
1 

Predictive value of circulating NMR metabolic 
biomarkers for type 2 diabetes risk in the UK 

Biobank study 

Fiona Bragg1,2*, Eirini Trichia1,2*, Diego Aguilar-Ramirez2, Jelena Bešević2, Sarah 
Lewington1,2,3, Jonathan Emberson1,2 

1. MRC Population Health Research Unit, Nuffield Department of Population 
Health, University of Oxford 

2. Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department 
of Population Health, University of Oxford 

3. UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan 
Malaysia, Kuala Lumpur, Malaysia 

*Equal contribution 

Address for correspondence: 
Dr Fiona Bragg 

Nuffield Department of Population Health 
University of Oxford 
Old Road Campus 

OX3 7LF, UK 
Tel: 44-1865-743947 

fiona.bragg@ndph.ox.ac.uk 

11 October 2021

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 14, 2021. ; https://doi.org/10.1101/2021.10.11.21264833doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.10.11.21264833


2 

Summary  

Background: Effective targeted prevention of type 2 diabetes (T2D) depends on 

accurate prediction of disease risk. We assessed the role of metabolomic profiling in 

improving T2D risk prediction beyond conventional risk factors.  

Methods: NMR-metabolomic profiling was undertaken on baseline plasma samples 

in 65,684 UK Biobank participants without diabetes and not taking lipid-lowering 

medication. Cox regression yielded adjusted hazard ratios for the associations of 

143 individual metabolic biomarkers (including lipids, lipoproteins, fatty acids, amino 

acids, ketone bodies and other low molecular weight metabolic biomarkers) and 11 

metabolic biomarker principal components (PCs) (accounting for 90% of total 

variance in individual biomarkers) with incident T2D. These 11 PCs were added to 

established models for T2D risk prediction, and measures of risk discrimination (c- 

statistic) and reclassification (continuous net reclassification improvement [NRI], 

integrated discrimination index [IDI]) were assessed. 

Findings: During median 11.9 (IQR 11.1-12.6) years’ follow-up, 1719 participants 

developed T2D. After accounting for multiple testing, 118 metabolic biomarkers 

showed independent associations with T2D risk (false discovery rate controlled 

p<0.05), of which 103 persisted after additional adjustment for HbA1c. Overall, 10 

metabolic biomarker PCs were independently associated with T2D. Addition of PCs 

to the established risk prediction model (including age, sex, parental history of 

diabetes, body mass index and HbA1c) improved T2D risk prediction as assessed by 

the c-statistic (increased from 0.802 [95% CI 0.791-0.812] to 0.830 [0.822-0.841]), 

continuous NRI (0.44 [0.38-0.49]), and relative (15.0% [10.5%-20.4%]) and absolute 

(1.5 [1.0-1.9]) IDI.  

Interpretation: When added to conventional risk factors, circulating NMR-based 

metabolic biomarkers enhanced T2D risk prediction. 

Funding: BHF, MRC, CRUK 
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Introduction 

Both population-level and individual high-risk prevention approaches are essential 

for addressing the major and rising global public health challenge of type 2 diabetes 

(T2D). Fundamental to the latter is the ability to accurately predict future T2D risk, 

enabling targeted or precision prevention of the disease,1 and ultimately of its 

complications.2 Existing risk prediction models are imperfect, frequently over-

estimating T2D risk3 and often lacking sufficient specificity to be of use clinically.4

Moreover, they characteristically rely on distal risk factors, and consider, at best, only 

limited molecular pathways. This contrasts with the classical T2D prodrome, 

comprising dysregulation of multiple molecular pathways over a period of many 

years.5

Through metabolomic profiling, large numbers of biomarkers across multiple 

biological pathways—proximal and distal—can be quantified in a single 

measurement, capturing the consequences of genetic variation, environmental 

influences, and their interactions. Prospective studies have established associations 

of diverse circulating metabolic biomarkers (e.g., amino acids, fatty acids, hexoses, 

lipids) with T2D.6 As well as providing aetiological insights, these data might feasibly 

contribute valuable risk prediction information. Previous studies investigating the 

ability of metabolomics to improve T2D risk prediction over established risk factors 

have, with the exception of a small number of studies,7,8 based their findings on 

limited T2D cases,9-14 frequently investigating only small numbers or single 

subclasses of metabolic biomarkers,8-13 or have used untargeted metabolomic 

profiling, including unknown biomarkers13,14 with limited translational potential. The 
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resulting inconsistent findings leave on-going uncertainty regarding the value of 

metabolomic profiling for T2D risk prediction.  

