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Abstract 

 

Objectives To evaluate the benefit of combining polygenic risk scores (PRS) with the QCancer-10 

(colorectal cancer) non-genetic risk prediction model to identify those at highest risk of colorectal 

cancer (CRC). 

 

Design Population based cohort study. Six different PRS for CRC were developed (using LDpred2 PRS 

software, clumping and thresholding approaches, and genome-wide significant models). The top-

performing genome-wide and GWAS-significant PRS were then combined with QCancer-10 and 

performance compared to QCancer-10 alone. Case-control (logistic regression) and time-to-event 

(Cox proportional hazards) analyses were used to evaluate risk model performance in men and 

women. 

 

Setting and participants UK Biobank Study. A total of 434587 individuals with complete genetic and 

QCancer-10 predictor data were included in the QCancer-10+PRS modelling cohorts. 

 

Main outcome measures Prediction of colorectal cancer diagnosis by genetic, non-genetic and 

combined risk models. 

 

Findings PRS derived using the LDpred2 program performed best, with an odds-ratio per standard 

deviation of 1.58, and top age- and sex-adjusted C-statistic of 0.733 (95% confidence interval 0.710 

to 0.753) in logistic regression models in the validation cohort. Integrated QCancer-10+PRS models 

out-performed QCancer-10 alone. In men, the integrated LDpred2 (QCancer-10+LDP) model 

produced a C-statistic of 0.730 (0.720 to 0.741) and explained variation of 28.1% (26.3% to 30.0%), 

compared with 0.693 (0.682 to 0.704) and 21.0% (18.9% to 23.1%) for QCancer-10 alone. 

Performance improvements in women were similar. In the top 20% of individuals at highest absolute 

risk, the sensitivity of QCancer-10+LDP models for predicting CRC diagnosis within 5 years was 47.6% 

in men and 42.5% in women, with respective 3.49-fold and 2.75-fold absolute increases in the top 

5% of risk compared to average. Decision curve analysis showed that adding PRS to QCancer-10 

improved net-benefit and interventions avoided, across most probability thresholds. 

 

Conclusions Integrating PRS with QCancer-10 significantly improves risk prediction over QCancer-10 

alone. Evaluation of risk stratified population screening using this approach is warranted. 
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Summary Box 

 

 What is already known on this topic 

• Risk stratification based on genetic or environmental risk factors could improve cancer 

screening outcomes 

• No previously published study has examined integrated models combining genome-wide 

PRS and non-genetic risk factors beyond age 

• QCancer-10 (colorectal cancer) is the top-performing non-genetic risk prediction model for 

CRC 

 

What this study adds 

• Adding PRS to the QCancer-10 (colorectal cancer) risk prediction model improves 

performance and clinical benefit, with greatest gain from the LDpred2 genome-wide PRS, to 

a level that suggests utility in stratifying CRC screening and prevention 
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Introduction 

 

Colorectal cancer (CRC) is the fourth most common cancer in the United Kingdom (UK), with 

increasing incidence in younger ages and countries with historically lower rates.1 Population 

screening is effective in reducing CRC incidence and mortality, through detection and removal of 

pre-malignant adenomas, and earlier detection of cancers. Screening modalities vary internationally. 

While colonoscopy is the gold-standard, it is expensive, invasive and time consuming. Many 

countries have adopted a staged process, with initial faecal blood testing, followed by colonoscopy 

for those who test positive. Risk-stratified approaches to screening direct resources to those at 

highest risk, have the potential to improve screening detection rates, reduce investigative burden of 

those at lower risk, and potentially improve cost-effectiveness.2 Improved understanding of cancer 

risk could also improve informed consent and shared decision making around screening 

participation. 

