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Abstract

Identification of clinically meaningful subphenotypes of disease progression can facilitate better
understanding of disease heterogeneity and underlying pathophysiology. We propose a
machine learning algorithm, termed dynaPhenoM, to achieve this goal based on longitudinal
patient records such as electronic health records (EHR) or insurance claims. Specifically,
dynaPhenoM first learns a set of coherent clinical topics from the events across different patient
visits within the records along with the topic transition probability matrix, and then employs the
time-aware latent class analysis (T-LCA) procedure to characterize each subphenotype as the
evolution of these learned topics over time. The patients in the same subphenotype have similar
such topic evolution patterns. We demonstrate the effectiveness and robustness of
dynaPhenoM on the case of mild cognitive impairment (MCI) to Alzheimer’s disease (AD)
progression on three patient cohorts, and five informative subphenotypes were identified which
suggest the different clinical trajectories for disease progression from MCI to AD.
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Introduction

Due to the complex and heterogeneous nature of human diseases such as Alzheimer’s disease
(AD), patients usually demonstrate diverse clinical manifestations. Identification of clinically
meaningful subphenotypes, which are subgroups of patients with coherent clinical
characteristics, is critical for improved understanding of the underlying disease mechanisms and
inform precision medicine (1) (2). In recent years, with the increasing adoption of various health
information systems such as electronic health records (EHR), comprehensive information about
patients have been accumulated, such as demographics, diagnosis, medications, lab tests, etc.
(3). With these diverse data, there have been existing studies developing data-driven
approaches to identify disease subphenotypes (4-7), but they typically focused on a set of
selected clinical events but did not consider temporal evolutions of these events.

To effectively explore the clinical information within the patient records and identify
comprehensive disease subphenotypes, we need to address the following general challenges
for analyzing these data: /) Information Heterogeneity: These data contain different types of
information as mentioned above; ii) Irregular Visits: the time intervals between any two
successive patient visits are typically irregular; iii) Missing Values: there is substantial missing
information in patient records (e.g., there will not be any record if a patient did not pay a visit to
the clinic, but it does not mean the patient is without the disease); iv) High-Dimensionality and
Sparsity. Clinical events within patient records are represented as systematic codes with large
vocabularies (e.g., there are ~68,000 distinct diagnosis codes for in ICD-10, which stands for
International Classification of Diseases, 10" version (8)), and every patient visit only has a few
codes (9); v) Interpretability. |t is critical to make the analysis results interpretable and easy to
understand by the clinicians.

With all these considerations, in this paper, we propose a machine learning framework named
dynaPhenoM to derive disease progression subphenotypes from longitudinal patient records.
Progression subphenotype indicates that patients belonging to the same subphenotype have
similar temporal evolution patterns of the clinical events in their records. The overall architecture
of dynaPhenoM is shown in Figure 1. After data preprocessing, dynaPhenoM contains two main
modules: the dynamic multimodal topic model (DMTM) for deriving new interpretable
compressed representations of multimodal clinical events, and the time-aware latent class
analysis (T-LCA) for subphenotyping that embeds the time of irregular visits.

DMTM builds on the concepts of latent topic modeling (LTM) (70) which is often used in text-
mining tasks. In analogy with test mining, DMTM considers clinical events denoted by codes as
words and each visit as a document. DMTM is also related to some studies (9, 11, 12) that use
methods of matrix factorization or LTM to learn compressed representations from original EHR
data. However, existing methods focus on the single visit of each patient while DMTM learns
representations from longitudinal information. LCA (73) is a widely used subphenotyping
method in clinical studies (74-16). When LCA is applied for deriving longitudinal subphenotypes
(77), it does not consider a fact that time intervals between any two successive patient visits are
typically irregular. Motivated by this problem, we developed T-LCA in dynaPhenoM.

To demonstrate the effectiveness of dynaPhenoM, we apply it to identify the progression
subphenotypes for patients who progressed from mild cognitive impairment (MCI) to
Alzheimer’s disease (AD). AD is the most prevalent neurodegenerative disorder that affects
millions of people all over the world (78) and its prevalence is expected to double in the next 20
years (19). The underlying disease mechanism of AD is highly complex and there is no effective
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treatment for AD yet (20). On the other hand, MCl is the stage between the expected cognitive
decline of normal aging and dementia, including AD. Understanding the clinical heterogeneity of
patients progressing from MCI to AD and identifying the corresponding progression
subphenotypes can potentially reveal the different underlying disease pathophysiology and shed
light on effective treatments. We leveraged three real world patient record databases, including
one national insurance claims database, one EHR database from a state clinical research
network, and one EHR database from a regional health system, to achieve our goal. Five
clinically-meaningful subphenotypes were identified from the development cohort and validated
on the other two cohorts. We performed extensive statistical analysis to interpret these
subphenotypes, and we have also built predictive models to investigate whether these
subphenotype can be identified early.

Results
dynaPhenoM as a framework to identify longitudinal subphenotypes.

The overall workflow of dynaPhenoM is illustrated in Figure 1, including two key components:
DMTM and T-LCA. DMTM learns new representations of patient visits through a dynamic multi-
modal topic modeling process. Considering the irregular patient visits, T-LCA derives the
progression subphenotypes from the trajectories of these new representations through an LCA
(13) type of process.

Specifically, after representing different types of clinical events as respective binary vectors, we
first use DMTM to learn a set of multimodal clinical topics from the patient records, where each
topic can be viewed as a set of clinical events that are more likely to co-occur within a patient
visit. Then for every patient visit, DMTM infers the mixture memberships, also called topic
weights, as the new representations of this visit. Higher weight on a particular topic indicates
that the corresponding patient visit includes more events from this topic. This topic weight based
representation transforms the visit representation from the original high-dimensional binary
space to a low-dimensional continuous space, and each dimension in this space is a topic
composed of a set of frequently co-occurred clinical events. Thus this representation is highly
interpretable. By concatenating the learned representations for all visits of a specific patient
according to the timeline, we can get a multi-variate temporal sequence for the patient with
irregular intervals. We then derive disease progression subphenotypes by grouping these
temporal sequences with T-LCA. Technical details of these two modules are provided in Method
and Supplement.

Cohort Definition.

We derived the progression subphenotypes from MCI to AD from the development cohort, and
got them validated in two validation cohorts.

Development cohort: We leveraged the patient EHR from OneFlorida Clinical Research
Consortium (271) —a clinical data research network funded by the Patient-Centered Outcomes
Research Institute (PCORI) contributing to the national Patient-Centered Clinical Research
Network (PCORnet)—to derive the subphenotypes. We used diagnosis codes (detailed in
Supplemental Table 1) to identify a total of 5337 patients who experienced the progression from
MCI to AD, and among them 2,995 patients whose progression time were longer than one year
were included in our development cohort.



https://doi.org/10.1101/2021.11.01.21265725

medRxiv preprint doi: https://doi.org/10.1101/2021.11.01.21265725; this version posted November 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

Validation cohorts: We validated the derived subphenotypes on two independent cohorts. One
is the large-scale administrative records in the IBM Health MarketScan Commercial Claims
database (22) for the years 2009 to 2020. The second one is the patient EHR data from the
Mount Sinai Health System which contains five locations in New York City. Similar to the
development cohort, we finally obtained 18,805 patients from MarketScan, and 698 patients
from Mount Sinai for validating subphenotypes.

Details of these three studied cohorts are summarized in Table 1, where the corresponding
codes about key comorbidities and medications are listed in Supplemental Table 2~4. Detailed
descriptions of cohorts are provided in Methods.