Using recently-available data from the UK Biobank study, we characterise the 

prospective associations of circulating metabolic biomarkers, quantified using a high-

throughput targeted NMR metabolomics platform, with risk of incident T2D, and 

examine whether addition of these biomarkers to established models improves 

prediction of T2D risk. 
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Methods 

Study population 

Details of the UK Biobank (UKB) study design and population have been described 

previously.15 Briefly, postal invitations to participate were sent to 9.2 million adults 

aged 40-69 years, living in England, Wales or Scotland and registered with the UK 

National Health Service. A response rate of 5.5% was achieved, and 502,493 

participants were enrolled. 

Data collection 

The baseline survey took place between 2006 and 2010 in 22 assessment centres. 

Self-administered touchscreen questionnaires collected information on 

sociodemographic and lifestyle factors (including diet, physical activity, smoking and 

alcohol drinking), and personal (supplemented by verbal interview) and family 

medical history. Physical measurements, including blood pressure, height, weight, 

waist circumference (WC) and hip circumference, were undertaken using calibrated 

instruments with standard protocols. A non-fasting venous blood sample was 

collected, with the time since last food or drink recorded. After minimal processing at 

assessment centres, samples were shipped to a central facility for processing and 

long-term storage at -80°C. Biochemical biomarkers were measured on stored 

baseline samples at a central UK Biobank laboratory between 2014 and 2017.16

These included HDL-cholesterol and triglycerides (AU5400; Beckman Coulter) and 

HbA1c (VARIANT II TURBO Hemoglobin Testing System; Bio-Rad). Repeat surveys 

collected the same information as at baseline in addition to certain enhancements; 
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they comprised a resurvey of ~20,000 participants in 2012-13, and an on-going 

survey of ~100,000 participants which commenced in 2014.17,18

All participants consented to be followed-up through linkage to health-related 

records. These included prior and prospective data on dates and causes of hospital 

admissions (Hospital Episode Statistics in England, Patient Episode Database for 

Wales, and Scottish Morbidity Record), and primary care clinical events and 

prescribing (available for ~45% of participants), as well as date and cause of death 

obtained from national death registries. 

Ethics approval for the UK Biobank was obtained from the North West Multi-centre 

Research Ethics Committee (Ref: 11/NW/0382). All participants provided informed 

written consent. 

Metabolic biomarker quantification 

A high-throughput NMR-metabolomics platform19,20 was used to undertake 

metabolomic profiling in baseline plasma samples from a randomly-selected subset 

of ~120,000 UKB participants.21 This simultaneously quantified 249 metabolic 

biomarkers (168 directly-measured and 81 ratios of these), including lipids, fatty 

acids, amino acids, ketone bodies and other low molecular weight metabolic 

biomarkers (e.g., gluconeogenesis related metabolites), as well as lipoprotein 

subclass distribution, particle size and composition. A subset of 143 (Webtable 1) 

were selected for inclusion in the presented analyses, focussing on those which 

were directly measured and could not be inferred from other biomarkers. 
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Assessment of incident type 2 diabetes status 

Incident T2D status was ascertained through: i) self-report of T2D diagnosis or 

glucose-lowering medication use at repeat surveys; ii) coded T2D diagnoses 

recorded in primary care, hospital admission or death registry data; or iii) glucose-

lowering medication prescribing in primary care data (Webtable 2). Only those 

participants without diagnostic codes for other specified diabetes types (type 1/ 

malnutrition-related/ other specified diabetes) were considered to have T2D. 

Statistical analysis 

Analyses excluded those with previously-diagnosed diabetes of any type (based on 

self-report, primary care or inpatient hospital data), taking regular glucose-lowering 

medication (based on self-report or primary care data) or with HbA1c ≥6.5% 

(corresponding to 48 mmol/mol and consistent with undiagnosed diabetes) at the 

baseline survey. Those with missing or extreme NMR-biomarker or covariate data 

(see below), or who were taking lipid-lowering medications at recruitment, were also 

excluded from the main analyses (Webfigure 1).  