 

Both genetic and non-genetic factors contribute to an individual’s risk of CRC, some of the latter 

being modifiable. The top-performing non-genetic risk model in external validation is QCancer-10 

(colorectal cancer),3,4 which has been recommended as a tool to guide shared decision making 

around CRC screening.5 QCancer-10 is a 15-year CRC prediction model, developed using the 

QResearch linked primary care database of almost 5 million individuals aged 25-84, registered at 

QResearch practices across England between 1998 and 2013.4 It is based on age, ethnicity, family 

history, alcohol and smoking status, a small number of medical conditions, and for men, Townsend 

deprivation score and body mass index (BMI). As the predictors are derived from electronic health 

records, it could be embedded at point of care, and linked with screening records to facilitate risk 

stratification within the bowel screening programme.  

 

Genetic variants known to predispose to CRC are mostly single nucleotide polymorphisms (SNPs) 

identified as significant in genome-wide association studies (GWAS). Genetic risk can be summarised 

in a polygenic risk score (PRS). Most existing PRS have used a limited set (typically tens) of risk SNPs 

that have achieved formal statistical significance in GWAS, with genotypes weighted by predicted 

effect sizes.
6
 More recently, “genome-wide PRS” have incorporated many more SNPs than those 

reaching GWAS-significance, based on the notion that many true risk SNPs remain unidentified. 

These models have generally produced better performance than “GWAS-significant” models, but 

evaluation in CRC has been limited.
7,8

 A further issue is that several previous evaluations of CRC PRS 

in the UK Biobank Study (UKB) are based on summary statistics derived from a GWAS meta-analyses 
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which included UKB.8,9  This overlap results in overfitting of models, and optimism in performance 

estimates.
10

 

 

Integrated models for CRC, which to date have combined GWAS-significant PRS with non-genetic risk 

factors, generally perform better than non-genetic models or PRS alone.
6,9

 We hypothesised that 

integrating PRS with QCancer-10 would provide enhanced risk prediction, and that genome-wide 

PRS would give greatest benefit. We used UKB to develop and compare PRS using several genome-

wide and GWAS-significant approaches, minimising overfitting and optimism by using summary data 

which did not overlap with the UKB dataset. We validated PRS performance in Geographic and 

Minority Ethnic Validation Cohorts. We then derived integrated QCancer-10+PRS risk models, using 

the top-performing genome-wide PRS and the GWAS-significant PRS, which we internally validated 

and compared with QCancer-10. 

 

Methods 

 

Overview 

We conducted a development and validation study of PRS and integrated PRS-epidemiological 

models, to predict risk of CRC in a set of UK individuals of bowel cancer screening age. We followed 

the PRS-RS and TRIPOD reporting guidelines for PRS and prediction modelling.
11,12

 

 

We used UKB to derive and validate our risk models, under application number 8508.13 In brief, just 

over 500,000 participants aged 40 to 69 (5.5% of invitees) were recruited to UKB from the general 

population across the UK between 2006 and 2010.14 Baseline demographics, medical, lifestyle and 

physical data, and blood samples, were collected at recruitment. Follow-up through linked hospital, 

general practice and registry data is ongoing. A detailed description of genetic resources including 

quality control measures can be found in Bycroft et al.13 and Supplementary Methods. In summary, 

participants were genotyped on one of two arrays (49950 individuals on the Applied Biosystems UK 

BiLEVE Axiom Array and the remainder on the Applied Biosystems UK Biobank Axiom Array) which 

share over 95% content. Following quality control, phasing was carried out using SHAPEIT3 with 

1000 Genomes Phase 3 as a reference panel, followed by imputation using IMPUTE4 with the 

Haplotype Reference Consortium (HRC) dataset as the main reference panel, and secondarily with 

merged UK10K and 1000 Genomes phase 3 reference panels, and the datasets combined. SNP 

annotation was based on the GRCh37 assembly of the human genome. 
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Outcomes 

The primary outcome in all models was CRC diagnosis, identified through self-report at UKB 

enrolment visit and ICD-9 (153, 154.0, 154.1) and ICD-10 (C18-C20) codes in linked cancer and death 

registry and hospital data. For PRS development and evaluation in logistic regression models, we 

included incident and prevalent cases, with the remaining cohort used as controls. For survival 

analysis using Cox proportional hazards (Cox) models, prevalent cases with a diagnosis prior to 

cohort entry were excluded. Follow-up began at date of enrolment, and was censored at the earliest 

of date of incident CRC, loss to follow-up, death, or end of available registry follow-up (31st October 

2015 for Scottish participants, 13th March 2016 for all other participants).  