The analysis on OneFlorida data is approved by University of Florida institutional review board
under number IRB202000704. The analysis on MarketScan data is approved by University of
Kentucky CCTS Enterprise Data Center institutional review board under number 43542. The
analysis on Mount Sinai data is approved by institutional review board under number IRB-19-
02369.

Learning clinical topics with multimodal information

The DMTM module in dynaPhenoM learns multimodal clinical topics from the collection of the
records in all patient visits longitudinal records. To choose the optimal number of topics (K), on
development cohort, we performed five-fold cross-validation to evaluate the data likelihood and
topic coherence with different K (Figure 4a in Supplement), and finally we set K = 30. According
to the percentage of mean topic weights (Figure 5 in Supplement; defined in Methods), we
selected the 13 prevalent clinical topics (others were shown in Figure 6 in Supplement) learned
from the development cohort, which are demonstrated in Figure 2.

In Figure 2, each clinical topic is represented with three modalities: disease, medication, and
procedure, which are then described with the top-5 most related clinical events according to
their weights in each topic shown in the color bar. From the figure we can observe that these
topics are typically associated with particular disease conditions. For example, topic T11 is
related to kidney diseases such as chronic kidney disease (CKD), which may lead to the
accumulation of uremic toxins which acts as a high risk factor of cognition impairment and AD
(23). Topic T1 is related to cardiovascular conditions which have been known to be risk factors
of AD (24-26). Although the exact mechanism on how cognitive decline and diabetes (in T2) are
connected is not clear yet, researchers have shown that that high blood sugar or insulin can
harm the brain in several ways (27, 28) like high blood sugar causing inflammation that may
damage brain cells and cause cognitive impairment. Similarly, there has been research showing
that certain mental disorders (in T7) such as anxiety, depression, and hearing loss are
commonly observed neuropsychiatric comorbidities of MCI or AD (29, 30).

We observe strong coherence across the three modalities for each topic. Such coherence can
be reflected on many different aspects including, but not limited to i) medications treating
diseases, such as Donepezil/Memantine and dementia (in T3); ii) medications treating disease
comorbidities, for example, in T11 (Kidney), major depressive disorder affects one in five
patients with CKD, and Sertraline is a potential antidepressant treating for CKD patients with
depression (37); iii) medications causing disease conditions as side-effects, for example, in T6
(Heart), Gabapentin is a widely used analgesic, anticonvulsant and anxiolytic agent, but authors
in (32) reported that taking Gabapentin will increase the risk of having heart failure for elderly
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patients; iv) procedures associated with diseases, such as evaluating blood pressure and body
mass index for patients with cardiovascular diseases (T1). Moreover, with the multimodal topics,
given one clinical event, we constructed its interactions with other events by calculating their
similarities (see Methods), and the detailed results are provided in Supplemental Figure 7.

Transition probabilities across different clinical topics

Discovering the transition patterns across clinical topics is helpful for understanding the clinical
progression of diseases (MCI to AD in our case). Figure 3 shows the transition probabilities
across all clinical topics (we summarized the remaining less prevalent 17 topics as others) on
the development cohort, where the value of (i, j)-th entry represents the transition probability
(%) from i-th topic to j-th topic in two consecutive visits.

The figure demonstrates that the diagonal values of the transition matrix are bigger, which
suggests that the disease topics for consecutive patient visits tend to stay the same.

In addition, we have also observed other entries with relatively larger values such as transition
from cardiovascular disease, including hypertension and hyperlipidemia, to heart disease
(T1->T6: 14.21%), brain disease (T1->T9: 10.78%), and diabetes (T1->T2: 10.69%) (33-37).
From brain disease to eye disease (T9-> T13, 14.76%) and mental problems (T9->T7, 9.01%),
as well as from eye disease to mental problems (T13->T7, 12.91%). All these transitions have
been demonstrated in prior studies (38-40). Other high probability entries include the transitions
between T4 (bone) and T5 (movement), T11 (kidney) and T12 (urinary system). All these
transitions can also be observed on the derived subphenotypes which are detailed in the next
subsection.

These results on clinical topics and their transition probabilities shows that DMTM is able to
learn interpretable and clinically meaningful topics. Based on them, DMTM infers topic weights
as a new representation for each patient visit in a low-dimensional continuous space, which
facilitates the subsequent derivations of progression subphenotypes.

Progression subphenotypes

With the new representations learned from DMTM, on the development cohort, we used T-LCA
to identify five subphenotypes including 2254 (75.26%) patients (see details in Supplemental
Method). Figure 4 visualizes these subphenotypes, where the horizontal axis is the calendar
time (in month) starting from MCI onset, and vertical axis represents the average (over patients
within the corresponding subphenotype) number of diagnosis codes in one topic whose
probabilities of occurrence are larger than 0.5. Therefore, larger values on the vertical axis
indicates more diagnosis events from the corresponding topic tend to appear (detailed in
Method). We demonstrate these subphenotypes according to the change of their topic
compositions in Figure 4a, where major topics whose value exceeds 2 on vertical axis at least
once during the entire progression course are highlighted in solid lines. Figure 4b illustrates the
evolution of each topic within different subphenotypes. Characteristics including demographics,
progression time, key comorbidities and medications of these subphenotypes at MCI onset are
shown in Table 2 (detailed codes are provided in supplemental Table 2-4). The Kaplan-Meier
survival curves with AD onset as outcome event (starting from MCI onset) were shown in Figure
5, which provides a comprehensive picture on the progression speed across the 5 identified
subphenotypes. For each subphenotype, we also showed the change in percentage of patients
with different comorbidities during the progression (Supplemental Figure 8), and the percentage
of patients taking certain medications during the progression (Supplemental Figure 9).
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With all these results, in the following we formally characterize each subphenotype.

Subphenotype 1 consists of 570 (19.03%) patients with more Caucasian people (64.04%)
and has the fastest progressive speed (733.5 [508.0~998.0] in days; Figure 5). This
subphenotype is dominated by T3 (Dementia) and T9 (Brain), where the weight of T3 is
stays at a high level during the entire progression, and the value of T9 has clearly increased,
especially in the later stage of the progression (Figure 4a). Accordingly, at MCI onset, the
percentage of patients having dementia and memory loss is much higher than that in other
subphenotypes (Table 2). Meanwhile, during the progression from MCI to AD, more patients
would have an increased risk of Parkinson’s disease (PD) and seizures (Supplemental
Figure 8), which are closely related with cognitive decline and cerebrovascular problems
(41-43).

Subphenotype 2 consists of 509 (16.99%) patients. Compared to the other subphenotypes,
it has more African American (17.88%) and male (42.63%) patients and has the second
longest progression time (888.0 [607.0~1465.0] in days; Figure 5). This subphenotype is
dominated by T11 (Kidney), T12 (Urinary system), and T2 (Diabetes), where T2 stays high
while T12 and T2 both show increasing trends (Figure 4a). In addition to a high prevalence
of CKD and diabetes at MCI onset (Table 2), patients are more likely to have Pneumonia
(44), Tobacco use disorder (45), and anemias (46) (Figure 8) during the progression.
Moreover, Jain et al. (317) found that 21% patients with CKD in the U.S. would suffer from a
major depressive disorder episode, which could be a potential reason that patients in this
subphenotype tend to take antidepressants (Supplemental Figure 9).

Subphenotype 3 consists of 660 (22.04%) patients whose demographics and progression
time (848.5 [558.0~1391.25] in days; Figure 5) are close to the cohort level. This
subphenotype is characterized by increasing T1 (Hypertension and Hyperlipemia) and T6
(Heart) (Figure 4a), as well as a high level of T8 (Digest system) (Figure 4b). This may
cause higher risk of Vitamin-B and Vitamin-D deficiency (Figure 8 in Supplement), which are
two common conditions associated with dementia or AD (47, 48). Accordingly, the
percentage of patients taking Gastrointestinal agents and beta blocking agents is high
(Supplemental Figure 9).

