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Abstract 
Identification of clinically meaningful subphenotypes of disease progression can facilitate better 
understanding of disease heterogeneity and underlying pathophysiology. We propose a 
machine learning algorithm, termed dynaPhenoM, to achieve this goal based on longitudinal 
patient records such as electronic health records (EHR) or insurance claims. Specifically, 
dynaPhenoM first learns a set of coherent clinical topics from the events across different patient 
visits within the records along with the topic transition probability matrix, and then employs the 
time-aware latent class analysis (T-LCA) procedure to characterize each subphenotype as the 
evolution of these learned topics over time. The patients in the same subphenotype have similar 
such topic evolution patterns. We demonstrate the effectiveness and robustness of 
dynaPhenoM on the case of mild cognitive impairment (MCI) to Alzheimer’s disease (AD) 
progression on three patient cohorts, and five informative subphenotypes were identified which 
suggest the different clinical trajectories for disease progression from MCI to AD.  
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Introduction 
Due to the complex and heterogeneous nature of human diseases such as Alzheimer’s disease 
(AD), patients usually demonstrate diverse clinical manifestations. Identification of clinically 
meaningful subphenotypes, which are subgroups of patients with coherent clinical 
characteristics, is critical for improved understanding of the underlying disease mechanisms and 
inform precision medicine (1) (2). In recent years, with the increasing adoption of various health 
information systems such as electronic health records (EHR), comprehensive information about 
patients have been accumulated, such as demographics, diagnosis, medications, lab tests, etc. 
(3). With these diverse data, there have been existing studies developing data-driven 
approaches to identify disease subphenotypes (4-7), but they typically focused on a set of 
selected clinical events but did not consider temporal evolutions of these events.  

To effectively explore the clinical information within the patient records and identify 
comprehensive disease subphenotypes, we need to address the following general challenges 
for analyzing these data: i) Information Heterogeneity: These data contain different types of 
information as mentioned above; ii) Irregular Visits: the time intervals between any two 
successive patient visits are typically irregular; iii) Missing Values: there is substantial missing 
information in patient records (e.g., there will not be any record if a patient did not pay a visit to 
the clinic, but it does not mean the patient is without the disease); iv) High-Dimensionality and 
Sparsity. Clinical events within patient records are represented as systematic codes with large 
vocabularies (e.g., there are ~68,000 distinct diagnosis codes for in ICD-10, which stands for 
International Classification of Diseases, 10th version (8)), and every patient visit only has a few 
codes (9); v) Interpretability. It is critical to make the analysis results interpretable and easy to 
understand by the clinicians.   

With all these considerations, in this paper, we propose a machine learning framework named 
dynaPhenoM to derive disease progression subphenotypes from longitudinal patient records. 
Progression subphenotype indicates that patients belonging to the same subphenotype have 
similar temporal evolution patterns of the clinical events in their records. The overall architecture 
of dynaPhenoM is shown in Figure 1. After data preprocessing, dynaPhenoM contains two main 
modules: the dynamic multimodal topic model (DMTM) for deriving new interpretable 
compressed representations of multimodal clinical events, and the time-aware latent class 
analysis (T-LCA) for subphenotyping that embeds the time of irregular visits.  
 
DMTM builds on the concepts of latent topic modeling (LTM) (10) which is often used in text-
mining tasks. In analogy with test mining, DMTM considers clinical events denoted by codes as 
words and each visit as a document. DMTM is also related to some studies (9, 11, 12) that use 
methods of matrix factorization or LTM to learn compressed representations from original EHR 
data. However, existing methods focus on the single visit of each patient while DMTM learns 
representations from longitudinal information. LCA (13) is a widely used subphenotyping 
method in clinical studies (14-16). When LCA is applied for deriving longitudinal subphenotypes 
(17), it does not consider a fact that time intervals between any two successive patient visits are 
typically irregular. Motivated by this problem, we developed T-LCA in dynaPhenoM. 
 
To demonstrate the effectiveness of dynaPhenoM, we apply it to identify the progression 
subphenotypes for patients who progressed from mild cognitive impairment (MCI) to 
Alzheimer’s disease (AD). AD is the most prevalent neurodegenerative disorder that affects 
millions of people all over the world (18) and its prevalence is expected to double in the next 20 
years (19). The underlying disease mechanism of AD is highly complex and there is no effective 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 2, 2021. ; https://doi.org/10.1101/2021.11.01.21265725doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.01.21265725


treatment for AD yet (20). On the other hand, MCI is the stage between the expected cognitive 
decline of normal aging and dementia, including AD. Understanding the clinical heterogeneity of 
patients progressing from MCI to AD and identifying the corresponding progression 
subphenotypes can potentially reveal the different underlying disease pathophysiology and shed 
light on effective treatments. We leveraged three real world patient record databases, including 
one national insurance claims database, one EHR database from a state clinical research 
network, and one EHR database from a regional health system, to achieve our goal. Five 
clinically-meaningful subphenotypes were identified from the development cohort and validated 
on the other two cohorts. We performed extensive statistical analysis to interpret these 
subphenotypes, and we have also built predictive models to investigate whether these 
subphenotype can be identified early. 
 
Results 
 
dynaPhenoM as a framework to identify longitudinal subphenotypes. 
 
The overall workflow of dynaPhenoM is illustrated in Figure 1, including two key components: 
DMTM and T-LCA. DMTM learns new representations of patient visits through a dynamic multi-
modal topic modeling process. Considering the irregular patient visits, T-LCA derives the 
progression subphenotypes from the trajectories of these new representations through an LCA 
(13) type of process.  
 
Specifically, after representing different types of clinical events as respective binary vectors, we 
first use DMTM to learn a set of multimodal clinical topics from the patient records, where each 
topic can be viewed as a set of clinical events that are more likely to co-occur within a patient 
visit. Then for every patient visit, DMTM infers the mixture memberships, also called topic 
weights, as the new representations of this visit. Higher weight on a particular topic indicates 
that the corresponding patient visit includes more events from this topic. This topic weight based 
representation transforms the visit representation from the original high-dimensional binary 
space to a low-dimensional continuous space, and each dimension in this space is a topic 
composed of a set of frequently co-occurred clinical events. Thus this representation is highly 
interpretable. By concatenating the learned representations for all visits of a specific patient 
according to the timeline, we can get a multi-variate temporal sequence for the patient with 
irregular intervals. We then derive disease progression subphenotypes by grouping these 
temporal sequences with T-LCA. Technical details of these two modules are provided in Method 
and Supplement. 
 
Cohort Definition.  
 
We derived the progression subphenotypes from MCI to AD from the development cohort, and 
got them validated in two validation cohorts. 
 
Development cohort: We leveraged the patient EHR from OneFlorida Clinical Research 
Consortium (21) —a clinical data research network funded by the Patient-Centered Outcomes 
Research Institute (PCORI) contributing to the national Patient-Centered Clinical Research 
Network (PCORnet)—to derive the subphenotypes. We used diagnosis codes (detailed in 
Supplemental Table 1) to identify a total of 5337 patients who experienced the progression from 
MCI to AD, and among them 2,995 patients whose progression time were longer than one year 
were included in our development cohort.  
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Validation cohorts: We validated the derived subphenotypes on two independent cohorts. One 
is the large-scale administrative records in the IBM Health MarketScan Commercial Claims 
database (22) for the years 2009 to 2020. The second one is the patient EHR data from the 
Mount Sinai Health System which contains five locations in New York City. Similar to the 
development cohort, we finally obtained 18,805 patients from MarketScan, and 698 patients 
from Mount Sinai for validating subphenotypes. 

Details of these three studied cohorts are summarized in Table 1, where the corresponding 
codes about key comorbidities and medications are listed in Supplemental Table 2~4. Detailed 
descriptions of cohorts are provided in Methods. 
 
The analysis on OneFlorida data is approved by University of Florida institutional review board 
under number IRB202000704. The analysis on MarketScan data is approved by University of 
Kentucky CCTS Enterprise Data Center institutional review board under number 43542. The 
analysis on Mount Sinai data is approved by institutional review board under number IRB-19-
02369. 

 
Learning clinical topics with multimodal information 
 
The DMTM module in dynaPhenoM learns multimodal clinical topics from the collection of the 
records in all patient visits longitudinal records. To choose the optimal number of topics (𝐾𝐾), on 
development cohort, we performed five-fold cross-validation to evaluate the data likelihood and 
topic coherence with different 𝐾𝐾 (Figure 4a in Supplement), and finally we set 𝐾𝐾 = 30. According 
to the percentage of mean topic weights (Figure 5 in Supplement; defined in Methods), we 
selected the 13 prevalent clinical topics (others were shown in Figure 6 in Supplement) learned 
from the development cohort, which are demonstrated in Figure 2. 
 