 

We calculated age-specific and directly standardised CRC incidence rates in UKB overall and for the 

Integrated Modelling Cohort, and compared these with Office for National Statistics 2013 cancer 

registry data for England (chosen as the approximate mid-point of available UKB follow-up).
15

 Age-

specific rates were calculated in 5 year age bands between 40 and 80 as the number of first incident 

CRCs over the number of person years at risk. Age-standardised incidence rates were calculated 

using the 2013 European Standard Population aged 40-80. Rates are presented per 100000 person 

years at risk (see Supplementary Methods). 

 

Polygenic risk scores  

We meta-analysed summary data from 14 CRC GWAS cohorts (which did not include UKB) to provide 

SNP association effect sizes (see Supplementary Methods and Ref.16). There were 26397 cases and 

41481 controls, all of European ancestry based on principal components analysis (PCA). The meta-

analysis was performed using the META package (v1.7),17 including SNPs imputed with an imputation 

quality (INFO) score > 0.8 from each dataset, using the fixed-effects inverse-variance method.  

 

Three broad approaches to PRS development were evaluated (see Supplementary Methods). Firstly, 

we used a ‘standard’ PRS (hereafter ‘GWAS-sig’), which comprised a manually curated list of 50 

sentinel SNPs shown in recent European GWAS-meta-analyses16,18 to be independently and 

reproducibly associated with CRC risk at P<5x10-8 in our meta-analysis. This PRS was constructed as a 

log-additive sum of SNP dosages weighted by their betas. Betas were adjusted for winner’s curse 

using FIQT correction.
19

  

 

Secondly, genome-wide clumping and thresholding methodologies were evaluated using ‘standard’ 

(C+T) and ‘stacked’ (SCT) approaches.
20
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Thirdly, we used LDpred2,
21

 which takes a Bayesian approach to SNP selection, accounting for 

linkage disequilibrium between the SNPs. We used three different LDpred2 options – an infinitesimal 

model (LDpred2-Inf), a non-sparse grid model (LDpred2-grid) and a sparse grid model (LDpred2-grid-

sp).   

 

Figure 1 shows the per-person quality control (QC) measures for the genetic data and sample 

exclusions for each modelling cohort. We used imputed dosage data from UK Biobank, and 

restricted SNPs to those included in the HapMap3 reference dataset, and with matched SNPs in the 

base data. Following QC, 1104409 SNPs were available for PRS development (Supplementary 

Methods).  

 

Optimal PRS tuning parameters for genome-wide approaches were selected in the Training Cohort 

(n=30000, 446 cases; Supplementary Methods, Table S4).  For each optimal PRS, we assessed 

association with CRC risk in logistic regression and Cox risk models in the Test cohort (n=280664; 

4230 cases), adjusting for age, sex, genotyping array and the first four principal components (PCs) 

from UKB. We tested for interactions between age and PRS. Training and Test Cohorts included 

participants of white-British ancestry (identified through self-reported ethnicity and genetic 

information)
13

 from England and Wales (Figure 1). Case prevalence was 1.5% in both cohorts. We 

compared performance to a reference model containing age, sex, genotyping array and four PCs, 

without the PRS. We also evaluated performance without age and sex in the model.  

 

We reported the distribution of standardised PRS and adjusted odd ratios and hazard ratios per-

standard deviation (Supplementary Methods). We used the C-statistic (Harrell’s C-index for Cox 

models) and Somers’ Dxy statistic to assess discrimination, in addition to Royston's D statistic and 

separation of Kaplan-Meier curves across four risk groups (cut at 16th, 50th and 84th centiles, 

approximating to the mean and 1 standard deviation)
22

 for Cox models. Nagelkerke’s �� was used in 

logistic regression models and Royston and Sauerbrei's ��
�  in Cox models to assess variance 

explained, and ��attributable to the PRS was calculated by �� (full model) -  ��  (reference model). 