All NMR-biomarkers were log transformed and standardised. Principal component 

analysis was then employed to reduce the large number of correlated NMR-

biomarkers (Webfigure 2) to a much smaller number of uncorrelated principal 

components (PCs) which retained most (>90%) of the variance in the individual 

biomarkers. Cox regression was used to assess the individual relevance of each 

NMR-biomarker (and each PC) to risk of incident T2D. First, to examine the shape of 

the associations, participants were grouped into baseline categories defined by 

quartiles of their distributions. Subsequently, continuous analyses of each NMR-

biomarker (and each PC) were done to estimate the HR per 1-SD higher baseline 
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level. Cox models were stratified by age-at-risk (5-year age groups) and sex, and 

adjusted for assessment centre (22 centres), Townsend deprivation index (numeric), 

smoking (4 categories), alcohol drinking (4 categories), body mass index (BMI) 

(numeric), waist-to-hip ratio (WHR) (numeric), fasting time (numeric) and 

spectrometer (6 spectrometers). Participants who did not develop incident T2D were 

censored at the earliest of death, loss to follow-up or 31 December 2020. For 

significance testing, the Benjamini-Hochberg method was used to control the false 

discovery rate (FDR).22 Sensitivity analyses examined associations separately by 

age (<55 vs ≥55 years) and sex, and after additional adjustment for other factors 

(HbA1c, ethnicity, parental history of diabetes, physical activity and dietary factors 

[whole and refined grains, fruit, vegetables, cheese, unprocessed red meat, 

processed meat, non-oily and oily fish, type of spread, caffeinated and decaffeinated 

coffee, tea and dietary supplements]). In addition, the impact of excluding the first 

three years of follow-up was assessed, and, for the analysis of each PC, mutual 

adjustment for all preceding PCs. 

Then, to assess whether circulating NMR-biomarkers could improve prediction of 

T2D risk, the selected PCs were added to ‘traditional’ T2D risk prediction models.23

Two such models were assessed: a ‘basic’ model, including age (<50, 50-64, ≥65 

years), sex, parental history of diabetes, BMI (<25.0, 25.0-29.9, ≥30.0 kg/m2) and 

HbA1c (<6.0% vs ≥6.0%); and an ‘extended’ model, which additionally included 

blood pressure (≤130/85 mmHg and not taking anti-hypertensive medication vs 

>130/85 mmHg or taking anti-hypertensive medication), HDL-cholesterol (<1.0 vs 

≥1.0 mmol/L in men; <1.3 vs ≥1.3 mmol/L in women), triglycerides (<1.7 vs ≥1.7 

mmol/L), and WC (≤102 vs >102 cm in men; ≤88 vs >88 cm in women).23 The 

discriminatory ability of each model before and after including the PCs was assessed 
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using Harrell's c-statistic,24 and the likelihood ratio test was used to compare the fits 

of nested models (i.e., those including versus excluding the PCs). Relative and 

absolute integrated discrimination improvement (IDI)25 and continuous net 

reclassification improvement (NRI)26 were estimated to assess risk reclassification. 

To avoid model optimism, bootstrapping was used to create bias-corrected estimates 

and CIs for the c-statistics, IDI and NRI. To test model calibration, observed T2D 

event rates for absolute predicted risk deciles were plotted against their predicted 

event rates, and calibration slopes were estimated using a Cox regression analysis 

of predicted risk on observed risk. Calibration slopes and their confidence intervals 

were estimated from 10-fold cross-validation (pooled using inverse variance 

weighting). Subsequent analyses assessed the performance of the four risk 

prediction models solely among 13,695 participants taking lipid-lowering medications 

at baseline. 

Analyses were conducted using SAS (version 9.4) and R (version 3.6.2). 