In Figure 2, each clinical topic is represented with three modalities: disease, medication, and 
procedure, which are then described with the top-5 most related clinical events according to 
their weights in each topic shown in the color bar. From the figure we can observe that these 
topics are typically associated with particular disease conditions. For example, topic T11 is 
related to kidney diseases such as chronic kidney disease (CKD), which may lead to the 
accumulation of uremic toxins which acts as a high risk factor of cognition impairment and AD 
(23). Topic T1 is related to cardiovascular conditions which have been known to be risk factors 
of AD (24-26). Although the exact mechanism on how cognitive decline and diabetes (in T2) are 
connected is not clear yet, researchers have shown that that high blood sugar or insulin can 
harm the brain in several ways (27, 28) like high blood sugar causing inflammation that may 
damage brain cells and cause cognitive impairment. Similarly, there has been research showing 
that certain mental disorders (in T7) such as anxiety, depression, and hearing loss are 
commonly observed neuropsychiatric comorbidities of MCI or AD (29, 30).  
  
We observe strong coherence across the three modalities for each topic. Such coherence can 
be reflected on many different aspects including, but not limited to i) medications treating 
diseases, such as Donepezil/Memantine and dementia (in T3); ii) medications treating disease 
comorbidities, for example, in T11 (Kidney), major depressive disorder affects one in five 
patients with CKD, and Sertraline is a potential antidepressant treating for CKD patients with 
depression (31); iii) medications causing disease conditions as side-effects, for example, in T6 
(Heart), Gabapentin is a widely used analgesic, anticonvulsant and anxiolytic agent, but authors 
in (32) reported that taking Gabapentin will increase the risk of having heart failure for elderly 
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patients; iv) procedures associated with diseases, such as evaluating blood pressure and body 
mass index for patients with cardiovascular diseases (T1). Moreover, with the multimodal topics, 
given one clinical event, we constructed its interactions with other events by calculating their 
similarities (see Methods), and the detailed results are provided in Supplemental Figure 7. 
 
Transition probabilities across different clinical topics  
 
Discovering the transition patterns across clinical topics is helpful for understanding the clinical 
progression of diseases (MCI to AD in our case). Figure 3 shows the transition probabilities 
across all clinical topics (we summarized the remaining less prevalent 17 topics as others) on 
the development cohort, where the value of (𝑖𝑖, 𝑗𝑗)-th entry represents the transition probability 
(%) from 𝑖𝑖-th topic to 𝑗𝑗-th topic in two consecutive visits. 
 
The figure demonstrates that the diagonal values of the transition matrix are bigger, which 
suggests that the disease topics for consecutive patient visits tend to stay the same. 
In addition, we have also observed other entries with relatively larger values such as transition 
from cardiovascular disease, including hypertension and hyperlipidemia, to heart disease 
(T1->T6: 14.21%), brain disease (T1->T9: 10.78%), and diabetes (T1->T2: 10.69%) (33-37). 
From brain disease to eye disease (T9-> T13, 14.76%) and mental problems (T9->T7, 9.01%), 
as well as from eye disease to mental problems (T13->T7, 12.91%). All these transitions have 
been demonstrated in prior studies (38-40). Other high probability entries include the transitions 
between T4 (bone) and T5 (movement), T11 (kidney) and T12 (urinary system). All these 
transitions can also be observed on the derived subphenotypes which are detailed in the next 
subsection. 
 
These results on clinical topics and their transition probabilities shows that DMTM is able to 
learn interpretable and clinically meaningful topics. Based on them, DMTM infers topic weights 
as a new representation for each patient visit in a low-dimensional continuous space, which 
facilitates the subsequent derivations of progression subphenotypes. 
 
Progression subphenotypes 
 
With the new representations learned from DMTM, on the development cohort, we used T-LCA 
to identify five subphenotypes including 2254 (75.26%) patients (see details in Supplemental 
Method). Figure 4 visualizes these subphenotypes, where the horizontal axis is the calendar 
time (in month) starting from MCI onset, and vertical axis represents the average (over patients 
within the corresponding subphenotype) number of diagnosis codes in one topic whose 
probabilities of occurrence are larger than 0.5. Therefore, larger values on the vertical axis 
indicates more diagnosis events from the corresponding topic tend to appear (detailed in 
Method). We demonstrate these subphenotypes according to the change of their topic 
compositions in Figure 4a, where major topics whose value exceeds 2 on vertical axis at least 
once during the entire progression course are highlighted in solid lines. Figure 4b illustrates the 
evolution of each topic within different subphenotypes. Characteristics including demographics, 
progression time, key comorbidities and medications of these subphenotypes at MCI onset are 
shown in Table 2 (detailed codes are provided in supplemental Table 2-4). The Kaplan-Meier 
survival curves with AD onset as outcome event (starting from MCI onset) were shown in Figure 
5, which provides a comprehensive picture on the progression speed across the 5 identified 
subphenotypes. For each subphenotype, we also showed the change in percentage of patients 
with different comorbidities during the progression (Supplemental Figure 8), and the percentage 
of patients taking certain medications during the progression (Supplemental Figure 9). 
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With all these results, in the following we formally characterize each subphenotype. 
 
• Subphenotype 1 consists of 570 (19.03%) patients with more Caucasian people (64.04%) 

and has the fastest progressive speed (733.5 [508.0~998.0] in days; Figure 5). This 
subphenotype is dominated by T3 (Dementia) and T9 (Brain), where the weight of T3 is 
stays at a high level during the entire progression, and the value of T9 has clearly increased, 
especially in the later stage of the progression (Figure 4a). Accordingly, at MCI onset, the 
percentage of patients having dementia and memory loss is much higher than that in other 
subphenotypes (Table 2). Meanwhile, during the progression from MCI to AD, more patients 
would have an increased risk of Parkinson’s disease (PD) and seizures (Supplemental 
Figure 8), which are closely related with cognitive decline and cerebrovascular problems 
(41-43). 

• Subphenotype 2 consists of 509 (16.99%) patients. Compared to the other subphenotypes, 
it has more African American (17.88%) and male (42.63%) patients and has the second 
longest progression time (888.0 [607.0~1465.0] in days; Figure 5). This subphenotype is 
dominated by T11 (Kidney), T12 (Urinary system), and T2 (Diabetes), where T2 stays high 
while T12 and T2 both show increasing trends (Figure 4a). In addition to a high prevalence 
of CKD and diabetes at MCI onset (Table 2), patients are more likely to have Pneumonia 
(44), Tobacco use disorder (45), and anemias (46) (Figure 8) during the progression. 
Moreover, Jain et al. (31) found that 21% patients with CKD in the U.S. would suffer from a 
major depressive disorder episode, which could be a potential reason that patients in this 
subphenotype tend to take antidepressants (Supplemental Figure 9).  

• Subphenotype 3 consists of 660 (22.04%) patients whose demographics and progression 
time (848.5 [558.0~1391.25] in days; Figure 5) are close to the cohort level. This 
subphenotype is characterized by increasing T1 (Hypertension and Hyperlipemia) and T6 
(Heart) (Figure 4a), as well as a high level of T8 (Digest system) (Figure 4b). This may 
cause higher risk of Vitamin-B and Vitamin-D deficiency (Figure 8 in Supplement), which are 
two common conditions associated with dementia or AD (47, 48). Accordingly, the 
percentage of patients taking Gastrointestinal agents and beta blocking agents is high 
(Supplemental Figure 9). 

• Subphenotype 4 consists of 320 (10.68%) patients with more female (72.50%) patients and 
oldest MCI onset age (80.0 [73.0~86.5] in year) among all subphenotypes. Meanwhile, the 
progression speed is the second fastest (807.0 [558.0~1269.0] in days; Figure 5). This 
subphenotype is characterized by T4 (Bone) and T5 (Movement) whose values stay high 
during the progression (Figure 4a). This subphenotype has the highest prevalence of 
Parkinson’s Disease at MCI onset (Supplemental Figure 8), the prevalence of decubitus and 
hypothyroidism have greatest increase over the progression course, which could be due to 
movement disorders (49, 50). There is also a high rate of opioid prescription in this 
subphenotype (Supplemental Figure 9) potentially due to the pain caused by problems of 
bone (T4) and muscle (T5) (Figure 2). 