Subphenotype 4 consists of 320 (10.68%) patients with more female (72.50%) patients and
oldest MCI onset age (80.0 [73.0~86.5] in year) among all subphenotypes. Meanwhile, the
progression speed is the second fastest (807.0 [558.0~1269.0] in days; Figure 5). This
subphenotype is characterized by T4 (Bone) and T5 (Movement) whose values stay high
during the progression (Figure 4a). This subphenotype has the highest prevalence of
Parkinson’s Disease at MCI onset (Supplemental Figure 8), the prevalence of decubitus and
hypothyroidism have greatest increase over the progression course, which could be due to
movement disorders (49, 50). There is also a high rate of opioid prescription in this
subphenotype (Supplemental Figure 9) potentially due to the pain caused by problems of
bone (T4) and muscle (T5) (Figure 2).

Subphenotype 5 consists of 195 (6.51%) patients with more African American (22.05%)
patients whose age of MCI onset is the youngest (72.0 [64~78.0]), and the progression time
is the longest (939 [681.0~1633.0]; Figure 5). This subphenotype is characterized by
increasing T7 (Mental), T6 (Movement), and T13 (Eye). Correspondingly, compared with
other subphenotypes, we observed the largest increased percentage of patients who suffer
from schizophrenia, obesity, bipolar disorder, and fatigue (Supplemental Figure 8), most of
which are associated with mental disorders.
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Sex- and race- stratified analysis

We have also conducted sex- and race-stratified analysis for the entire patient cohort and with
respect to different subphenotypes. We first checked the difference of MCI onset ages and
lengths of progression time breaking down by different race and sex subgroups, and the results
are shown in Figure 6. On the entire patient cohort, the age distributions between different sex
(Figure 6a) or race (Figure 6b) groups are significantly different but there is no significant
difference on the progression time (Figure 6f, 6g). Furthermore, the distributions of age and
progression time have significant differences (Figure 6c¢, 6g) across different subphenotypes
(detailed pairwise comparisons are provided in Supplemental Table 5~8). With further analysis
across all subphenotypes, we found that the female patients are typically older than male
patients at MCI onset (Figure 6d), and the progression time between patients with different
genders have no significant difference (Figure 6f). We have also examined these indices with
respect to different races across different subphenotypes (Figure 6e and 6j). Some differences
are observed. For example, the age of Caucasian patients is higher than that of African
American patients on Subphenotype 1 (p-value<0.001) and Subphenotype 2 (p-value<0.001);
the MCI-to-AD progression time of Caucasian patients is longer than that of the African
American patients in Subphenotype 2 (p-value<0.001), while shorter than that of African
American patients in Subphenotype 3 (p-value=0.031).

There have been prior studies showing gender and race can affect the manifestation and
pathophysiology of dementia or AD (67-54), thus we did both sex-stratified (Figure 7) and race-
stratified analysis (Figure 10 in Supplement) for key clinical components along with their
corresponding top-5 diagnosis events (Figure 2). To demonstrate the heterogeneity of disease
progression, we show differences of these diagnoses at both MCl and AD onsets for different
stratified groups in each subphenotype. One immediate observation is that for each specific
topic or disease, there is no consistent observations across all subphenotypes, indicating the
complexity of disease progression pattern across different sex- or race- stratified subgroups
(55). On the other hand, we do have some consistent observations in at least three
subphenotypes. For example, at AD onset topics T1 (Hypertension and Hyperlipidemia), T3
(Dementia), T9 (Brain), T11 (Kidney), and T12 (Urinary system) have significant differences
between male and female. More concretely, the corresponding diseases of these topics have
demonstrated different prevalence between female and male, such as hypertension and
hyperlipidemia in T1, cardiovascular diseases in T9, and urinary tract infection in T12 are more
prevalent in women, while neurological disorder in T3 and hearing loss in T7 are more prevalent
in men, which have also been mentioned in prior studies (53). We further noticed that their
health condition changes during MCI-to-AD progression are different for different
subphenotypes. For example, subphenotype 3 is characterized by increased risk of T1
(Hypertension and Hyperlipidemia) and T6 (Heart disease) (Figure 4a), and the values of these
two topics change slowly in other subphenotypes (Figure 4b). These two topics have also
demonstrated sex-stratified difference on the progression from MCI to AD in subphenotype 3.
Specifically, at MCI onset, only heart failure (belonging to these two topics) prevalence is
significantly different between male and female (more prevalent in female), while at AD onset
more comorbidities from these two topics stand out. For example, essential hypertension,
hyperlipidemia, other chronic ischemic heart disease, and heart failure are all more prevalent in
female patients. Similar observations are found in i) subphenotype 1 for T9 (Brain) where
cerebrovascular diseases and occlusion of cerebral arteries are significantly more prevalent in
female patients at AD onset but not at MCI onset, while Epilepsy, recurrent seizure, and
convulsions are significantly more prevalent among male patients at MCI onset but not at AD
onset; ii) subphenotype 2 for T12 (Kidney) where urinary tract infection and retention of urine
are significantly more prevalent in female patients at AD onset but not at MCI onset; jii)
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subphenotype 5 for T13 (Eye) where cataract and senile cataract are significantly more
prevalent among male patients at AD onset but not at MCI onset. These observations can help
us better understand the progression heterogeneity from MCI to AD (54, 56-59).

Subphenotype reproducibility

To demonstrate the robustness of these derived progression subphenotypes, we have also
reproduced these subphenotypes on the MarketScan and Mount Sinai data, with more details
summarized in Table 1.

Using the same procedures, we were able to derive a set of progression subphenotypes whose
baseline characteristics at MCI onset are provided in Supplemental Table 9~13. The top-13
most prevalent clinical topics, topic transition matrix, topic composition and evolutions of
different subphenotypes, outcome analysis in terms of encountering AD onset, distributions of
age and progressive time, percentage of patients with different comorbidities during
progression, and sex-stratified comorbidity analysis on MarketScan are provided in
Supplemental Figure 11~17. Since there is no race information in MarketScan, we performed
region-stratified analysis instead and the results are shown in Supplemental Figure 15, from
which we can observe that patients in the South region have younger MCI onset age and longer
progressive time (compared to the overall statistics on the entire MarketScan data set), which is
consistent with the results listed in Table 2 collected from OneFlorida data. The related results
obtained from the Mount Sinai dataset are shown in Supplemental Figure 18~22 and Table 14
with detailed descriptions in Supplemental results. On these two validation cohorts, we identified
the same subphenotypes with similar demographics and comorbidity characteristics, illustrating
the robustness of our methods.