Role of funding sources 

Funders had no role in study design, data collection, analysis, interpretation, or 

report writing. All authors had full access to the data and analyses, and share final 

responsibility for the decision to submit for publication. 
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Results 

Of the original 502,493 UKB participants, a random subset of 118,036 (23%) had 

NMR-biomarker data (Webfigure 1, Webtable 3). Of these, 65,684 (56%) had no 

prior diabetes, were not taking lipid-lowering medication and had complete NMR-

biomarker (and other) data, and were included in subsequent analyses. The mean 

(SD) age was 55.2 (8.0) years, and 58% (n= 37,849) were women (Table 1). During 

0.8 million person-years of follow-up (median 11.9 [IQR 11.1-12.6]), 1719 cases of 

incident T2D were identified. Participants who developed T2D were more likely to be 

male and, at the time of recruitment, tended to be older and of lower socioeconomic 

status than those who did not develop T2D. They also had higher levels of adiposity, 

were more likely to be current regular smokers, but less likely to be current regular 

alcohol drinkers, and more frequently had a parental history of diabetes.  

After adjustment for potential confounding factors and accounting for multiple testing, 

118 of the 143 metabolic biomarkers showed statistically significant associations with 

risk of incident T2D (FDR controlled p<0.05) (Figure 1, Webtable 1, Webfigure 3). 

Among the strongest positive associations were those of VLDL particle 

concentrations, particularly larger VLDL particles, and the lipid concentrations within 

them. Triglyceride concentrations in all 14 lipoprotein subclasses were also very 

strongly positively associated with incident T2D. Conversely, concentrations of larger 

HDL particles, and the cholesterol and phospholipids within those particles, were 

inversely associated with T2D. Higher branched chain amino acid (BCAA)—leucine, 

isoleucine and valine—concentrations were associated with higher risk of T2D, as 

were higher concentrations of alanine, phenylalanine and tyrosine. Glutamine and 

glycine were inversely associated with T2D. Relative to total fatty acids, higher 
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concentrations of polyunsaturated, omega-3 and omega-6 fatty acids, and of 

docosahexaenoic and linoleic acids were associated with lower T2D risk, whereas 

higher concentrations of saturated and monounsaturated fatty acids were associated 

with higher T2D risk. Higher plasma glycoprotein acetyls, a marker of inflammation, 

were also associated with higher T2D risk. 

After additional adjustment for HbA1c, many associations were moderately 

attenuated but statistically significant associations of most biomarkers (n=103) with 

T2D remained (Webtable 1). Further adjustment for ethnicity, parental history of 

diabetes, physical activity and dietary factors did not materially alter the associations. 

There were no marked differences in the relationships between men and women 

(Webfigure 4), by age at baseline (Webfigure 5), or after exclusion of the first three 

years of follow-up (Webfigure 6).  

The first 11 PCs of the NMR-biomarkers explained 90% of the total variance present 

in the 143 individual biomarkers (Webfigure 7). The PC loadings from these 11 PCs 

are shown in Webfigure 8 (the larger a biomarker’s loading, positive or negative, the 

more it contributes to that PC) and the associations of these PCs with incident T2D 

are shown in Webtable 4. The major contributors to PC1 were the VLDL and LDL 

particle concentrations and the lipid concentrations within those particles, while for 

PC2 they included large HDL particles and lipid concentrations within them. PC1 and 

PC2 showed opposing associations with T2D (adjusted HR 1.23 [95% CI 1.17-1.30] 

and 0.78 [0.73-0.82], respectively). Biomarkers across multiple molecular pathways, 

including lipid concentrations in LDL and HDL particles and apolipoprotein 

concentrations, were prominent contributors to PC3 (HR 1.23 [95% CI 1.18-1.29]). 

Within PC4 (HR 1.09 [95% CI 1.04-1.15]), loadings were high for small and very 
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large HDL particles and their lipid concentrations, and amino acids were the major 

contributors to PC5 (1.07 [1.02-1.13]). Fatty acids were dominant in PC6 (0.97 [95% 

CI 0.92-1.01]) and also PC7 (0.74 [0.70-0.78]), in which ketone bodies also had large 

factor loadings. Overall, 10 of the 11 PCs were independently associated with 

incident T2D, and largely remained so after sequential adjustment for preceding PCs 

(Webtable 4). 

In the two traditional risk prediction models, all risk factors were strongly and 

independently associated with T2D risk (Webtable 5). Older age, male sex, parental 

history of diabetes, higher levels of adiposity, blood pressure, HbA1c and 

triglycerides, and lower HDL-cholesterol concentration were all associated with 

higher risk. These relationships largely persisted, although with modest attenuation 

of some, when metabolic biomarker PCs were added. For both models, 8 of the 11 

PCs were significantly associated with T2D risk independently of all other risk 

factors.  