• Subphenotype 5 consists of 195 (6.51%) patients with more African American (22.05%) 
patients whose age of MCI onset is the youngest (72.0 [64~78.0]), and the progression time 
is the longest (939 [681.0~1633.0]; Figure 5). This subphenotype is characterized by 
increasing T7 (Mental), T6 (Movement), and T13 (Eye). Correspondingly, compared with 
other subphenotypes, we observed the largest increased percentage of patients who suffer 
from schizophrenia, obesity, bipolar disorder, and fatigue (Supplemental Figure 8), most of 
which are associated with mental disorders. 
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Sex- and race- stratified analysis  
 
We have also conducted sex- and race-stratified analysis for the entire patient cohort and with 
respect to different subphenotypes. We first checked the difference of MCI onset ages and 
lengths of progression time breaking down by different race and sex subgroups, and the results 
are shown in Figure 6. On the entire patient cohort, the age distributions between different sex 
(Figure 6a) or race (Figure 6b) groups are significantly different but there is no significant 
difference on the progression time (Figure 6f, 6g). Furthermore, the distributions of age and 
progression time have significant differences (Figure 6c, 6g) across different subphenotypes 
(detailed pairwise comparisons are provided in Supplemental Table 5~8). With further analysis 
across all subphenotypes, we found that the female patients are typically older than male 
patients at MCI onset (Figure 6d), and the progression time between patients with different 
genders have no significant difference (Figure 6f). We have also examined these indices with 
respect to different races across different subphenotypes (Figure 6e and 6j). Some differences 
are observed. For example, the age of Caucasian patients is higher than that of African 
American patients on Subphenotype 1 (p-value<0.001) and Subphenotype 2 (p-value<0.001); 
the MCI-to-AD progression time of Caucasian patients is longer than that of the African 
American patients in Subphenotype 2 (p-value<0.001), while shorter than that of African 
American patients in Subphenotype 3 (p-value=0.031). 
 
There have been prior studies showing gender and race can affect the manifestation and 
pathophysiology of dementia or AD (51-54), thus we did both sex-stratified (Figure 7) and race-
stratified analysis (Figure 10 in Supplement) for key clinical components along with their 
corresponding top-5 diagnosis events (Figure 2). To demonstrate the heterogeneity of disease 
progression, we show differences of these diagnoses at both MCI and AD onsets for different 
stratified groups in each subphenotype. One immediate observation is that for each specific 
topic or disease, there is no consistent observations across all subphenotypes, indicating the 
complexity of disease progression pattern across different sex- or race- stratified subgroups 
(55). On the other hand, we do have some consistent observations in at least three 
subphenotypes. For example, at AD onset topics T1 (Hypertension and Hyperlipidemia), T3 
(Dementia), T9 (Brain), T11 (Kidney), and T12 (Urinary system) have significant differences 
between male and female. More concretely, the corresponding diseases of these topics have 
demonstrated different prevalence between female and male, such as hypertension and 
hyperlipidemia in T1, cardiovascular diseases in T9, and urinary tract infection in T12 are more 
prevalent in women, while neurological disorder in T3 and hearing loss in T7 are more prevalent 
in men, which have also been mentioned in prior studies (53). We further noticed that their 
health condition changes during MCI-to-AD progression are different for different 
subphenotypes. For example, subphenotype 3 is characterized by increased risk of T1 
(Hypertension and Hyperlipidemia) and T6 (Heart disease) (Figure 4a), and the values of these 
two topics change slowly in other subphenotypes (Figure 4b). These two topics have also 
demonstrated sex-stratified difference on the progression from MCI to AD in subphenotype 3. 
Specifically, at MCI onset, only heart failure (belonging to these two topics) prevalence is 
significantly different between male and female (more prevalent in female), while at AD onset 
more comorbidities from these two topics stand out. For example, essential hypertension, 
hyperlipidemia, other chronic ischemic heart disease, and heart failure are all more prevalent in 
female patients. Similar observations are found in i) subphenotype 1 for T9 (Brain) where 
cerebrovascular diseases and occlusion of cerebral arteries are significantly more prevalent in 
female patients at AD onset but not at MCI onset, while Epilepsy, recurrent seizure, and 
convulsions are significantly more prevalent among male patients at MCI onset but not at AD 
onset; ii) subphenotype 2 for T12 (Kidney) where urinary tract infection and retention of urine 
are significantly more prevalent in female patients at AD onset but not at MCI onset; iii) 
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subphenotype 5 for T13 (Eye) where cataract and senile cataract are significantly more 
prevalent among male patients at AD onset but not at MCI onset. These observations can help 
us better understand the progression heterogeneity from MCI to AD (54, 56-59). 
 
Subphenotype reproducibility  
 
To demonstrate the robustness of these derived progression subphenotypes, we have also 
reproduced these subphenotypes on the MarketScan and Mount Sinai data, with more details 
summarized in Table 1.  
 
Using the same procedures, we were able to derive a set of progression subphenotypes whose 
baseline characteristics at MCI onset are provided in Supplemental Table 9~13. The top-13 
most prevalent clinical topics, topic transition matrix, topic composition and evolutions of 
different subphenotypes, outcome analysis in terms of encountering AD onset, distributions of 
age and progressive time, percentage of patients with different comorbidities during 
progression, and sex-stratified comorbidity analysis on MarketScan are provided in 
Supplemental Figure 11~17. Since there is no race information in MarketScan, we performed 
region-stratified analysis instead and the results are shown in Supplemental Figure 15, from 
which we can observe that patients in the South region have younger MCI onset age and longer 
progressive time (compared to the overall statistics on the entire MarketScan data set), which is 
consistent with the results listed in Table 2 collected from OneFlorida data. The related results 
obtained from the Mount Sinai dataset are shown in Supplemental Figure 18~22 and Table 14 
with detailed descriptions in Supplemental results. On these two validation cohorts, we identified 
the same subphenotypes with similar demographics and comorbidity characteristics, illustrating 
the robustness of our methods. 
 
Early prediction of the progression subphenotype 
 
Since the identified subphenotypes capture patients’ health condition progression patterns 
within the full course of MCI-to-AD conversion, early prediction of patients’ subphenotype 
memberships may largely enhance their clinical implications. To evaluate such predictability of 
the derived subphenotypes, we conducted two sets of experiments, i.e., internal and external 
predictions. Internal prediction refers to the procedure of developing and evaluating the 
predictive model on the same cohort (OneFlorida or MarketScan) through 5-fold cross 
validation. External prediction is the paradigm of training the predictive model on one cohort 
(e.g., OneFlorida or MarketScan) and evaluate it on the other cohort (e.g., MarketScan or 
OneFlorida), which evaluates the ability of model transportability. For both experiments, we 
trained a logistic regression model based on average topic weights representations learned 
from DMTM for all visits before the MCI onset (we also tried to add 3-month or 6-month data 
after MCI onset) to predict the subphenotype assignments (Workflow is in Figure 8a with details 
in Method). The prediction results measured by accuracy and area under the receiver operator 
characteristic curve (AUC) are shown in Figure 8b, where we used diagnosis, drug, and 
procedure events collected from different periods as the input: i) before MCI onset (baseline); ii) 
until three months after MCI onset; iii) until six months after MCI onset. We observed that with 
baseline data on development cohort (OneFlorida dataset), the subphenotypes can be predicted 
with accuracy 63.84%, Micro AUC 78.69%, Macro AUC 77.78%, and the performance can be 
further improved to accuracy 79.93%, Micro AUC 85.03%, Macro AUC 83.58% with additional 
data from three months after baseline, and to accuracy 86.04%, Micro AUC 92.72%, Macro 
AUC 92.39% with additional data from six months after baseline. Similar tendencies were also 
overserved on the other experimental settings. Moreover, the model performance did not 
change much (the mean accuracy decreased by 0.79% from MarketScan to OneFlorida while 
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by 5.90% from MarketScan to OneFlorida) when applying to an independent external data set, 
which demonstrates the robustness of these identified subphenotypes and the transportability of 
the predictive model. 
 
Discussion 
 
Identification of clinically-meaningful disease progression subphenotypes can provide invaluable 
information regarding disease heterogeneity and underlying pathophysiology. In this paper, we 
developed the dynaPhenoM to achieve this goal using longitudinal patient records. These 
patient records involve EHR from two independent health systems and a national insurance 
database. Technically, dynaPhenoM includes two key components, DMTM for extracting 
interpretable multimodal clinical topics from patient visit vectors and building continuous valued 
low-dimensional visit representations, and T-LCA to derive progression subphenotypes based 
on the newly built representations. 
 