These measures were evaluated over the follow-up time of the cohort for Cox models. Scaled Brier 

scores (derived from the Brier score scaled to the maximum possible score for a given dataset, 

where a higher % score indicates better performance),23 were used to assess overall model 

performance, calculated at 8 years of follow-up for Cox models. Each model was internally validated. 

Confidence intervals and internal validation used 500 bootstrap samples. 
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Prior to external validation, models were adjusted for optimism. The optimism-adjusted calibration 

slope was used as a global shrinkage factor to adjust the regression coefficients, and the intercept or 

baseline survival function was re-estimated (by refitting the model with the adjusted linear predictor 

as an offset).
24

 Adjusted PRS models were then applied to a Geographic Validation Cohort, 

comprising Scottish participants with European ancestry, and a Minority Ethnic Validation Cohort 

(from any region). The null hypothesis of no difference in performance statistics between models 

was tested using paired t-tests with Bonferroni correction for multiple comparisons. In addition to 

the performance metrics described above, calibration was assessed through the calibration slope 

and visual assessment of calibration plots, with calibration-in-the-large for logistic regression 

models. Pre-specified subgroup analyses were performed in the Geographic Validation Cohort by 

sex, in those with a first degree family history of CRC, and by age (Supplementary Methods). We 

evaluated potential improvements in calibration in validation datasets obtained through 

recalibration-in-the-large (in which the intercept or baseline survival function is re-estimated in the 

new dataset).  

 

Development of QCancer-10+PRS combined models 

Coding of QCancer-10 predictors in UK Biobank were matched as closely as possible to the original 

model.4 Ethnicity, previous medical history, alcohol and smoking status, and family history were all 

obtained from self-reported data in baseline touch-screen responses and verbal interviews at UKB 

assessment centres. Mapping of QCancer-10 predictors to UK Biobank data and coding of predictors 

is described in Supplementary Methods and Tables S1 and S2.  

 

The Integrated Modelling Cohort used for QCancer-10 validation and integrated model development 

comprised all individuals with imputed genetic data passing QC, excluding the 30000 individuals 

used for PRS hyper-parameter selection (Supplementary Methods), and with complete QCancer-10 

predictor data (Figure 1). Since missingness was <5% for all predictors (Table S3), we used complete 

case analysis. Sample size adequacy for integrated model development was calculated following 

Riley et al.
25 (Supplementary Methods).  

 

We validated QCancer-10 performance in UKB, and recalibrated the model for the UKB dataset 

through recalibration-in-the-large. Full QCancer-10 model specification is available at 

https://www.qcancer.org/15yr/colorectal/. We then developed integrated models including the risk 

score from QCancer-10 plus either the top-performing genome-wide PRS (based on the maximum C-
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statistic and �� in external validation) or the GWAS-significant PRS, using Cox models, developed in 

men and women separately. Inspection of Schoenfeld residuals showed that the proportional hazard 

assumption held. We evaluated the use of multiple fractional polynomials to model the predictors, 

ultimately using a fractional polynomial term to model the genome-wide PRS in the model for 

females. We assessed for possible interactions between the predictors by visual inspection of plots 

of marginal effects of the QCancer-10 risk score across PRS values, and examining the prognostic 

strength and significance of interaction terms based on Wald ��statistics. 

 

We used the same metrics to assess the original QCancer-10 model and QCancer-10+PRS model 

performance as described for Cox PRS models, with paired t-tests to compare models as above. 

Confidence intervals and internal validation used 500 bootstrap samples. Pre-specified subgroup 

analyses for QCancer-10 and QCancer-10+PRS included those with a first degree family history of 

CRC, individuals from minority ethnic backgrounds, and calibration by age.  