Early prediction of the progression subphenotype

Since the identified subphenotypes capture patients’ health condition progression patterns
within the full course of MCI-to-AD conversion, early prediction of patients’ subphenotype
memberships may largely enhance their clinical implications. To evaluate such predictability of
the derived subphenotypes, we conducted two sets of experiments, i.e., internal and external
predictions. Internal prediction refers to the procedure of developing and evaluating the
predictive model on the same cohort (OneFlorida or MarketScan) through 5-fold cross
validation. External prediction is the paradigm of training the predictive model on one cohort
(e.g., OneFlorida or MarketScan) and evaluate it on the other cohort (e.g., MarketScan or
OneFlorida), which evaluates the ability of model transportability. For both experiments, we
trained a logistic regression model based on average topic weights representations learned
from DMTM for all visits before the MCI onset (we also tried to add 3-month or 6-month data
after MCI onset) to predict the subphenotype assignments (Workflow is in Figure 8a with details
in Method). The prediction results measured by accuracy and area under the receiver operator
characteristic curve (AUC) are shown in Figure 8b, where we used diagnosis, drug, and
procedure events collected from different periods as the input: i) before MCI onset (baseline); ii)
until three months after MCI onset; iii) until six months after MCI onset. We observed that with
baseline data on development cohort (OneFlorida dataset), the subphenotypes can be predicted
with accuracy 63.84%, Micro AUC 78.69%, Macro AUC 77.78%, and the performance can be
further improved to accuracy 79.93%, Micro AUC 85.03%, Macro AUC 83.58% with additional
data from three months after baseline, and to accuracy 86.04%, Micro AUC 92.72%, Macro
AUC 92.39% with additional data from six months after baseline. Similar tendencies were also
overserved on the other experimental settings. Moreover, the model performance did not
change much (the mean accuracy decreased by 0.79% from MarketScan to OneFlorida while
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by 5.90% from MarketScan to OneFlorida) when applying to an independent external data set,
which demonstrates the robustness of these identified subphenotypes and the transportability of
the predictive model.

Discussion

Identification of clinically-meaningful disease progression subphenotypes can provide invaluable
information regarding disease heterogeneity and underlying pathophysiology. In this paper, we
developed the dynaPhenoM to achieve this goal using longitudinal patient records. These
patient records involve EHR from two independent health systems and a national insurance
database. Technically, dynaPhenoM includes two key components, DMTM for extracting
interpretable multimodal clinical topics from patient visit vectors and building continuous valued
low-dimensional visit representations, and T-LCA to derive progression subphenotypes based
on the newly built representations.

To evaluate the effectiveness and robustness of dynaPhenoM, we performed comprehensive
analysis on the case of progression from MCI to AD based with the OneFlorida database as
development cohort (including 2,995 patients), and the MarketScan database (including 18,805
patients) and the Mount Sinai database (including 689 patients) as validation cohorts. As seen
in existing research (78, 60-62), AD is highly heterogenous, thus categorizing patients into
different clinically coherent subgroups is important for understanding the mechanism of AD and
develop stratified medicine. Different from existing works that focus on identifying AD
subphenotypes according to specific clinical data (e.g., cognitive assessment score) at AD
onset, our study identified progression subphenotypes with a diverse set of clinical events
during the progression from MCI to AD. Therefore, we expect our analysis can provide
additional insights on the dynamic evolution of the disease.

With dynaPhenoM, we were able to identify 13 important and clinically-meaningful topics and
five progression subphenotypes characterized by distinct patient demographics, progression
duration, and associated comorbidities. Specifically, Subphenotype 1 is dominated by topics of
brain diseases, includes more Caucasian people, and has the shortest MCI-to-AD progression
duration (among the 5 subphenotypes). During the progression from MCI to AD, the patients are
with increased risks of PD and seizure. Subphenotype 2 is composed of more male and
African American patients and dominated by the topics of diseases of kidney, urinary system,
and diabetes. Patients within this subphenotype have the second longest progression duration
and second youngest MCI onset age. More patients would suffer from pneumonia (44) and
anemias. Subphenotype 3 is described by the increased risk of topics related to hypertension,
hyperlipemia, and heart diseases, which may also be associated with a higher risk of Vitamin-B
and Vitamin-D deficiency. Subphenotype 4 is characterized by high risk of topics about
diseases of bone and disorder of movement, with more female. The patients in this
subphenotype have the oldest MCI onset age and second shortest progression speed.
Subphenotype 5 includes more African American patients and is dominated by topics of
mental, movement, and eye problems. More patients would suffer from schizophrenia, obesity,
bipolar disorder, and fatigue, most of which are associated with mental disorders.

We have also performed sex- and race- stratified analysis for each subphenotype on MCl-onset
age and progression duration. We found that more females than males with MCI will progress to
AD but males tend to have younger MCI or AD onset ages, and the progression durations from
MCI to AD are similar for males and females. These trends are observed on both the entire
cohort and each of the identified subphenotypes. In addition, we also observed that African
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American patients tend to have younger MCI onset ages than Caucasian patients (63) and have
similar progression duration with Caucasian patients. The race-stratified analysis shows
different patterns among different subphenotypes. For instance, the difference of MCI onset
between Caucasian and African American patients are significant (p-value<0.001) on
Subphenotype 1 and 2, but not significant on other three subphenotypes. African American
patients have longer progression duration on subphenotype 2 (p-value<0.001) but shorter one
on subphenotype 3 (p-value = 0.015). Chen et al. (64) pointed out that we need pay more
attention about the disparities in dementia prevalence across racial or ethnic groups from the
understanding of mechanism of dementia to the drug development.

As suggested by previous clinical studies (54, 56-59), studying the differences on the changes
of related comorbidities before AD onset can potentially improve our understanding of the
underlying disease mechanism and offer informative guide for follow-up treatments. To achieve
this goal, we performed further sex- and race- stratified analysis of comorbidities in terms of key
clinical topics along with their associated top-5 diagnoses. To better explore the changes during
the progression, we did such analysis on both MCI and AD onsets, where the observations on
AD onset are similar with those in Tang et.al. (63). For example, female AD patients have
greater association with hypertension (T1), hyperlipidemia (T1), cardiovascular risk factors (T9),
and urinary tract infection (T12) while male AD patients have higher risk in hearing loss (T7) and
neurological disorders (T3).

To validate the robustness and reproducibility of the results obtained from dynaPhenoM, we
validated our method on another large cohort, where we obtained consistent results as derived
from the development cohort. We have also demonstrated that these subphenotypes are
predictable at early stage (within 6 months after MCI onset), which further enhances their
potential clinical utilities.

There are limitations on the proposed approach. Technically, there are two main modules in
dynaPhenoM, DMTM and T-LCA. For DMTM, currently it only considers discrete clinical events
including diagnoses, medications and procedures. Actually, equipped with techniques in (65),
we can further extend DMTM to consider continuous valued events such as lab tests. For T-
LCA, it is currently an independent procedure building on top of the representations derived
from DMTM. In other words, there is no guarantee that the learned representations can lead to
coherent subgroups identified using T-LCA. In the future, we will investigate approaches that
can link DMTM and T-LCA in a unified framework so that the topic-based representation and
progression subphenotype can be jointly derived. In the study, only structured information in
EHR or claims has been explored. For AD, important information is encoded in unstructured
data sources, such as neuroimage, clinical notes, and genetic data. We will explore strategies to
incorporate these data in future studies as well. Even though, not limited in the case of disease
progression from MCI to AD, dynaPhenoM is an efficient data-driven framework to identify
progression subphenotypes from longitudinal multimodal clinical data.

Methods

Detailed descriptions of cohort definition

Development cohorts: We leveraged the patient EHR from OneFlorida Clinical Research
Consortium (217) to derive the subphenotypes. Detailed inclusion/exclusion cascade is
demonstrated in Supplemental Figure 1. All events in each patient’s records, including
diagnoses (ICD-9 and ICD-10 codes), drugs (RxCUI and NDC codes) and procedures (CPT
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codes) from MCI onset to AD onset, were collected in our modeling process. The diagnosis
codes were then mapped to 1,643 unique PheCode (66) (groups ICD codes into clinically
relevant phenotypes). For drugs, the NDC codes were then mapped to RxCUI (ingredient level),
and the total number of unique RxCUI codes appeared was 5905. The total number of unique
CPT codes appeared was 5129. In our investigation, we have aggregated the patient visits
within every 3 months from the MCI onset to AD onset to form the record sequence for each
patient.