To evaluate the effectiveness and robustness of dynaPhenoM, we performed comprehensive 
analysis on the case of progression from MCI to AD based with the OneFlorida database as 
development cohort (including 2,995 patients), and the MarketScan database (including 18,805 
patients) and the Mount Sinai database (including 689 patients) as validation cohorts. As seen 
in existing research (18, 60-62), AD is highly heterogenous, thus categorizing patients into 
different clinically coherent subgroups is important for understanding the mechanism of AD and 
develop stratified medicine. Different from existing works that focus on identifying AD 
subphenotypes according to specific clinical data (e.g., cognitive assessment score) at AD 
onset, our study identified progression subphenotypes with a diverse set of clinical events 
during the progression from MCI to AD. Therefore, we expect our analysis can provide 
additional insights on the dynamic evolution of the disease.  
 
With dynaPhenoM, we were able to identify 13 important and clinically-meaningful topics and 
five progression subphenotypes characterized by distinct patient demographics, progression 
duration, and associated comorbidities. Specifically, Subphenotype 1 is dominated by topics of 
brain diseases, includes more Caucasian people, and has the shortest MCI-to-AD progression 
duration (among the 5 subphenotypes). During the progression from MCI to AD, the patients are 
with increased risks of PD and seizure. Subphenotype 2 is composed of more male and 
African American patients and dominated by the topics of diseases of kidney, urinary system, 
and diabetes. Patients within this subphenotype have the second longest progression duration 
and second youngest MCI onset age. More patients would suffer from pneumonia (44) and 
anemias. Subphenotype 3 is described by the increased risk of topics related to hypertension, 
hyperlipemia, and heart diseases, which may also be associated with a higher risk of Vitamin-B 
and Vitamin-D deficiency. Subphenotype 4 is characterized by high risk of topics about 
diseases of bone and disorder of movement, with more female. The patients in this 
subphenotype have the oldest MCI onset age and second shortest progression speed. 
Subphenotype 5 includes more African American patients and is dominated by topics of 
mental, movement, and eye problems. More patients would suffer from schizophrenia, obesity, 
bipolar disorder, and fatigue, most of which are associated with mental disorders. 
 
We have also performed sex- and race- stratified analysis for each subphenotype on MCI-onset 
age and progression duration. We found that more females than males with MCI will progress to 
AD but males tend to have younger MCI or AD onset ages, and the progression durations from 
MCI to AD are similar for males and females. These trends are observed on both the entire 
cohort and each of the identified subphenotypes. In addition, we also observed that African 
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American patients tend to have younger MCI onset ages than Caucasian patients (63) and have 
similar progression duration with Caucasian patients. The race-stratified analysis shows 
different patterns among different subphenotypes. For instance, the difference of MCI onset 
between Caucasian and African American patients are significant (p-value<0.001) on 
Subphenotype 1 and 2, but not significant on other three subphenotypes. African American 
patients have longer progression duration on subphenotype 2 (p-value<0.001) but shorter one 
on subphenotype 3 (p-value = 0.015). Chen et al. (64) pointed out that we need pay more 
attention about the disparities in dementia prevalence across racial or ethnic groups from the 
understanding of mechanism of dementia to the drug development.  
 
As suggested by previous clinical studies (54, 56-59),studying the differences on the changes 
of related comorbidities before AD onset can potentially improve our understanding of the 
underlying disease mechanism and offer informative guide for follow-up treatments. To achieve 
this goal, we performed further sex- and race- stratified analysis of comorbidities in terms of key 
clinical topics along with their associated top-5 diagnoses. To better explore the changes during 
the progression, we did such analysis on both MCI and AD onsets, where the observations on 
AD onset are similar with those in Tang et.al. (53). For example, female AD patients have 
greater association with hypertension (T1), hyperlipidemia (T1), cardiovascular risk factors (T9), 
and urinary tract infection (T12) while male AD patients have higher risk in hearing loss (T7) and 
neurological disorders (T3). 
 
To validate the robustness and reproducibility of the results obtained from dynaPhenoM, we 
validated our method on another large cohort, where we obtained consistent results as derived 
from the development cohort. We have also demonstrated that these subphenotypes are 
predictable at early stage (within 6 months after MCI onset), which further enhances their 
potential clinical utilities.  
 
There are limitations on the proposed approach. Technically, there are two main modules in 
dynaPhenoM, DMTM and T-LCA. For DMTM, currently it only considers discrete clinical events 
including diagnoses, medications and procedures. Actually, equipped with techniques in (65), 
we can further extend DMTM to consider continuous valued events such as lab tests. For T-
LCA, it is currently an independent procedure building on top of the representations derived 
from DMTM. In other words, there is no guarantee that the learned representations can lead to 
coherent subgroups identified using T-LCA. In the future, we will investigate approaches that 
can link DMTM and T-LCA in a unified framework so that the topic-based representation and 
progression subphenotype can be jointly derived. In the study, only structured information in 
EHR or claims has been explored. For AD, important information is encoded in unstructured 
data sources, such as neuroimage, clinical notes, and genetic data. We will explore strategies to 
incorporate these data in future studies as well. Even though, not limited in the case of disease 
progression from MCI to AD, dynaPhenoM is an efficient data-driven framework to identify 
progression subphenotypes from longitudinal multimodal clinical data. 
 
Methods 
 
Detailed descriptions of cohort definition 
 
Development cohorts: We leveraged the patient EHR from OneFlorida Clinical Research 
Consortium (21) to derive the subphenotypes. Detailed inclusion/exclusion cascade is 
demonstrated in Supplemental Figure 1. All events in each patient’s records, including 
diagnoses (ICD-9 and ICD-10 codes), drugs (RxCUI and NDC codes) and procedures (CPT 
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codes) from MCI onset to AD onset, were collected in our modeling process. The diagnosis 
codes were then mapped to 1,643 unique PheCode (66) (groups ICD codes into clinically 
relevant phenotypes). For drugs, the NDC codes were then mapped to RxCUI (ingredient level), 
and the total number of unique RxCUI codes appeared was 5905. The total number of unique 
CPT codes appeared was 5129. In our investigation, we have aggregated the patient visits 
within every 3 months from the MCI onset to AD onset to form the record sequence for each 
patient. 
 
Validation cohorts: We validated the derived subphenotypes on two independent cohorts. The 
first one is IBM Health MarketScan Commercial Claims database (22) for the years 2009 to 
2020. This dataset contains about 164 millions of enrollees annually across the US, and these 
enrollees are nationally representative of the US population with respect to gender, regional 
distribution, and age, supporting well-powered subgroup analysis. The second one is the patient 
EHR data from the Mount Sinai Health System which contains five locations in New York City. 
Similar to the development cohort, we applied a set of inclusion/exclusion criteria (detailed in 
Figure 2 and 3 in Supplement) on these two datasets, and we finally obtained 18,805 patients 
from MarketScan, and 698 patients from Mount Sinai for validating subphenotypes. For the 
MarketScan dataset, the patient diagnosis codes were recorded as ICD-9 and ICD-10, 
medications were encoded by Generic Product Identifier (GPI) codes, and procedures were 
encoded with PROCCD codes (mixture of CPT and HCPCS). In the patient cohort we extracted, 
the diagnosis codes were mapped to 1,750 unique PheCode, while the total unique GPI and 
PROCCD codes were 4,023 and 8,252. For the Mount Sinai dataset, the diagnosis, medication, 
and procedure events were encoded with 723 unique PheCode, 3497 unique RxCUI, and 1069 
unique CPT codes. 
 
Dynamic multimodal topic model (DMTM) 
 
We represented the diagnosis, drug, and procedure events as three binary feature vectors. Due 
to the large vocabulary size (total unique codes) of three modalities, the original feature vectors 
are high-dimensional and sparse (9), which makes efficient clustering difficult. Therefore, we 
proposed a novel probabilistic model, dynamic multimodal topic model (DMTM), to extract low-
dimensional continuous features from original high-dimensional binary vectors. The new 
features extracted from DMTM are not only beneficial for the following derivation of 
subphenotypes, but also explainable for the exploration of subphenotypes. 
 