 

Model sensitivities were evaluated by calculating the proportion of cases identified at centile 

thresholds for absolute risk and relative risk. Relative risks were calculated relative to an individual 

of the same age and sex, mean PRS (by sex), mean PCs, BMI of 25, white ethnicity, mean Townsend 

score, and no other CRC risk factors. We used decision curve analyses to compare the net benefit 

and interventions avoided using QCancer-10 and QCancer-10+PRS models. For decision curve and 

subgroup analyses, QCancer-10+PRS models were first adjusted for optimism, and recalibrated 

QCancer-10 models were used. 

 

Statistical analysis was performed using R/3.6.2.26  

 

Patient and Public Involvement Patients and public were not involved in the design, conduct, 

reporting or dissemination plans of this study. 

 

Results 

 

Demographics for the UKB-derived Integrated Modelling Cohort are shown in Table 1. Table S3 gives 

these values, including numbers not reported, for the whole UKB cohort; characteristics of each PRS 

cohort are shown in Table S4.  Age-standardised CRC incidence from linked cancer-registry data in 

the whole UKB cohort was 108.3 and 73.9 cases per 100000 person years at risk for men and women 

respectively, compared to 127.8 and 80.7 respectively in ONS data.15 Incidence in the Integrated 
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Modelling Cohort, with cases identified through all linked data, was 118.0 CRCs per 100,000 years 

follow-up in men and 79.3 in women. Age-specific incidence rates in UKB (Figure S3) closely followed 

those from ONS until the age of 70, after which UKB rates were lower. 

 

Polygenic risk score models 

Of the 6 PRS models assessed (Figure S4), LDpred2-grid had the highest ORs per SD of PRS (1.584, 

95% confidence interval 1.536 to 1.633; Table 2) and performed best in the test cohort with C-

statistic 0.717 (0.711 to 0.725) and R2 6.3% (5.9 to 6.8%) (Table 2). A weak interaction between age 

and PRS was noted with a reduced effect size of PRS with increasing age (Table S5, Figure S5), but 

was not included in the models. Genome-wide models performed better than the GWAS-sig model, 

and all PRS showed improved performance over the reference model of age, sex, genotyping array 

and four PCs (Table 2). Performance without adjustment for age and sex is shown in Table S6. 

Internal validation showed low bias in all measures (Table 2).  

 

In the Geographic Validation Cohort, discrimination and variation explained improved compared to 

the Test Cohort for all models. LDpred2-derived models performed best, and all genome-wide 

models showed improved performance over the GWAS-sig model (Table 2). All models under-

predicted risk (CITL >0, Table 2) particularly in the highest PRS groups (Figure S6), and genome-wide 

models were slightly over-fitted (calibration slope >1, i.e. insufficient variation at the extremes of 

prediction, Table 2, Figure S6).  

 

In subgroup analyses of logistic regression models (Table S7, Figure S7), discrimination and explained 

variation were better in males; models were better fitted in females but under-predicted risk to a 

greater extent, particularly in higher risk groups. Discrimination and variation explained were poorer 

in individuals with a first-degree family history of CRC, with models systematically underpredicting 

risk across PRS risk groups. All models tended to under-predict risk across age groups (Figure S8). 

 

Performance was poor in the Minority Ethnic Validation Cohort (Table 2). Models systematically 

under-predicted risk and were highly over-fitted (i.e. predictions were too extreme, Table 2), with 

modest improvement following recalibration (Figure S6).  

 

In general, PRS performance in Cox models supported the logistic regression analysis (Tables S8-9, 

Figures S9-14). 
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QCancer-10 non-genetic model 

QCancer-10 models risk in males and females separately. Comparative demographics of the original 

QCancer-10 derivation cohort and the Integrated Modelling Cohort are shown in Table S10. Notably 

the Integrated Modelling Cohort is older, less ethnically diverse, has a lower Townsend score, fewer 

smokers, and higher reported family history of CRC, than the QCancer-10 cohort. Model 

performance was in line with previously published studies (Table 3).3 As expected, the model for 

females performed less well than the model for males.3
 Both models tended to over-predict risk, 

which was corrected through recalibration, though in women the model continued to over-predict in 

the top risk decile (Figure S15). In subgroup analysis, models were well calibrated across age groups; 

they underpredicted risk in individuals from minority ethnic backgrounds; and the model for females 

tended to over-predict risk in those with a first-degree family history of CRC, particularly in higher 

risk groups (Table S11, Figures S16-S17). 

