.43) 3.08 x 10
-7

 

SHBG Overall endometrial cancer IVW 0.71 (0.59 to 0.85) 2.07 x 10
-4

 

Weighted median 0.64 (0.48 to 0.86) 2.54 x 10
-3

 

Weighted mode 0.69 (0.53 to 0.89) 4.97 x 10
-3

 

MR Egger 0.62 (0.46 to 0.84) 2.52 x 10
-3

 

Endometrioid endometrial cancer IVW 0.65 (0.54 to 0.80) 3.31 x 10
-5

 

Weighted median 0.60 (0.43 to 0.86) 4.90 x 10
-3

 

Weighted mode 0.58 (0.40 to 0.82) 2.50 x 10
-3

 

MR Egger 0.61 (0.44 to 0.84) 3.33 x 10
-3

 

ORs are shown per increase in inverse normal transformed nmol/L SHBG, natural log transformed 1080 

pmol/L fasting insulin, inverse normal transformed nmol/L total testosterone, inverse normal 1081 

transformed nmol/L bioavailable testosterone, SD (38.7 mg/dL) LDL-cholesterol, nmol/L IGF-1, mmol/L 1082 

blood glucose, natural log transformed CRP mg/L IL-6, natural log transformed ug/ml adiponectin for 1083 

combined instrument, natural log transformed ug/ml cis-only adiponectin, natural log transformed mg/L 1084 

CRP, mg/dL triglyceride, SD (41.7 mg/dL) total serum cholesterol, mg/dL HDL-cholesterol, pg/mL leptin. 1085 

LDL = low-density lipoprotein, HDL = high density lipoprotein, IGF-1 = Insulin-like growth factor-1, IL-6 = 1086 

interleukin-6, CRP = C-reactive protein, SHBG = sex hormone-binding globulin, IVW = inverse-variance 1087 

weighted. For instrument construction of IGF-1 (cis and trans variants), a P value of 5 x 10
-6

 was used. 1088 

  1089 
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Table 4. Results of MR analyses examining the effect of BMI on previously reported molecular risk 1090 

factors. 1091 

Outcome Method Effect estimate (95% CI) P value 

Total serum cholesterol IVW -0.03 (-0.06 to 0.01) 1.22 x 10
-1

 

Weighted median -0.06 (-0.11 to -0.01) 2.98 x 10
-2

 

Weighted mode -0.08 (-0.15 to 0.00) 4.46 x 10
-2

 

MR Egger -0.08 (-0.16 to 0.00) 3.89 x 10
-2

 

Fasting insulin IVW 0.17 (0.15 to 0.19) 1.51 x 10
-74

 

Weighted median 0.18 (0.15 to 0.21) 8.51 x 10
-31

 

Weighted mode 0.18 (0.12 to 0.24) 1.88 x 10
-9

 

MR Egger 0.20 (0.16 to 0.25) 1.30 x 10
-16

 

Total testosterone IVW 0.08 (0.05 to 0.11) 9.04 x 10
-10

 

Weighted median 0.06 (0.03 to 0.09) 4.95 x 10
-4

 

Weighted mode -0.01 (-0.08 to 0.07) 8.60 x 10
-1

 

MR Egger 0.02 (-0.05 to 0.09) 5.23 x 10
-1

 

Bioavailable testosterone IVW 0.26 (0.23 to 0.29) 9.97 x 10
-68

 

Weighted median 0.24 (0.20 to 0.28) 1.72 x 10
-38

 

Weighted mode 0.09 (0.01 to 0.17) 2.41 x 10
-2

 

MR Egger 0.16 (0.08 to 0.24) 4.36 x 10
-5

 

SHBG IVW -0.17 (-0.19 to -0.16) 4.86 x 10
-125

 

Weighted median -0.16 (-0.18 to -0.15) 8.85 x 10
-77

 

Weighted mode -0.15 (-0.18 to -0.12) 8.43 x 10
-20

 

MR Egger -0.13 (-0.17 to -0.09) 3.11 x 10
-11
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BMI is scaled to an SD increase (4.7 kg/m
2
). Effect estimate represents change in SD (41.7 mg/dL) total 1092 

serum cholesterol, natural log transformed pmol/L fasting insulin, inverse normal transformed nmol/L 1093 

total testosterone, inverse normal transformed nmol/L bioavailable testosterone, and inverse normal 1094 

transformed nmol/L SHBG. SHBG = sex hormone-binding globulin, IVW = inverse-variance weighted.  1095 
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Table 5. Results of multivariable MR mediation analysis examining the effect of BMI and endometrial 1096 

cancer with previously reported molecular risk factors as potential mediators. 1097 

Mediator Outcome 

Direct Effect of 

BMI on Outcome 

Indirect Effect of 

Mediator on 

Outcome 

% Mediated 

(95% CI) P value 

Fasting 

insulin 

Overall 

Endometrial Cancer 

1.75 1.07 11% (1 to 21%) 2.89 x 10
-2

 

Endometrioid 

Endometrial Cancer 

1.72 1.11 16% (3 to 28%) 1.24 x 10
-2

 

Bioavailable 

testosterone 

Overall 

Endometrial Cancer 

1.70 1.11 15% (10 to 20%) 1.43 x 10
-8

 

Endometrioid 

Endometrial Cancer 

1.72 1.11 15% (9 to 22%) 2.15 x 10
-6

 

SHBG Overall 

Endometrial Cancer 

1.80 1.04 7% (1 to 12%) 1.81 x 10
-2

 

Endometrioid 

Endometrial Cancer 

1.86 1.02 2% (-9 to 14%) 6.87 x 10
-1

 

Direct effect is defined as the remaining effect of the exposure (BMI) on the outcome (endometrial 1098 

cancer risk) when the effect of the candidate mediator on the outcome has been adjusted for. Indirect 1099 

effect is defined as the effect of the exposure (BMI) on the outcome (endometrial cancer risk) through 1100 

the candidate mediator. SHBG = sex hormone-binding globulin.  1101 
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