As shown in Figure 1, DMTM models longitudinal multimodal clinical events from longitudinal 
patient events as a latent generative process, from the first visit to the last, whose specific 
notations are provided in Supplemental Table 15. After collecting all patient records, the 𝑚𝑚-th 
modality of 𝑛𝑛-th patient at 𝑡𝑡-th visit can be represented as a binary vector 𝒙𝒙𝑛𝑛,𝑡𝑡

(𝑚𝑚) ∈ {0,1}𝑉𝑉𝑚𝑚 (𝑚𝑚 =
1,⋯ ,𝑀𝑀; 𝑡𝑡 = 1,⋯ ,𝑇𝑇𝑛𝑛;𝑀𝑀 = 3 in our current case including diagnosis, medication, and procedure 
events), where 𝑉𝑉𝑚𝑚 represents the total unique clinical events (vocabulary size) in 𝑚𝑚-th modality, 
and 𝑇𝑇𝑛𝑛 is the total number of visits for the 𝑛𝑛-th patient. Suppose that there are 𝐾𝐾 latent clinical 
topics and each contains 𝑀𝑀 different types of topics corresponding to different modalities 
denoted as 𝚽𝚽(𝑚𝑚) ∈ ℛ+

𝑉𝑉𝑚𝑚×𝐾𝐾, in which the 𝑘𝑘-th column, ϕk
(m) ∈ ℛ+

𝑉𝑉𝑚𝑚 , represents 𝑘𝑘-th topic, a 
distribution over all events (unique codes) in 𝑚𝑚-th modality. DMTM assumes that 𝒙𝒙𝑛𝑛,𝑡𝑡

(𝑚𝑚)  is 
composed of 𝐾𝐾 topics with 𝜽𝜽𝑛𝑛,𝑡𝑡 ∈ ℛ+

𝐾𝐾 being the topic weight vector (mixture composition) shared 
by all modalities. Therefore, 𝑘𝑘-th topic in different modalities (ϕk

(1),⋯ ,ϕk
(𝑀𝑀)) are highly 

correlated, forming as 𝑘𝑘-th clinical topics shown in Figure 2. To model the transition pattern of 
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topic weights between two successive visits, DMTM introduces a transition matrix 𝚷𝚷 ∈ ℛ+
𝐾𝐾×𝐾𝐾, 

where each element, π𝑖𝑖𝑖𝑖, represents the probability of transition from 𝑖𝑖-th topic to the 𝑗𝑗-th topic. 
Formally, the generative process of DMTM can be written as: 
 

• Topic weights: 𝜽𝜽𝑛𝑛,1 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑟𝑟, 1), 𝜽𝜽𝑛𝑛,𝑡𝑡 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�τ0𝚷𝚷𝜽𝜽𝑛𝑛,𝑡𝑡−1, τ0�, 𝑡𝑡 = 2,⋯ ,𝑇𝑇𝑛𝑛 
• Latent clinical topics and transition matrix: ϕk

(m) ∼ Dirichlet(η0),  
π𝑘𝑘 ∼ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑙𝑙𝑙𝑙𝑙𝑙(𝑣𝑣1𝑣𝑣𝑘𝑘,⋯ , ξvk,⋯ , vKvk),  𝑘𝑘 = 1,⋯ ,𝐾𝐾 

• Intermediate variables 𝑣𝑣𝑘𝑘 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 �γ0
𝐾𝐾

,β�, 𝑘𝑘 = 1,⋯ ,𝐾𝐾; ξ,β ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(ϵ0, ϵ0) 
• EHR clinical events which are represented as:  

𝒙𝒙𝑛𝑛,𝑡𝑡
(𝑚𝑚) = 1 �𝒖𝒖𝑛𝑛,𝑡𝑡

(𝑚𝑚) ≥ 1 �,  
 𝒖𝒖𝑛𝑛,𝑡𝑡

(𝑚𝑚) ∼ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝚽𝚽(𝑚𝑚)𝜽𝜽𝑛𝑛,𝑡𝑡�,𝑛𝑛 = 1,⋯ ,𝑁𝑁;𝑚𝑚 = 1,⋯ ,𝑀𝑀; 𝑡𝑡 = 1,⋯ ,𝑇𝑇𝑛𝑛, 
 
where, 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑙𝑙𝑙𝑙𝑙𝑙, and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 denote the Gamma, Dirichlet, and Poisson distribution, 
respectively; 𝟏𝟏(⋅) is an indicator function representing that 𝒙𝒙𝑛𝑛,𝑡𝑡

(𝑚𝑚) = 1 if  𝒖𝒖𝑛𝑛,𝑡𝑡
(𝑚𝑚) ≥ 1 , and 𝒙𝒙𝑛𝑛,𝑡𝑡

(𝑚𝑚) = 0 if  
𝒖𝒖𝑛𝑛,𝑡𝑡

(𝑚𝑚) = 0.  This function is called Bernoulli-Poisson link (67), whose mathematical motivation is 
that after transforming a binary-modeling problem (clinical event happens or does not happen in 
this visit) into a count modeling one, one is readily equipped with a rich set of statistical tools 
developed for count data analysis using the Poisson and negative binomial distributions. 
 
There are four positive hyperparameters to be set by users: τ0, γ0, η0, ϵ0. In our setting, we set 
them as τ0 = 1, γ0 = 100, η0 = 0.01, ϵ0 = 0.1. We developed the Gibbs sampling to estimate 
the posterior of all variables (in Supplement). Here, we only showed the posterior of topic 
weights 𝜽𝜽𝑛𝑛,𝑡𝑡 to explain why DMTM can alleviate the problem of missing events in longitudinal 
patient records. 
 
Robustness of DMTM for missing events. The posterior of 𝜽𝜽𝑡𝑡 (without loss of generality, we 
ignore the patient index 𝑛𝑛) at 𝑡𝑡-th visit is a Gamma distribution as 

𝜽𝜽𝑡𝑡 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 �𝐴𝐴⋅,𝑡𝑡 + 𝑙𝑙⋅,𝑡𝑡+1 +𝚷𝚷𝜽𝜽𝑡𝑡−1,ℎ(τ0)� 
where, from a mathematical view, 𝚷𝚷𝜽𝜽𝑡𝑡−1 transforms the information from the prior visit (𝑡𝑡 − 1), 
𝐴𝐴⋅,𝑡𝑡 represents the information of current visit (𝑡𝑡), and 𝑙𝑙⋅,𝑡𝑡+1 transforms the information from the 
next visit (𝑡𝑡 + 1). In other words, when inferring the topic weight vector of 𝑡𝑡-th visit (𝜽𝜽𝑡𝑡), DMTM 
not only uses the clinical events from the current visit, but also looks forward and backward to 
use the information from neighboring visits. As a result, even if some events are missed at 
current event, DMTM may recall them by relating events from neighboring visits. 
 
Measuring similarity of multimodal clinical events on the topic space 
 
As discussed before, DMTM learns the topic matrix of multimodal clinical events, represented 
as {𝚽𝚽(𝑚𝑚) ∈ 𝑅𝑅𝑉𝑉𝑚𝑚×𝐾𝐾}𝑚𝑚=1𝑀𝑀 . Illustrated in the workflow in Supplemental Figure 7a, we can regard 
each row from 𝚽𝚽(𝑚𝑚) as a projection of clinical events to the inferred shared topic embeddings 
space, which enables the discover of associations among events (9). For example, we obtained 
the embeddings of two events as 𝒆𝒆1 and 𝒆𝒆2 from topic matrices. We calculated the cosine 
similarity between them as  <𝒆𝒆1,𝒆𝒆2>

||𝒆𝒆1||||𝒆𝒆2||
, where <⋅,⋅> denotes the inner product of two embeddings 

and || ⋅ || denotes the norm of vector. Thus, in Supplemental Figure 7b, given a query clinical 
event, we showed the top-10 related (most similar) diagnosis events, top-5 related medication 
and procedure events. 
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Identify key topics 
 
We found that using all topics to learn subphenotype is still inefficient, and the interpretation is 
not intuitive. To solve this problem, before leaning subphenotypes, on each dataset, we firstly 
identified key topics on each dataset from all topics. Since topic weight vector 𝜽𝜽𝑛𝑛,𝑡𝑡 can describe 
the importance of each topic in describing the observed data, in the following, we introduced 
how to identify key topics according to the topic weight vector. 
 