Validation cohorts: We validated the derived subphenotypes on two independent cohorts. The
first one is IBM Health MarketScan Commercial Claims database (22) for the years 2009 to
2020. This dataset contains about 164 millions of enrollees annually across the US, and these
enrollees are nationally representative of the US population with respect to gender, regional
distribution, and age, supporting well-powered subgroup analysis. The second one is the patient
EHR data from the Mount Sinai Health System which contains five locations in New York City.
Similar to the development cohort, we applied a set of inclusion/exclusion criteria (detailed in
Figure 2 and 3 in Supplement) on these two datasets, and we finally obtained 18,805 patients
from MarketScan, and 698 patients from Mount Sinai for validating subphenotypes. For the
MarketScan dataset, the patient diagnosis codes were recorded as ICD-9 and ICD-10,
medications were encoded by Generic Product Identifier (GPI) codes, and procedures were
encoded with PROCCD codes (mixture of CPT and HCPCS). In the patient cohort we extracted,
the diagnosis codes were mapped to 1,750 unique PheCode, while the total unique GPI and
PROCCD codes were 4,023 and 8,252. For the Mount Sinai dataset, the diagnosis, medication,
and procedure events were encoded with 723 unique PheCode, 3497 unique RxCUI, and 1069
unique CPT codes.

Dynamic multimodal topic model (DMTM)

We represented the diagnosis, drug, and procedure events as three binary feature vectors. Due
to the large vocabulary size (total unique codes) of three modalities, the original feature vectors
are high-dimensional and sparse (9), which makes efficient clustering difficult. Therefore, we
proposed a novel probabilistic model, dynamic multimodal topic model (DMTM), to extract low-
dimensional continuous features from original high-dimensional binary vectors. The new
features extracted from DMTM are not only beneficial for the following derivation of
subphenotypes, but also explainable for the exploration of subphenotypes.

As shown in Figure 1, DMTM models longitudinal multimodal clinical events from longitudinal
patient events as a latent generative process, from the first visit to the last, whose specific
notations are provided in Supplemental Table 15. After collecting all patient records, the m-th

modality of n-th patient at t-th visit can be represented as a binary vector xf{"? € {0,1}Vm (m =
1,--,M;t=1,--,T,; M = 3 in our current case including diagnosis, medication, and procedure
events), where 1}, represents the total unique clinical events (vocabulary size) in m-th modality,
and T, is the total number of visits for the n-th patient. Suppose that there are K latent clinical

topics and each contains M different types of topics corresponding to different modalities

denoted as @™ e R"™** in which the k-th column, ¢f(m) € RK’” , represents k-th topic, a

distribution over all events (unique codes) in m-th modality. DMTM assumes that xf{"t‘) is
composed of K topics with 8., ; € RX being the topic weight vector (mixture composition) shared
by all modalities. Therefore, k-th topic in different modalities ( l((l), T cl)l((M)) are highly
correlated, forming as k-th clinical topics shown in Figure 2. To model the transition pattern of
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topic weights between two successive visits, DMTM introduces a transition matrix Il € R’ix’{ ,
where each element, m;;, represents the probability of transition from i-th topic to the j-th topic.
Formally, the generative process of DMTM can be written as:

e Topic weights: 6,,; ~ Gamma(r,1), 0, ~ Gamma(rol'wn,t_l,to), t=2,-,Ty,

e Latent clinical topics and transition matrix: q)f(m’ ~ Dirichlet(n,),

M, ~ Dirichlet(vvy, , &y, =+, VkVi), k=1, K
¢ Intermediate variables v, ~ Gamma (Y—Kf’, B), k=1, ,K;§B ~ Gamma(ey, €;)

e EHR clinical events which are represented as:
2 =1 (ug’?) >1 )
ugf;) ~ Poisson(d>(m)0n_t),n =1 ,NNm=1,-,M;t=1,-,T,

where, Gamma, Dirichlet, and Poisson denote the Gamma, Dirichlet, and Poisson distribution,

respectively; 1(+) is an indicator function representing that x%) =1if uff,'t‘) =>1,and xf{"t‘) =0if

uf{_’? = 0. This function is called Bernoulli-Poisson link (67), whose mathematical motivation is

that after transforming a binary-modeling problem (clinical event happens or does not happen in
this visit) into a count modeling one, one is readily equipped with a rich set of statistical tools
developed for count data analysis using the Poisson and negative binomial distributions.

There are four positive hyperparameters to be set by users: tg, Yo, Ng, €o- In our setting, we set
themas tg = 1,y, = 100,15 = 0.01, ¢4 = 0.1. We developed the Gibbs sampling to estimate
the posterior of all variables (in Supplement). Here, we only showed the posterior of topic
weights 0, ; to explain why DMTM can alleviate the problem of missing events in longitudinal
patient records.

Robustness of DMTM for missing events. The posterior of 8, (without loss of generality, we
ignore the patient index n) at t-th visit is a Gamma distribution as

6, ~ Gamma (A.,t +1lepq + Oy, h(ro))

where, from a mathematical view, I18,_, transforms the information from the prior visit (¢t — 1),
A. . represents the information of current visit (t), and L. ., transforms the information from the
next visit (t + 1). In other words, when inferring the topic weight vector of t-th visit (8,), DMTM
not only uses the clinical events from the current visit, but also looks forward and backward to
use the information from neighboring visits. As a result, even if some events are missed at
current event, DMTM may recall them by relating events from neighboring visits.

Measuring similarity of multimodal clinical events on the topic space

As discussed before, DMTM learns the topic matrix of multimodal clinical events, represented
as {®™ g RVm*K}M__ [llustrated in the workflow in Supplemental Figure 7a, we can regard
each row from &™) as a projection of clinical events to the inferred shared topic embeddings
space, which enables the discover of associations among events (9). For example, we obtained
the embeddings of two events as e; and e, from topic matrices. We calculated the cosine

similarity between them as l;eh’ﬁf“, where <-,-> denotes the inner product of two embeddings
1 2

and || - || denotes the norm of vector. Thus, in Supplemental Figure 7b, given a query clinical
event, we showed the top-10 related (most similar) diagnosis events, top-5 related medication
and procedure events.
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Identify key topics

We found that using all topics to learn subphenotype is still inefficient, and the interpretation is
not intuitive. To solve this problem, before leaning subphenotypes, on each dataset, we firstly
identified key topics on each dataset from all topics. Since topic weight vector 6,, . can describe
the importance of each topic in describing the observed data, in the following, we introduced
how to identify key topics according to the topic weight vector.

Specifically, for k-th topic, we use u;, = =YN_ 17 Ztnl Ot to represent the mean topic usage

since we take average over all patients (|ndex by n) and all VISItS (index by t). After that, for the

k-th topic, we define the percentage of mean topic usage as % If zKukuk > 1, we consider
k=1U k=1

this topic as a key topic since threshold = (K is the total number of toplcs) is the mean usage

over all topics. The results of identifying key topics on three cohorts are provided in
Supplementary Figure 5.

Time-aware latent class analysis (T-LCA)

Most existing works in clinical research about deriving longitudinal subphenotypes were
implemented using latent class analysis (group based trajectory modeling) (68) or dynamic time
warping (69), which often regarded visit times rather than calendar time as time stamps.
However, such methods ignored the fact that the time interval between two visits may be
irregular, varying from days to months, which is important for clinical study since it embeds the
progressive speed of diseases. To this end, in this paper, we introduced time-aware latent class
analysis (T-LCA).