The basic T2D risk prediction model (incorporating age, sex, parental history of 

diabetes, BMI and HbA1c) demonstrated good calibration of observed versus 

predicted T2D rates across deciles of predicted risk (calibration slope: 0.99 [95% CI 

0.95-1.02]) (Figure 2). This did not meaningfully change after addition of metabolic 

biomarker PCs (0.98 [95% CI 0.95-1.02]). Table 2 summarises measures of model 

fit and performance. Addition of the PCs to the basic model resulted in a 17% 

increase in the chi-square statistic, and yielded an increase in the c-statistic from 

0.802 (95% CI 0.791-0.812) to 0.830 (0.822-0.841). Improved T2D risk prediction on 

addition of the PCs was also evidenced by estimates of the overall continuous NRI 

(0.44 [95% CI 0.38-0.49]), with an improvement of 0.15 (0.12-0.20) in events and 
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0.28 (0.26-0.31) in non-events, and both absolute (1.5 [1.0-1.9]) and relative (15.0% 

[10.5%-20.4%]) IDI. The extended model (basic model plus blood pressure, WC, 

HDL-cholesterol and triglycerides) achieved a c-statistic of 0.829 (95% CI 0.819-

0.838). Modest improvements in model fit and performance were observed following 

addition of metabolic biomarker PCs to this model, with a 6% increase in the chi-

square statistic, a c-statistic of 0.837 (95% CI 0.831-0.848), an overall continuous 

NRI of 0.22 (0.17-0.28), an absolute IDI of 0.7 (0.4-1.1) and a relative IDI of 6.3% 

(4.1%-9.8%). The extended model was well-calibrated, both with and without 

inclusion of metabolic biomarker PCs (0.99 [95% CI 0.96-1.02] and 0.98 [0.95-1.01], 

respectively). When analyses were repeated among participants taking lipid-lowering 

medications at baseline, c-statistics for the four individual T2D risk prediction models 

were lower than in the main study population, but estimates of relative performance 

of the nested models were broadly comparable (Webtable 6). 
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Discussion 

This prospective population-based cohort study of over 65,000 middle-aged adults 

with 1719 cases of new-onset T2D is, to our knowledge, the largest study to-date to 

examine the predictive value of circulating metabolic biomarkers for T2D risk. Strong 

independent associations of diverse biomarkers, quantified using targeted NMR-

based metabolomic profiling, including lipoprotein particle size and composition, 

amino acids and fatty acids, with risk of incident T2D were observed. When added to 

an established risk prediction model comprising basic clinical risk factors and HbA1c, 

PCs derived from 143 circulating biomarkers substantially improved T2D risk 

prediction.  

Our study found strong positive associations of VLDL particle measures and 

triglyceride concentrations with incident T2D risk, and inverse associations of HDL 

particle size and lipids within larger HDL particles. These findings are qualitatively, 

and broadly quantitatively, consistent with previous studies,27,28 and are 

characteristic of lipoprotein profiles associated with insulin resistance.29 This is also 

thought to underlie the strong positive associations of BCAAs—leucine, isoleucine 

and valine—with risk of T2D observed in UKB and in previous studies among diverse 

populations.6,8,27 More specifically, genetic association studies have shown 

increased BCAA levels as a consequence of insulin resistance,30 which, in turn, 

appear to be causally related to T2D.31 We replicated findings of studies showing 

higher levels of phenylalanine, tyrosine and alanine,6,8,27 and lower concentrations of 

glutamate6,27 and glycine6 several years prior to T2D diagnosis, and the observed 

T2D-associated fatty acid profiles are broadly consistent with previous 

investigations.27,32 Insulin resistance and inflammation are postulated to underlie 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 14, 2021. ; https://doi.org/10.1101/2021.10.11.21264833doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.11.21264833


15 

some or all of these associations,6,8,32 but the nature of the relationships of these and 

other metabolic biomarkers with T2D, including their causal significance, remains 

uncertain. Despite this, these findings provide clear evidence of the relevance of 

diverse metabolic biomarkers to T2D risk. 