Specifically, for 𝑘𝑘-th topic, we use 𝑢𝑢𝑘𝑘 = 1

𝑁𝑁
∑ 1

𝑇𝑇𝑛𝑛
∑ 𝜃𝜃𝑛𝑛,𝑡𝑡,𝑘𝑘
𝑇𝑇𝑛𝑛
𝑡𝑡=1

𝑁𝑁
𝑛𝑛=1  to represent the mean topic usage 

since we take average over all patients (index by 𝑛𝑛) and all visits (index by 𝑡𝑡). After that, for the 
𝑘𝑘-th topic, we define the percentage of mean topic usage as 𝑢𝑢𝑘𝑘

∑ 𝑢𝑢𝑘𝑘𝐾𝐾
𝑘𝑘=1

. If 𝑢𝑢𝑘𝑘
∑ 𝑢𝑢𝑘𝑘𝐾𝐾
𝑘𝑘=1

> 1
𝐾𝐾
, we consider 

this topic as a key topic since threshold 1
𝐾𝐾
 (𝐾𝐾 is the total number of topics) is the mean usage 

over all topics. The results of identifying key topics on three cohorts are provided in 
Supplementary Figure 5. 

 
Time-aware latent class analysis (T-LCA) 
 
Most existing works in clinical research about deriving longitudinal subphenotypes were 
implemented using latent class analysis (group based trajectory modeling) (68) or dynamic time 
warping (69), which often regarded visit times rather than calendar time as time stamps. 
However, such methods ignored the fact that the time interval between two visits may be 
irregular, varying from days to months, which is important for clinical study since it embeds the 
progressive speed of diseases. To this end, in this paper, we introduced time-aware latent class 
analysis (T-LCA). 
 
Specifically, the new features extracted by DMTM are topic weight vectors denoted as 𝚯𝚯 =
{𝜽𝜽𝑛𝑛,𝑡𝑡 ∈ ℛ+

𝐾𝐾}𝑛𝑛=1,𝑡𝑡=1
𝑁𝑁,𝑇𝑇𝑛𝑛  (note that here we use 𝐾𝐾 to represent the number of key topics), T-LCA 

models the data likelihood of 𝚯𝚯 by a mixture of Gaussian distribution as: 
𝑝𝑝(𝚯𝚯) = ∑ ∑ α𝑐𝑐 ∏ ∏ 𝒩𝒩�θ𝑛𝑛,𝑡𝑡,𝑘𝑘�𝜷𝜷𝑐𝑐,𝑘𝑘𝝉𝝉𝒏𝒏,𝒕𝒕,σ𝑘𝑘�𝐾𝐾

𝑘𝑘=1
𝑇𝑇𝑛𝑛
𝑡𝑡=1𝑐𝑐𝑛𝑛 ,  

where, {α𝑐𝑐}𝑐𝑐=1𝐶𝐶  are the mixture coefficients with 𝐶𝐶 being the number of subphenotypes, and the 
mean 𝜷𝜷𝑐𝑐,𝑘𝑘𝝉𝝉𝒏𝒏,𝒕𝒕 is defined as: 

𝜷𝜷𝑐𝑐,𝑘𝑘𝝉𝝉𝒏𝒏,𝒕𝒕 = �β𝑐𝑐,𝑘𝑘,1,β𝑐𝑐,𝑘𝑘,2,β𝑐𝑐,𝑘𝑘,3,β𝑐𝑐,𝑘𝑘,4� �1,𝑑𝑑𝑛𝑛,𝑡𝑡 − 𝑑𝑑𝑛𝑛,1, �𝑑𝑑𝑛𝑛,𝑡𝑡 − 𝑑𝑑𝑛𝑛,1�
2

, �𝑑𝑑𝑛𝑛,𝑡𝑡 − 𝑑𝑑𝑛𝑛,1�
3
�
𝑇𝑇
, 

where, 𝑑𝑑𝑛𝑛,1 is the calendar time of starting point (such as MCI onset in our case) for 𝑛𝑛-th 
patient; 𝑑𝑑𝑛𝑛,𝑡𝑡 is the calendar time of 𝑡𝑡-th visit for 𝑛𝑛-th patient. In other words, 𝑑𝑑𝑛𝑛,𝑡𝑡 − 𝑑𝑑𝑛𝑛,1 models 
the calendar time interval from the starting point to every visit, which embeds the natural time 
progression. This is the reason why we call our proposed new type of LCA as time-aware LCA. 
To learn the parameters {𝜷𝜷𝑐𝑐,𝑘𝑘 ∈ ℛ4}𝑐𝑐=1,𝑘𝑘=1

𝐶𝐶,𝐾𝐾  and  {σ𝑘𝑘 ∈ ℛ1}𝑘𝑘=1𝐾𝐾 , and infer the subphenotype 
belonging for each patient, we use the Expectation–Maximization (EM) algorithm (64) whose 
details are in Supplement. 
 
As shown in Figure 4, we used 𝑦𝑦-axis to represent the mean (over patients in corresponding 
subphenotype) number of diagnosis events (for one topic) whose probabilities of occurrence are 
larger than 0.5. Here we provided more details to illustrate it. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 2, 2021. ; https://doi.org/10.1101/2021.11.01.21265725doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.01.21265725


As shown in the generative process of DMTM for multimodal longitudinal patient events, we 
used the Bernoulli-Poisson link to transform the binary-modeling problem (clinical event 
happens or does not happen in this visit) into a count modeling, which enables us to readily 
employ a rich set of statistical tools developed for count data to do data mining. If we 
marginalized out the auxiliary variable 𝒖𝒖𝑛𝑛,𝑡𝑡

(𝑚𝑚), we obtained a Bernoulli random variable as  

𝒙𝒙𝑛𝑛,𝑡𝑡
(𝑚𝑚) ∼ Bernoulli�1 − e−𝚽𝚽

(𝑚𝑚)𝜽𝜽𝑛𝑛,𝑡𝑡�. 

According to the property of Bernoulli distribution, the mean is 1 − e−𝚽𝚽
(𝑚𝑚)𝜽𝜽𝑛𝑛,𝑡𝑡, where 𝜽𝜽𝑛𝑛,𝑡𝑡 ∈ ℛ+

𝐾𝐾 
represents the topic weight vector (the total number of topics is 𝐾𝐾) of 𝑛𝑛-th patient at visit of time 
𝑡𝑡. 

Assume that one subphenotype has 𝑁𝑁′ patients. In the visualization of subphenotypes (Figure 
4), for 𝑘𝑘-th topic at calendar time 𝑡𝑡, we firstly calculate the mean of corresponding topic weight 
as θ𝑡𝑡,𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1

𝑁𝑁′ ∑ θ𝑛𝑛,𝑡𝑡,𝑘𝑘
𝑁𝑁′
𝑛𝑛=1 , and then obtain the 𝑦𝑦𝑡𝑡,𝑘𝑘 = 1 − e−ϕk

(m)θ𝑡𝑡,𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∈ ℛ𝑉𝑉𝑚𝑚 (note that 𝑦𝑦𝑡𝑡,𝑘𝑘 ∈

[0,1] since ϕk
(m)θ𝑡𝑡,𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 0). Each value in 𝑦𝑦𝑡𝑡,𝑘𝑘 represents the mean probability (decided by 𝑘𝑘-

th topic) of each clinical event appearing in calendar time 𝑡𝑡. We count the number of clinical 
events whose appearing probability is larger than 0.5 as the value of 𝑦𝑦 axis in Figure 4. In other 
words, the larger the value of 𝑦𝑦-axis is, the more diagnosis events from the corresponding topic 
will occur, the higher risk of having these diseases. 