Specifically, the new features extracted by DMTM are topic weight vectors denoted as © =
{0, € RK } Ll (note that here we use K to represent the number of key topics), T-LCA

models the data likelihood of @ by a mixture of Gaussian distribution as:
Tn
p(O) = Zn Zc 0% Ht=1 Ilgle(en,t,klﬁc,ktn,tl O-k)r

where, {a,}¢_, are the mixture coefficients with C being the number of subphenotypes, and the
mean B T, is defined as:

T
ﬂc,ktn,t = [Bc,k,lr Bc,k,Zr Bc,k,Br Bc,k,4] [1r dn,t - dn,lr (dn,t - dn,l)zi (dn,t - dn,1)3] ’

where, d,, ; is the calendar time of starting point (such as MCI onset in our case) for n-th
patient; d,, ; is the calendar time of t-th visit for n-th patient. In other words, d,, ; — d,, ; models
the calendar time interval from the starting point to every visit, which embeds the natural time
progression. This is the reason why we call our proposed new type of LCA as time-aware LCA.
To learn the parameters {8, € R‘*}C 1x=1 and {oy € R1}X_,, and infer the subphenotype

belonging for each patient, we use the Expectation—Maximization (EM) algorithm (64) whose
details are in Supplement.

As shown in Figure 4, we used y-axis to represent the mean (over patients in corresponding
subphenotype) number of diagnosis events (for one topic) whose probabilities of occurrence are
larger than 0.5. Here we provided more details to illustrate it.
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As shown in the generative process of DMTM for multimodal longitudinal patient events, we
used the Bernoulli-Poisson link to transform the binary-modeling problem (clinical event
happens or does not happen in this visit) into a count modeling, which enables us to readily
employ a rich set of statistical tools developed for count data to do data mining. If we

marginalized out the auxiliary variable u,({,’z), we obtained a Bernoulli random variable as

x ~ Bernoulli (1 - e‘q’(m)enlf).

According to the property of Bernoulli distribution, the mean is 1 — e“l’(m)ﬂn,t, where 0,,, € RX
represents the topic weight vector (the total number of topics is K) of n-th patient at visit of time
t.

Assume that one subphenotype has N’ patients. In the visualization of subphenotypes (Figure
4), for k-th topic at calendar time t, we firstly calculate the mean of corresponding topic weight

’ \ (m)
as Ot  mean = %Zf{ﬂ 0,.¢x, and then obtain the y, , = 1 — e~k Ockmean € RVm (note that y,; €

[0,1] since ¢1§m)et_k_mean > 0). Each value in y, , represents the mean probability (decided by k-
th topic) of each clinical event appearing in calendar time t. We count the number of clinical
events whose appearing probability is larger than 0.5 as the value of y axis in Figure 4. In other
words, the larger the value of y-axis is, the more diagnosis events from the corresponding topic
will occur, the higher risk of having these diseases.

Prediction of subphenotype assignment

For dynaPhenoM, we proposed two experimental settings to evaluate its performance on
prediction of subphenotype assignments, which can further illustrate the robustness and
generalizability of our method. One of the settings is to train and evaluate the performance in
one dataset (internal) by five-fold cross validation. The other setting is to evaluate using two
datasets (external) by training models on one dataset and then testing the trained model on
another dataset. Specifically, as shown in Figure 8a, for both settings, we firstly split training set
as training set1 (60%) and training set2 (40%). We collected all longitudinal patient events and
then trained the DMTM on training set1. After training, we obtained the clinical topics {®™)}3 _;
and topic transition matrix I1. Given well-learned {®™)}3 _, and II, regarding training set2
and testing set as input, we used DMTM to infer their topic weight vectors represented as

@train _ {on,t}ﬁjfit"__'in and @tst = {Gn,t}ﬁieifinl, respectively. Having obtained the topic weight
vector of both training-set2 and testing samples, we used T-LCA to derive the subphenotype
belongings of all samples (N¢,qin + Niest)- Regarding the mean over time of topic weights as the

. 1 T Ntrai 1 T N, :
features for each patient that means {32, 0., :},=7"" and {32, 0,},=7", we trained a
n n

logistic regression model on training set2 and then tested the performance on testing set. From
Table 1 and Supplementary table 16, we observed distribution shift of basic characteristics and
the data between cohorts of MarketScan and OneFlorida. From Figure 8, we found such
distribution shift does not affect performance too much, especially when trained on MarketScan
(larger dataset) and tested on OneFlorida. Since there are total five subphenotypes (multiple
classes), for AUC results, we provide both micro-AUC and Macro-AUC.
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Data availability

The real-world data analyzed in this article were provided by OneFlorida Clinical Research
Consortium (OneFlorida dataset), IBM MarketScan Research Databases (MarketScan dataset),
and the Mount Sinai Health System (Mount Sinai dataset). These data are not publicly
accessible due to restricted user agreement. Requests for access to OneFlorida dataset should
be submitted to and approved by OneFlorida Clinical Research Consortium
(https:/iwww.ctsi.ufl.edu/ctsa-consortium-projects/oneflorida/); access to MarketScan dataset
can be obtained by contacting IBM (https://www.ibm.com/products/marketscan-research-
databases/databases); access to Mount Sinai dataset can be sent to Benjamin
(benjamin.glicksberg@mssm.edu). However, we have provided a toy data incorporated in the
open-source tool we released for understanding the method.

Code availability
The implementation of the proposed DMTM and T-LCA in Python and MATLAB are publicly available at
https://github.com/haozhangWCM/dynaPhenoM.
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Figure 1. Workflow of dynaPhenoM for deriving longitudinal subphenotypes from longitudinal
patient records demonstrated on the case of mild cognitive impairment (MCI) to Alzheimer’s
disease (AD) progression.

a. Dataset for demonstration of MCI to AD progression.

b. Data preprocessing from the original longitudinal patient records for MCI to AD progression,
including cohort selection, visit assembling, and representing records as binary vectors.
Currently, we aggregate all records within every three months as a single “visit”, while this
window size can be tuned according to different cases. For every visit, records from one modality
can be represented as a binary vector (1: the visit includes this code, 0: the visit does not include
this code) where the length of this binary vector is equal to the total number of unique codes in
the modality (different modalities can have different number of unique codes).

c. lllustration of DMTM. DMTM regards binary longitudinal vectors as input and output the clinical
topics including different modalities, topic transition probability, and topic weights. Clinical topics
and topic transition probability are shared by all patients at every visit (global parameters) while
topic weights are new features to characterize the patients (patient-specific, local parameters).

d. lllustration of T-LCA. T-LCA regards topics weights as input to identify longitudinal
subphenotypes, which embeds calendar time of each visit into subphenotyping.

e. Utilizing interpretable clinical topics and topic transition probability learned from DMTM,
dynaPhenoM performs the subphenotype interpretation, gender and race stratified enrichment
analysis, and builds the logistic regression to predict the subphenotype belongings for new
patients using early-stage records.
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Figure 2. Key (commonly used) clinical topics learned from the development cohort by DMTM,

where the color bar indicates the weights of each events in the corresponding topics.
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Figure 3. Matrix of topic transition probabilities (%) on the development cohort. Besides the 13 key
clinical topics, other 17 topics are integrated into “others” in the matrix. The value in i-th row and
j-th column denotes the transition probability from i-th topic to j-th topic.
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a. Change of topic compositions with time according to different subphenotypes

Subphenotype 1: 570/2995 Subphenotype 2: 509/2995 Subphenotype 3: 660/2995

T1 Hypertension and Hyperlipidemia
s T Heart ar
s T8 Digest Sy
e T9 Brain

T 10 Resqpiratory Sys.
— T 11 Kidney
112 Urinary Sys.