The basic T2D risk prediction model examined in the present study, which included 

standard clinical risk predictors and HbA1c, demonstrated good discriminatory ability 

in the UKB population, yielding a c-statistic (0.80) consistent with that reported for 

similar models across varied populations.33 This highlights one of the major 

challenges of identifying novel predictive biomarkers for T2D. That is, that 

established clinical risk factors perform so well in predicting T2D risk that achieving 

clinically meaningful improvements above and beyond these is difficult. Despite this, 

addition of metabolic biomarkers to this model improved, albeit modestly, model fit 

and risk discrimination (c-statistic 0.83). Although some previous studies have 

observed no improvement in risk discrimination with addition of metabolic biomarkers 

to similar traditional risk prediction models,9,12,34 several have investigated the impact 

of only limited biomarkers.9,12 Inclusion of more diverse biomarkers has tended to 

achieve greater gains in model discrimination.7,14,27 For example, in a case-cohort 

study in Germany, comprising 800 T2D cases and a randomly-selected subcohort of 

2282 adults (mean follow-up 7 years), addition of 14 metabolic biomarkers (including 

hexoses, amino acids and fatty acids) to an established T2D risk score, comprising 

clinical risk factors and glycaemia, resulted in moderate, but statistically significant, 

improvement in risk discrimination (increase in c-statistic from 0.901 to 0.912; 

p<0.0001).7 However, even these studies have tended to investigate highly selected 

subsets of biomarkers. In contrast, use of principal component analysis in the 

present study facilitated inclusion of information from all 143 metabolic biomarkers, 
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despite their highly correlated nature. Many individual biomarkers most strongly 

associated with T2D were prominent contributors to the PCs selected for inclusion in 

risk prediction models, most of which were associated with incident T2D in fully 

adjusted regression models.  

The only modest, and non-significant, gains in discrimination when metabolic 

biomarkers were added to the extended T2D risk prediction model in the present 

study likely reflects overlap between measured metabolic biomarkers and blood-

based risk factors included in the extended model, limiting the clinical relevance of 

this comparison given both assay types would unlikely be used simultaneously. 

However, it may also reflect the insensitivity of the c-statistic to improvements in 

predictive performance with addition of new, even strong, risk predictors to 

established models.35 More global measures of model performance provided strong 

supportive evidence of the value of metabolic biomarkers for T2D risk prediction. 

Their addition to the basic risk prediction model was associated with improvement in 

the prediction of T2D using measures of risk reclassification, specifically the IDI and 

continuous NRI. Of note, the NRI was driven more by reductions in predicted risk 

among participants who did not develop T2D, suggesting metabolomic profiling may 

be particularly valuable for reducing unnecessary prevention interventions among 

individuals at low risk of T2D. Increasing availability of standardised, quantitative, 

high-throughput metabolomics platforms, such as that used in the current study, 

underscores the translational potential of these findings. Moreover, the metabolomic 

profiling data these provide may be of wider clinical relevance (e.g., for diagnosis 

and risk assessment of other cardiometabolic diseases).20
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In addition to the large number of incident T2D events, our study has several 

strengths. An established targeted NMR-metabolomics platform, with existing clinical 

regulatory approvals,21 was used; as well as enabling quantification of diverse 

biomarkers, this facilitates comparisons between study populations and enhances 

the potential clinical relevance. Moreover, high levels of correlation between NMR 

and standard clinical chemistry derived concentrations of a subset of biomarkers 

(Webfigure 9) supports the validity of the approach.36 Exclusion of participants 

taking lipid-lowering medication avoided treatment-associated biases, although the 

broadly comparable performance of the nested risk prediction models in this 

subpopulation (with a higher frequency of incident T2D) demonstrates the wider 

generalisability of our findings. Finally, the cohort study design avoided potential 

biases and loss of precision which may affect more frequently-used nested case-

control and case-cohort designs. However, the study also has limitations. Incident 

T2D was limited to diagnosed cases; although resulting misclassification would likely 

underestimate associations of metabolic biomarkers with T2D, the relative 

improvements in model performance (between models with versus without metabolic 

biomarkers) should be largely unaffected by misclassification in outcome 

assessment. Quantification of metabolic biomarkers in non-fasting blood samples 

may have increased inter- and intra-individual variation in biomarker concentrations, 

and the lack of repeat measurements prevented assessment of, and adjustment for, 

the latter. However, the main analyses adjusted for fasting time, which accounts for 

only a small proportion of variation in plasma metabolic biomarker concentrations,37

and biomarker measurements at a single point in time are more relevant in the 

context of risk prediction. Finally, independent validation of the risk prediction 

findings was not performed, and, given the lifestyle, and health-related 
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characteristics of the UKB population,38 the results may not necessarily be 

generalisable to other populations at higher risk of future T2D.  