 
Prediction of subphenotype assignment 
 
For dynaPhenoM, we proposed two experimental settings to evaluate its performance on 
prediction of subphenotype assignments, which can further illustrate the robustness and 
generalizability of our method. One of the settings is to train and evaluate the performance in 
one dataset (internal) by five-fold cross validation. The other setting is to evaluate using two 
datasets (external) by training models on one dataset and then testing the trained model on 
another dataset. Specifically, as shown in Figure 8a, for both settings, we firstly split training set 
as training set1 (60%) and training set2 (40%). We collected all longitudinal patient events and 
then trained the DMTM on training set1. After training, we obtained the clinical topics {𝚽𝚽(𝑚𝑚)}𝑚𝑚=13  
and topic transition matrix 𝚷𝚷. Given well-learned {𝚽𝚽(𝑚𝑚)}𝑚𝑚=13  and 𝚷𝚷, regarding training set2 
and testing set as input, we used DMTM to infer their topic weight vectors represented as 
𝚯𝚯𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 = {𝜽𝜽𝑛𝑛,𝑡𝑡}𝑛𝑛=1,𝑡𝑡=1

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑇𝑇𝑛𝑛 and 𝚯𝚯𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 = {𝜽𝜽𝑛𝑛,𝑡𝑡}𝑛𝑛=1,𝑡𝑡=1
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑇𝑇𝑛𝑛 , respectively. Having obtained the topic weight 

vector of both training-set2 and testing samples, we used T-LCA to derive the subphenotype 
belongings of all samples (𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡). Regarding the mean over time of topic weights as the 
features for each patient that means { 1

𝑇𝑇𝑛𝑛
∑ 𝜽𝜽𝑛𝑛,𝑡𝑡
𝑇𝑇𝑛𝑛
𝑡𝑡=1 }𝑛𝑛=1

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and  { 1
𝑇𝑇𝑛𝑛
∑ 𝜽𝜽𝑛𝑛,𝑡𝑡
𝑇𝑇𝑛𝑛
𝑡𝑡=1 }𝑛𝑛=1

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, we trained a 
logistic regression model on training set2 and then tested the performance on testing set. From 
Table 1 and Supplementary table 16, we observed distribution shift of basic characteristics and 
the data between cohorts of MarketScan and OneFlorida. From Figure 8, we found such 
distribution shift does not affect performance too much, especially when trained on MarketScan 
(larger dataset) and tested on OneFlorida. Since there are total five subphenotypes (multiple 
classes), for AUC results, we provide both micro-AUC and Macro-AUC. 
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Data availability 
 
The real-world data analyzed in this article were provided by OneFlorida Clinical Research 
Consortium (OneFlorida dataset), IBM MarketScan Research Databases (MarketScan dataset), 
and the Mount Sinai Health System (Mount Sinai dataset). These data are not publicly 
accessible due to restricted user agreement. Requests for access to OneFlorida dataset should 
be submitted to and approved by OneFlorida Clinical Research Consortium 
(https://www.ctsi.ufl.edu/ctsa-consortium-projects/oneflorida/); access to MarketScan dataset 
can be obtained by contacting IBM (https://www.ibm.com/products/marketscan-research-
databases/databases); access to Mount Sinai dataset can be sent to Benjamin 
(benjamin.glicksberg@mssm.edu). However, we have provided a toy data incorporated in the 
open-source tool we released for understanding the method. 
 
Code availability 
The implementation of the proposed DMTM and T-LCA in Python and MATLAB are publicly available at 
https://github.com/haozhangWCM/dynaPhenoM. 
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Figure 1. Workflow of dynaPhenoM for deriving longitudinal subphenotypes from longitudinal 
patient records demonstrated on the case of mild cognitive impairment (MCI) to Alzheimer’s 
disease (AD) progression.  
 
a. Dataset for demonstration of MCI to AD progression. 
 
b. Data preprocessing from the original longitudinal patient records for MCI to AD progression, 
including cohort selection, visit assembling, and representing records as binary vectors. 
Currently, we aggregate all records within every three months as a single “visit”, while this 
window size can be tuned according to different cases. For every visit, records from one modality 
can be represented as a binary vector (1: the visit includes this code, 0: the visit does not include 
this code) where the length of this binary vector is equal to the total number of unique codes in 
the modality (different modalities can have different number of unique codes).   
 
c. Illustration of DMTM. DMTM regards binary longitudinal vectors as input and output the clinical 
topics including different modalities, topic transition probability, and topic weights. Clinical topics 
and topic transition probability are shared by all patients at every visit (global parameters) while 
topic weights are new features to characterize the patients (patient-specific, local parameters). 
 
d. Illustration of T-LCA. T-LCA regards topics weights as input to identify longitudinal 
subphenotypes, which embeds calendar time of each visit into subphenotyping. 
 
e. Utilizing interpretable clinical topics and topic transition probability learned from DMTM, 
dynaPhenoM performs the subphenotype interpretation, gender and race stratified enrichment 
analysis, and builds the logistic regression to predict the subphenotype belongings for new 
patients using early-stage records. 
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Figure 2. Key (commonly used) clinical topics learned from the development cohort by DMTM, 
where the color bar indicates the weights of each events in the corresponding topics. 
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Figure 3. Matrix of topic transition probabilities (%) on the development cohort. Besides the 13 key 
clinical topics, other 17 topics are integrated into “others” in the matrix. The value in 𝒊𝒊-th row and 
𝒋𝒋-th column denotes the transition probability from 𝒊𝒊-th topic to 𝒋𝒋-th topic. 
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Figure 4. Visualization of longitudinal subphenotypes on the development cohort, which are 
characterized by the evolution of clinical topic compositions with time. In a, we demonstrate these  
subphenotypes according to the change of their topic compositions, where major topics whose 
value exceeds 2 on vertical axis at least once during the entire progression course are showed by 
solid lines. In b, we illustrate the evolution of each topic within different subphenotypes. 
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Figure 6. Distributions of age on MCI onset (top, Panel 1 and 2) and progressive time (bottom, 
Panel 3 and 4) on the development cohort. The Panel 1 and 3 are visualized by different genders 
((a) and (f)), races((b) and (g)), and subphenotypes ((c) and (h)) on the whole cohort, while the 
panel 2 and 4 are visualized by different genders ((d) and (i)) and races ((e) and (j)) on each 
subphenotype.  
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Figure 7. Sex-stratified enrichment analysis of comorbidities on the development cohort. For each 
subphenotype, the top Bar plot shows the p-value of topic weights on MCI onset (blue) and AD 
onset (orange) computed using Kruskal-Wallies test. The bottom Miami plot shows the p-value of 
the top-5 (large weights) diagnosis events in each topic computed by Fisher Exact test on both 
MCI and AD onset, where some diseases are colored if they are significant in female (pink) or male 
(green), evaluated by log odds ratio. The black dotted lines in Bar and Miami plots denote p-
value=0.05, Below five subphenotypes, names of some key diseases in the topic are listed, where 
the rank in the bracket denotes the rank of diseases in each topic according to the weights in 
Figure 2. 
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Figure 8. a: Workflow to evaluate the predictive performance for subphenotype belongings. We 
conducted two sets of experiments: internal and external predictions. Internal prediction refers to 
the procedure of developing and evaluating the predictive model on a same cohort (OneFlorida or 
MarketScan) through 5-fold cross validation. External prediction is the paradigm of training the 
predictive model on one cohort (e.g., OneFlorida or MarketScan) and evaluate it on the other 
cohort (e.g., MarketScan or OneFlorida). b: Results on different experimental settings. 
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Table 1. Characteristics of the development (OneFlorida) and the two external validation (MarketScan and Mount Sinai) cohorts.  

 
Characteristics 

Cohort 

OneFlorida  MarketScan  Mount Sinai 

No. of patient 2995  18805 689 

Age (MCI onset), yr, Median (IQR) 76.0 [69.0-83.0] 79.0 [73.0-84.0] 79.5 [74.7-85.3] 

Sex female, N (%) 1950 (65.11) 10897 (57.95) 455 (66.04) 

 
 
 
 
 
 
 

Race, 
N (%) 

Caucasian 1580 (52.76) - 426 (61.83) 

African American 386 (12.89) - 139 (20.17) 

Asian   21(0.70) - 7 (1.02) 

American Indian 3 (0.10) - - 

Multiple Race 28 (0.93) - - 

Other/Unknown 977 (32.62) - 117 (16.98) 

Progression time, day, Median (IQR) 871.0 [576.5-1323.5] 770.0 [537.0-1152.0] 630 [402.5-936.0] 

1~2 year, N (%) 1182 (39.47) 8694 (46.23) 344 (49.93) 

2~3 year, N (%) 738 (24.64) 4854 (25.82) 198 (28.74) 

3~4 year, N (%) 484 (16.16) 2701 (14.36) 71 (10.30) 

4~5 year, N (%) 323 (10.78) 1382 (7.35) 46 (6.68) 

>5 year, N (%) 268 (8.95) 1174 (6.24) 30 (4.30) 

Comorbidity, N (%) 
   

Hypertension 1132 (37.79) 6775 (36.03) 234 (33.96) 

Hyperlipidemia 495 (16.53) 3512 (18.68) 107 (15.53) 

Diabetes 582 (19.43) 2890 (15.37) 167 (24.24) 

Dementias 383 (12.79) 3691 (19.63) 159 (23.08) 

Memory loss 388 (12.95) 3050 (16.22) 67 (9.72) 
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Heart disease 284 (9.48) 2109 (11.22) 112 (16.26) 

Sleep disorders 122 (4.07) 1551 (8.25) 38 (5.52) 