T2 Diabetes
— T3 Dementia
— T4 Bone
T5 Movement
—— T7 Mental

— 13 Eye ) r % &
ing from MCI onset time Mionth starting from IMCI onset fime. Month starting from MC1 onset time.
- MCIZAD_time: 733.5 [508.0~998.0] * MCIZAD_time: 888.0 [607,0-1465.0] = MCI2AD_time: 848.5 [558.071391.25]
= Age of MCl onset: /6.0 [69.0~83.0] = Age of MCl onset: 75.0 [69.0~82.0] = Ageof MClonset: 77.0 [71.0~83.0]
= Female: 378 (66.32) = Female: 292 (57.37) = Female: 413 (67.12)
- Race: White: 365 (64.04) Black: 36 (6.32) Asian: 5 (0.88) *  Race: White: 201 (39.49) Black: 91 (17.88) Asian: 4 {0.79) = Race: White: 335 (50.75) Black: 89 (13.48) Asian: 8 (1.21)
Subphenotype 4: 320/2995 Subphenotype 5: 195/2995
T1 Hypertension and Hyperlipidemia N
p— L ) Reference on the whole

== T8 Digest Sys
e T9 Brain
= T10 Respiratory Sys.

cohort:
= Progression time: 871.0

— T2y [576.5-1323.5]
»  MCI age: 76.0 [69.0-83.0]
T Diabetes = Gender: Female: 1950 (65.11)

e T4 BN * Race: White: 1580 (52.76), Black:

—T 5 Maovement

7 Mental E 386 (12.89), Asian: 21(0.70),
— 13 Eye . . 0,
N R others/unknown: 1008 (39.40%)
Morth starting from MCI onset time: from MG enset tme

= MCIZAD_time: B07.0 [558.071269.0] = MCIZAD_time: 939.0 [681.0~1633.0]

= Age of MCI onset: 80.0 [73.0~86.5] = Age of MCl onset: 72.0 [64~78.0]

= Female: 232 (72.50) = Female: 100 (51.28)

= Race:White: 203 (63.44) Black: 36 (11.25) Asian: 1 (0.31) = Race: White: 92 (47.18) Black: 43 {22.05) Asian: 1 (0.51)

b. Change of each topic with time within different subphenotypes
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Figure 4. Visualization of longitudinal subphenotypes on the development cohort, which are
characterized by the evolution of clinical topic compositions with time. In a, we demonstrate these
subphenotypes according to the change of their topic compositions, where major topics whose
value exceeds 2 on vertical axis at least once during the entire progression course are showed by
solid lines. In b, we illustrate the evolution of each topic within different subphenotypes.
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Figure 6. Distributions of age on MCI onset (top, Panel 1 and 2) and progressive time (bottom,
Panel 3 and 4) on the development cohort. The Panel 1 and 3 are visualized by different genders
((a) and (f)), races((b) and (g)), and subphenotypes ((c) and (h)) on the whole cohort, while the
panel 2 and 4 are visualized by different genders ((d) and (i)) and races ((e) and (j)) on each
subphenotype.
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Figure 7. Sex-stratified enrichment analysis of comorbidities on the development cohort. For each
subphenotype, the top Bar plot shows the p-value of topic weights on MCI onset (blue) and AD
onset (orange) computed using Kruskal-Wallies test. The bottom Miami plot shows the p-value of
the top-5 (large weights) diagnosis events in each topic computed by Fisher Exact test on both
MCI and AD onset, where some diseases are colored if they are significant in female (pink) or male
(green), evaluated by log odds ratio. The black dotted lines in Bar and Miami plots denote p-
value=0.05, Below five subphenotypes, names of some key diseases in the topic are listed, where
the rank in the bracket denotes the rank of diseases in each topic according to the weights in
Figure 2.
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. Workflow to evaluate the predictive performance for subphenotype belongings by dynaPhenoM
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b. Predictive performance (Accuracy and AUC: mean % var) of subphenotype belongings by dynaPhenoM
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the OneFlorida
Before MCI onset + 6 month 86.04 + 1.97 92.72 + 1.04 92.39+4+1.45
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Before MCI onset 68.01 + 2.61 81.25 +2.25 79.94 + 2.03

Before MCI onset + 3 month 83.10+1.79 87.28+1.20 86.53 + 1.49
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. Before MCIl onset + 3 month 79.04 + 2.01 84.26 + 1.59 82.78 + 1.65
External setting: after MCl onset

from MarketScan

to OneFlorida Before MCI onset + 6 month 85.36 + 1.59 92.10 £ 0.96 91.76 +£1.38

after MCl onset

Before MCI onset 60.01 £+ 3.25 74.19 + 2.03 73.03+1.75
Before MCI onset + 3 month 76.27 £ 2.04 81.95 £ 1.57 81.27 £ 1.35
External setting: after MCl onset

from OneFlorida to

MarketScan Before MCI onset + 6 month 84.93 +1.94 91.84 + 1.12 90.49 + 1.08

after MCl onset

Figure 8. a: Workflow to evaluate the predictive performance for subphenotype belongings. We
conducted two sets of experiments: internal and external predictions. Internal prediction refers to
the procedure of developing and evaluating the predictive model on a same cohort (OneFlorida or
MarketScan) through 5-fold cross validation. External prediction is the paradigm of training the
predictive model on one cohort (e.g., OneFlorida or MarketScan) and evaluate it on the other
cohort (e.g., MarketScan or OneFlorida). b: Results on different experimental settings.
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Table 1. Characteristics of the development (OneFlorida) and the two external validation (MarketScan and Mount Sinai) cohorts.

Cohort
Characteristics
OneFlorida MarketScan Mount Sinai
No. of patient 2995 18805 689

Age (MCI onset), yr, Median (IQR)

76.0 [69.0-83.0]

79.0 [73.0-84.0]

79.5 [74.7-85.3]

Sex female, N (%) 1950 (65.11) 10897 (57.95) 455 (66.04)

Caucasian 1580 (52.76) - 426 (61.83)

African American 386 (12.89) - 139 (20.17)

Asian 21(0.70) - 7(1.02)
Race, American Indian 3(0.10) - -
N (%)

Multiple Race 28 (0.93) - -

Other/Unknown 977 (32.62) - 117 (16.98)

Progression time, day, Median (IQR)

871.0 [576.5-1323.5]

770.0 [5637.0-1152.0]

630 [402.5-936.0]

1~2 year, N (%) 1182 (39.47) 8694 (46.23) 344 (49.93)
2~3 year, N (%) 738 (24.64) 4854 (25.82) 198 (28.74)
3~4 year, N (%) 484 (16.16) 2701 (14.36) 71 (10.30)
4~5 year, N (%) 323 (10.78) 1382 (7.35) 46 (6.68)
>5 year, N (%) 268 (8.95) 1174 (6.24) 30 (4.30)
Comorbidity, N (%)
Hypertension 1132 (37.79) 6775 (36.03) 234 (33.96)
Hyperlipidemia 495 (16.53) 3512 (18.68) 107 (15.53)
Diabetes 582 (19.43) 2890 (15.37) 167 (24.24)
Dementias 383 (12.79) 3691 (19.63) 159 (23.08)
Memory loss 388 (12.95) 3050 (16.22) 67 (9.72)
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Heart disease 284 (9.48) 2109 (11.22) 112 (16.26)
Sleep disorders 122 (4.07) 1551 (8.25) 38 (5.52)
Anxiety 345 (11.52) 1203 (6.40) 53 (7.69)
Gastroesophageal reflux disease 401 (13.38) 1637 (8.71) 70 (10.16)
Cerebrovascular disease 145 (4.84) 1711 (9.10) 94 (13.64)
Chronic airway obstruction 305 (10.18) 1053 (5.60) 85 (12.34)
Chronic renal failure 188 (6.28) 1654 (8.80) 71 (10.30)
Urinary tract infection 499 (16.66) 1985 (10.56) 125 (18.14)
Glaucoma and Cataract 270 (9.01) 884 (4.70) 39 (5.66)
Medicine, N (%)
Antithrombotic agents 693 (23.14) 5829 (31.00) 144 (20.90)
Gastrointestinal agents 569 (18.99) 5455 (29.01) 153 (22.21)
Opioids 552 (18.43) 5089 (27.06) 78 (11.32)
Antidepressants 523 (17.46) 2768 (14.72) 74 (10.74)
Antiinfectives 511 (17.06) 5064 (26.93) 101 (14.76)
Corticosteroids 505 (16.86) - 84 (12.19)
Beta blocking agents 496 (16.56) 3691 (19.63) 120 (17.42)
Anti-dementia drugs 412 (13.75) - 106 (15.38)
Hypnotics and sedatives 363 (12.12) 1767 (9.40) 48 (6.97)
Urological 261 (8.71) 2049 (10.90) 65 (9.43)
Insulins and analogues 261 (8.71) 2591 (13.78) 84 (12.19)
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Table 2 Characteristics (making statistics on MCI onset) of the identified subphenotypes (development cohort). The p-value for sex,
race, key comorbidities and medicines are obtained by y? test (false discovery rate correction for post-hoc pairwise comparisons in sex