In summary, this study provides large-scale evidence of the incremental predictive 

value of metabolomic profiling for prediction of T2D risk. Addition of data on 143 

circulating metabolic biomarkers, with replicated prospective associations with T2D, 

to an established risk prediction model comprising basic clinical risk factors and 

HbA1c improved T2D risk discrimination and classification. This serves to illustrate 

the utility of large-scale biobanks for assessment of the clinical relevance and value 

of emerging biomarkers. Moreover, given increasing availability, including in clinical 

settings, of high-throughput, comprehensive, targeted metabolomic profiling, these 

findings have translational potential for enhanced T2D risk stratification and precision 

prevention.  
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Figure legends 

Figure 1. Associations of metabolic biomarkers with risk of incident type 2 

diabetes 

Hazard ratios (with 95% confidence intervals) are presented per 1−SD higher 

metabolic biomarker on the natural log scale, stratified by age−at−risk and sex and 

adjusted for assessment centre, Townsend deprivation index, smoking, drinking, 

body mass index, waist−to−hip ratio, fasting duration and spectrometer. *false 

discovery rate controlled p<0.05.  

Apo−A1=apolipoprotein A1; Apo−B=apolipoprotein B; DHA=docosahexaenoic acid; 

FA=fatty acids; FAw3=omega−3 fatty acids; FAw6=omega−6 fatty acids;  HDL=high 

density lipoproteins; HDL−D=high density lipoprotein particle diameter; 

IDL=intermediate density lipoproteins; L=large; LA=linoleic acid; LDL=low density 

lipoproteins; LDL−D=low density lipoprotein particle diameter; LP=lipoprotein; 

M=medium; MUFA=monounsaturated fatty acids; PUFA=polyunsaturated fatty acids; 

S=small; SFA=saturated fatty acids; T2D=type 2 diabetes; VLDL=very low density 

lipoproteins; VLDL−D=very low density lipoprotein particle diameter; XL=very large; 

XS=very small; XXL=extremely large. 

Figure 2. Calibration of prediction models for incident type 2 diabetes from 

cross−validation 

For each model, the observed and predicted T2D event rates are shown for each of 

10 equally-sized groups of absolute predicted risk. Vertical lines represent 95% CIs. 

Calibration slopes are presented from 10−fold cross−validation (pooled using inverse 

variance weighting) and were derived from a Cox regression of the predicted risk on 

the observed risk. Basic model: age, sex, parental history of diabetes, body mass 

index, HbA1c. Extended model: basic model plus waist circumference, triglycerides, 

and HDL−cholesterol. Metabolic biomarkers comprise the first 11 metabolic 

biomarker principal components. 
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Table 1. Baseline characteristics by incident type 2 diabetes status

Baseline characteristics*
Incident type 2 diabetes

Total
Yes No

No. of participants 1719 63965 65684
Age, sex and socioeconomic factors
Mean age (SD), years 57.1 (7.7) 55.1 (8.0) 55.2 (8.0)
Women, % 47 58 58
Townsend Deprivation Index (SD)† 0.3 (1.1) 0.0 (1.0) 0.0 (1.0)
Lifestyle factors
Smoking, % 
 Never or occasional 54 61 61

  Previous 33 32 32
  Current regular 14 7 7
Alcohol drinking, %
  Never or occasional 42 25 26
  Previous 5 3 3
  Current regular 53 71 71
Anthropometry, mean (SD)
BMI, kg/m2 31.5 (5.2) 26.8 (4.5) 26.9 (4.4)
WC, cm 100 (13) 88 (12) 88 (13)
HC, cm 110 (10) 103 (9) 103 (9)
WHR 0.91 (0.08) 0.86 (0.09) 0.86 (0.09)
Parental history of diabetes, % 38 18 19
Mean HbA1c (SD), % 5.8 (0.4) 5.3 (0.3) 5.3 (0.3)
Mean fasting time (SD), hours 4.0 (2.6) 3.7 (2.4) 3.7 (2.4)