Anxiety 345 (11.52) 1203 (6.40) 53 (7.69) 

Gastroesophageal reflux disease  401 (13.38) 1637 (8.71) 70 (10.16) 

Cerebrovascular disease 145 (4.84) 1711 (9.10) 94 (13.64) 

Chronic airway obstruction 305 (10.18) 1053 (5.60) 85 (12.34) 

Chronic renal failure  188 (6.28) 1654 (8.80) 71 (10.30) 

Urinary tract infection 499 (16.66) 1985 (10.56) 125 (18.14) 

Glaucoma and Cataract 270 (9.01) 884 (4.70) 39 (5.66) 

Medicine, N (%)    

Antithrombotic agents 693 (23.14) 5829 (31.00) 144 (20.90) 

Gastrointestinal agents 569 (18.99) 5455 (29.01) 153 (22.21) 

Opioids 552 (18.43) 5089 (27.06)  78 (11.32) 

Antidepressants 523 (17.46) 2768 (14.72) 74 (10.74) 

Antiinfectives 511 (17.06) 5064 (26.93) 101 (14.76) 

Corticosteroids 505 (16.86) -- 84 (12.19) 

Beta blocking agents 496 (16.56) 3691 (19.63) 120 (17.42) 

Anti-dementia drugs 412 (13.75) -- 106 (15.38) 

Hypnotics and sedatives 363 (12.12) 1767 (9.40) 48 (6.97) 

Urological 261 (8.71) 2049 (10.90) 65 (9.43) 

Insulins and analogues 261 (8.71) 2591 (13.78) 84 (12.19) 
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Table 2 Characteristics (making statistics on MCI onset) of the identified subphenotypes (development cohort). The p-value for sex, 
race, key comorbidities and medicines are obtained by 𝝌𝝌𝟐𝟐 test (false discovery rate correction for post-hoc pairwise comparisons in sex 
and race are in Table 5~6 in Supplement). The p-value for age and progression time are obtained by Kruskal-Wallis test (with Dunn’s 
test for post-hoc pairwise comparisons in Table 7~8 in Supplement). 

Variable Total Subphenotype I Subphenotype II Subphenotype III Subphenotype IV Subphenotype V P-value 

No. of Patient (%) 2995 (100) 570 (19.03) 509 (14.79) 660 (16.99) 320 (12.31) 195 (6.51) -- 

Age (MCI onset), yr, Median (IQR) 76 [69-83] 76 [69-83] 75 [69-82] 77 [71~83] 80 [73~87] 72 [64~78] <0.001 

Sex female, N (%) 1950 (65.11) 378 (66.32) 292 (57.37) 443 (67.12) 232 (72.50) 100 (51.28) <0.001 

 
 
 
 
 

Race,  
N (%) 

Caucasian 1580 (52.76) 365 (64.04) 201 (39.49) 335 (50.76) 203 (63.44) 92 (47.18)  
 
 

<0.001 
 

African American 386 (12.89) 36 (6.32) 91 (17.88) 89 (13.48) 36 (11.25) 43 (22.05) 

Asian   21 (0.70) 5 (0.88) 4 (0.79) 8 (1.21) 1 (0.31) 1 (0.51) 

American Indian 3 (0.10) 0 (0) 0 (0) 1 (0.15) 0 (0) 0 (0) 

Multiple Race 28 (0.93) 3 (0.53) 1 (0.20) 10 (1.52) 0 (0) 2 (1.03) 

Other/Unknown 977 (36.26) 161 (28.25) 212 (41.65) 217 (32.88) 80 (25.00) 57 (29.23) 

Progression time, day, Median (IQR) 871.0 [576.5-1323.5] 733.5 [508.0-998.0] 888.0 [607.0~1465.0] 848.5 
[558.0~1391.25] 

807.0 [558.0~1269.0] 939.0 [681.0~1633.0] <0.001 

1~2 year, N (%) 1182 (39.47) 285 (50.0) 190 (37.33) 269 (40.76) 149 (46.56) 59 (30.26) 
 

2~3 year, N (%) 738 (24.64) 155 (27.19) 101 (19.84) 139 (21.06) 65 (20.31) 45 (23.08) 

3~4 year, N (%) 484 (16.16) 65 (11.40) 90 (17.68) 105 (15.90) 62 (19.38) 28 (14.36) 

4~5 year, N (%) 323 (10.78) 55 (9.65) 78 (15.32) 87 (13.18) 29 (9.06) 31 (15.90) 

>5 year, N (%) 268 (8.95) 10 (1.75) 50 (9.82) 60 (9.09) 15 (4.69) 32 (16.41) 

Key comorbidity, N (%) 
 

Hypertension 1132 (37.79) 78 (13.68) 66 (12.97) 336 (50.91) 48 (15.00) 19 (9.74) <0.001 

Hyperlipidemia 495 (16.53) 61 (10.70) 82 (16.11) 176 (26.67) 32 (10.94) 24 (12.31) <0.001 

Diabetes 582 (19.43) 67 (11.75) 178 (34.97) 152 (23.03) 31 (9.69) 46 (23.59) <0.001 
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Dementias 383 (12.79) 201 (35.26) 33 (6.48) 41 (6.21) 29 (9.06) 20 (10.26) <0.001 

Memory loss 388 (12.95) 120 (21.05) 42 (8.25) 31 (4.70) 38 (11.87) 17 (8.72) <0.001 

Heart disease 284 (9.48) 71 (12.46) 50 (9.82) 101 (15.30) 19 (5.94) 12 (6.15) <0.001 

Sleep disorder 122 (4.07) 35 (6.14) 17 (3.34) 19 (2.88) 22 (6.88) 14 (7.18) 0.0037 

Anxiety 345 (11.52) 68 (11.93) 51 (10.02) 58 (8.79) 53 (16.56) 76 (38.97) <0.001 

Gastroesophageal reflux disease 401 (13.38) 35 (6.14) 82 (16.11) 116 (17.58) 16 (5.00) 11 (5.64) <0.001 

Cerebrovascular disease 145 (4.84) 21 (3.68) 20 (3.93) 17 (2.58) 34 (10.62) 19 (9.74) <0.001 

Chronic airway obstruction 305 (10.18) 19 (3.33) 46 (9.04) 77 (11.67) 32 (10.00) 23 (11.79) <0.001 

Chronic renal failure 188 (6.28) 17 (2.98) 116 (22.79) 19 (2.88) 14 (4.37) 9 (4.62) <0.001 

Urinary tract infection 499 (16.66) 60 (10.53) 53 (10.41) 81 (12.27) 40 (12.50) 25 (12.82) 0.706 

Glaucoma and Cataract 270 (9.01) 53 (9.30) 74 (14.54) 59 (8.94) 29 (9.06) 38 (19.49) <0.001 

Key Medicine, N (%) 
 

Antithrombotic agents 693 (23.14) 91 (15.96) 178 (34.97) 212 (32.12) 47 (14.69) 32 (16.41) <0.001 

Gastrointestinal agents 569 (18.99) 72 (12.63) 160 (31.43) 169 (25.61) 27 (8.44) 37 (18.97) <0.001 

Opioids 552 (18.43) 66 (11.58) 112 (22.00) 126 (19.09) 96 (30.00) 42 (21.54) <0.001 

Antidepressants 523 (17.46) 102 (17.89) 132 (25.93) 116 (17.89) 68 (21.25) 55 (28.21) <0.001 

Antiinfectives 511 (17.06) 90 (15.79) 95 (18.66) 121 (18.33) 77 (24.06) 39 (20.00) 0.049 

Corticosteroids 505 (16.86) 96 (16.84) 87 (17.09) 67 (10.15) 33 (10.31) 26 (13.33) <0.001 

Beta blocking agents 496 (16.56) 94 (16.49) 93 (18.27) 201 (30.45) 43 (13.44) 36 (18.46) <0.001 

Anti-dementia drugs 412 (13.75) 277 (48.60) 23 (4.52) 33 (5.00) 38 (11.87) 19 (9.74) <0.001 

Hypnotics and sedatives 363 (12.12) 87 (15.26) 73 (14.34) 29 (4.39) 95 (29.69) 67 (34.36) <0.001 

Urological 261 (8.71) 38 (6.67) 34 (6.68) 59 (8.94) 22 (6.88) 23 (11.79) 0.0992 

Insulins and analogues 261 (8.71) 11 (1.93) 203 (39.88) 16 (2.42) 3 (0.94) 19 (9.74) <0.001 
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