and race are in Table 5~6 in Supplement). The p-value for age and progression time are obtained by Kruskal-Wallis test (with Dunn’s
test for post-hoc pairwise comparisons in Table 7~8 in Supplement).

Variable Total Subphenotype | Subphenotype Il Subphenotype Il Subphenotype IV Subphenotype V P-value
No. of Patient (%) 2995 (100) 570 (19.03) 509 (14.79) 660 (16.99) 320 (12.31) 195 (6.51) -
Age (MCI onset), yr, Median (IQR) 76 [69-83] 76 [69-83] 75 [69-82] 77 [71~83] 80 [73~87] 72 [64~78] <0.001
Sex female, N (%) 1950 (65.11) 378 (66.32) 292 (57.37) 443 (67.12) 232 (72.50) 100 (51.28) <0.001
Caucasian 1580 (52.76) 365 (64.04) 201 (39.49) 335 (50.76) 203 (63.44) 92 (47.18)
African American 386 (12.89) 36 (6.32) 91 (17.88) 89 (13.48) 36 (11.25) 43 (22.05)
Race, Asian 21 (0.70) 5(0.88) 4(0.79) 8(1.21) 1(0.31) 1(0.51)
N (%) <0.001
American Indian 3(0.10) 0(0) 0 (0) 1(0.15) 0(0) 0 (0)
Multiple Race 28 (0.93) 3(0.53) 1(0.20) 10 (1.52) 0 (0) 2(1.03)
Other/Unknown 977 (36.26) 161 (28.25) 212 (41.65) 217 (32.88) 80 (25.00) 57 (29.23)
Progression time, day, Median (IQR) 871.0 [576.5-1323.5] 733.5[508.0-998.0] 888.0 [607.0~1465.0] 848.5 807.0 [558.0~1269.0] | 939.0[681.0~1633.0] <0.001
[658.0~1391.25]
1~2 year, N (%) 1182 (39.47) 285 (50.0) 190 (37.33) 269 (40.76) 149 (46.56) 59 (30.26)
2~3 year, N (%) 738 (24.64) 155 (27.19) 101 (19.84) 139 (21.06) 65 (20.31) 45 (23.08)
3~4 year, N (%) 484 (16.16) 65 (11.40) 90 (17.68) 105 (15.90) 62 (19.38) 28 (14.36)
4~5 year, N (%) 323 (10.78) 55 (9.65) 78 (15.32) 87 (13.18) 29 (9.06) 31 (15.90)
>5 year, N (%) 268 (8.95) 10 (1.75) 50 (9.82) 60 (9.09) 15 (4.69) 32 (16.41)
Key comorbidity, N (%)
Hypertension 1132 (37.79) 78 (13.68) 66 (12.97) 336 (50.91) 48 (15.00) 19 (9.74) <0.001
Hyperlipidemia 495 (16.53) 61 (10.70) 82 (16.11) 176 (26.67) 32 (10.94) 24 (12.31) <0.001
Diabetes 582 (19.43) 67 (11.75) 178 (34.97) 152 (23.03) 31(9.69) 46 (23.59) <0.001
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Dementias 383 (12.79) 201 (35.26) 33 (6.48) 41 (6.21) 29 (9.06) 20 (10.26) <0.001
Memory loss 388 (12.95) 120 (21.05) 42 (8.25) 31 (4.70) 38 (11.87) 17 (8.72) <0.001
Heart disease 284 (9.48) 71 (12.46) 50 (9.82) 101 (15.30) 19 (5.94) 12 (6.15) <0.001
Sleep disorder 122 (4.07) 35 (6.14) 17 (3.34) 19 (2.88) 22 (6.88) 14 (7.18) 0.0037

Anxiety 345 (11.52) 68 (11.93) 51 (10.02) 58 (8.79) 53 (16.56) 76 (38.97) <0.001
Gastroesophageal reflux disease 401 (13.38) 35 (6.14) 82 (16.11) 116 (17.58) 16 (5.00) 11 (5.64) <0.001
Cerebrovascular disease 145 (4.84) 21 (3.68) 20 (3.93) 17 (2.58) 34 (10.62) 19 (9.74) <0.001
Chronic airway obstruction 305 (10.18) 19 (3.33) 46 (9.04) 77 (11.67) 32 (10.00) 23 (11.79) <0.001
Chronic renal failure 188 (6.28) 17 (2.98) 116 (22.79) 19 (2.88) 14 (4.37) 9(4.62) <0.001
Urinary tract infection 499 (16.66) 60 (10.53) 53 (10.41) 81 (12.27) 40 (12.50) 25 (12.82) 0.706
Glaucoma and Cataract 270 (9.01) 53 (9.30) 74 (14.54) 59 (8.94) 29 (9.06) 38 (19.49) <0.001
Key Medicine, N (%)
Antithrombotic agents 693 (23.14) 91 (15.96) 178 (34.97) 212 (32.12) 47 (14.69) 32 (16.41) <0.001
Gastrointestinal agents 569 (18.99) 72 (12.63) 160 (31.43) 169 (25.61) 27 (8.44) 37 (18.97) <0.001
Opioids 552 (18.43) 66 (11.58) 112 (22.00) 126 (19.09) 96 (30.00) 42 (21.54) <0.001
Antidepressants 523 (17.46) 102 (17.89) 132 (25.93) 116 (17.89) 68 (21.25) 55 (28.21) <0.001
Antiinfectives 511 (17.06) 90 (15.79) 95 (18.66) 121 (18.33) 77 (24.06) 39 (20.00) 0.049
Corticosteroids 505 (16.86) 96 (16.84) 87 (17.09) 67 (10.15) 33 (10.31) 26 (13.33) <0.001
Beta blocking agents 496 (16.56) 94 (16.49) 93 (18.27) 201 (30.45) 43 (13.44) 36 (18.46) <0.001
Anti-dementia drugs 412 (13.75) 277 (48.60) 23 (4.52) 33 (5.00) 38 (11.87) 19 (9.74) <0.001
Hypnotics and sedatives 363 (12.12) 87 (15.26) 73 (14.34) 29 (4.39) 95 (29.69) 67 (34.36) <0.001
Urological 261 (8.71) 38 (6.67) 34 (6.68) 59 (8.94) 22 (6.88) 23 (11.79) 0.0992
Insulins and analogues 261 (8.71) 11 (1.93) 203 (39.88) 16 (2.42) 3(0.94) 19 (9.74) <0.001
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