*Standardised to age and sex structure of the study population 
†Standardised Townsend Deprivation Index, higher scores represent higher levels of deprivation 
BMI=body mass index; HC=hip circumference; WC=waist circumference; WHR=waist-to-hip ratio 
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Table 2. Performance of risk prediction models for incident type 2 diabetes 

Performance metric 
Basic model* 

Basic model* plus 
metabolic 

biomarkers † Extended model ‡ 

Extended model ‡ 
plus metabolic 
biomarkers † 

C-statistic (CI) § 0.802 (0.791, 0.812) 0.830 (0.822, 0.841) 0.829 (0.819, 0.838) 0.837 (0.831, 0.848) 

Metrics of relative performance 

χ² || # 453 (p<0.0001) 177 (p<0.0001) 

%increase χ² 17 6 

Absolute IDI # $ 1.5 (1.0, 1.9) 0.7 (0.4, 1.1) 

Relative IDI (%) (CI) # $ 15.0 (10.5, 20.4) 6.3 (4.1, 9.8) 

Continuous NRI (CI) # ** 

Events 0.15 (0.12, 0.20) 0.10 (0.06, 0.14) 

Non-events 0.28 (0.26, 0.31) 0.12 (0.09, 0.14) 

Overall 0.44 (0.38, 0.49) 0.22 (0.17, 0.28) 

* Basic model: age, sex, parental history of diabetes, body mass index, HbA1c 
† Metabolic biomarkers comprise the first 11 metabolic biomarker principal components 
‡ Extended model: basic model plus waist circumference, blood pressure, triglycerides, HDL-cholesterol 
§ The c-statistic measures the ability of a model to rank participants from low to high risk. Given two randomly selected individuals, one 
who develops T2D and one who does not, the c-statistic is the probability that the model will give a higher predicted risk for the individual 
who develops T2D. An uninformative model will have a c-statistic of 0.5 and a model that discriminates perfectly will have a c-statistic of 
1.0. 
|| 11 DF 
# Bias-corrected estimates and confidence intervals were derived using 200 bootstrap samples 
$ The IDI quantifies the difference between two models in their ability to predict risk. It is calculated as the difference between the two 
models in the mean predicted T2D risk among those who did develop T2D minus the mean predicted risk of T2D in those who did not 
develop T2D (i.e., it is the difference between two differences). When metabolic biomarkers were added to the basic model, the 
separation in mean predicted T2D risk between those who did develop T2D, compared with those who did not develop T2D, increased in 
relative terms by 15.0%. Positive IDI values indicate improved T2D risk classification following addition of metabolic biomarkers to the 
risk prediction model. 
** The continuous NRI quantifies the appropriateness of the change in predicted probabilities of T2D between two models. The ‘Events’ 
NRI is calculated among those who developed T2D, and the ‘Non-events’ NRI is calculated among those who did not develop T2D. Both 
statistics are calculated as the probability of an ‘appropriate’ change in predicted risk (after addition of metabolic biomarkers to the 
model) minus the probability of an ‘inappropriate’ change in predicted risk. For those who developed T2D, an appropriate change would b
e a higher predicted T2D risk after addition of metabolic biomarkers to the model. An inappropriate change would be a lower predicted T2
D risk after addition of metabolic biomarkers to the model. When metabolic biomarkers were added to the basic model, among those who 
developed T2D, 15% more were assigned a higher predicted T2D risk than were assigned a lower predicted risk. The overall NRI is the s
um of the ‘Events’ and ‘Non-events’ NRI statistics. Positive NRI values indicate that addition of metabolic biomarkers results in a 
superior model. 
DF= degrees of freedom; IDI= integrated discrimination improvement; NRI= net reclassification improvement; T2D= type 2 diabetes 
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Figure 1. Associations of metabolic biomarkers with risk of incident type 2 diabetes
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  Figure 2. Calibration of prediction models for incident type 2 
  diabetes from cross−validation
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