 

QCancer-10+PRS models 

Given the similarities in performance of LDpred2-grid and LDpred2-grid-sp models, we selected 

LDpred2-grid-sp as the top-performing genome-wide PRS for integrated modelling with QCancer-10, 

favouring sparsity (i.e. a PRS containing fewer SNPs; see Supplementary Results for full model 

specifications and baseline hazards). We found evidence of an interaction between QCancer-10 and 

the GWAS-significant PRS in men (P interaction = 0.004), with reduced effect of QCancer-10 score at 

higher PRS, but did not ultimately include this in the model given the relative weakness of the 

interaction (Table S12, Figure S18). 

 

Cox models combining the QCancer-10 risk score with LDpred2-grid-sp (QCancer-10+LDP), and the 

GWAS-sig PRS (QCancer-10+GWS) both out-performed QCancer-10 (Table 3). Figure 2 shows Kaplan-

Meier curves across 4 risk groups in integrated QCancer-10+PRS models compared to QCancer-10 

alone, demonstrating improved separation between risk groups with the addition of PRS. Internal 

validation of the QCancer-10+PRS models showed very little optimism in performance estimates.  

 

Models predicting risk in men had better discrimination, and explained more of the variation in risk 

than models for women (Table 3). Calibration by age was good (Figure S16), with slight under-

prediction of risk in the top age group in women. As with QCancer-10, in those with a first degree 

family history of CRC, female QCancer-10+PRS models tended to over-predict risk, particularly in 

higher risk groups; male QCancer-10+PRS models were well calibrated (Table S11, Figure S17). In 

minority ethnicities, QCancer-10+PRS models underpredicted risk (Table S11) to a greater extent 
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than QCancer-10, subject to the caveat of a low CRC case numbers (46 men, 58 in women) in this 

subgroup.  

 

QCancer-10+LDP consistently provided the best risk prediction. Table 4 shows the sensitivity of the 

Qancer-10+LDP model in predicting CRC risk over five years across the top 25 centiles of absolute 

risk. To illustrate, individuals predicted to be in the top 20% of absolute risk by QCancer-10+LDP 

accounted for 47.6% of male cases and 42.4% of female cases. QCancer-10 and QCancer-10+GWS 

had lower sensitivity than QCancer-10+LDP (Tables S13-S16). Men in the top 5% of absolute risk by 

the QCancer-10+LDP model had >3.49-fold increased absolute 5-year risk compared to the median, 

with a comparable 2.75-fold increase in women. For QCancer-10+GWS this was 3.14-fold and 2.37-

fold in men and women respectively, and for QCancer-10 2.37 and 2.06-fold (Table S17). Decision 

curve analyses confirmed that, across a wide range of probability thresholds, QCancer-10+LDP gave 

greater net benefit than QCancer-10+GWS and QCancer-10 for both men and women (Figure 3), and 

predicted a greater number of interventions avoided across clinically relevant thresholds.  

 

By way of illustration, enhanced screening is frequently offered for those with a single first degree 

relative with CRC (FDRCRC), corresponding to a ~2.2-fold increased risk.27 QCancer-10+LDP identified 

18.2% of men (34.0% of cases) and 7.2% of women (16.5% of cases) as having a relative risk >2.2, of 

whom 76% and 70% respectively had no FDRCRC (see Table S18 for equivalent values for QCancer-

10+GWS and QCancer-10).  

 

Discussion 

 

We have undertaken the first study to develop and validate new prediction models for colorectal 

cancer that combine phenotypic risk with genome-wide PRS. We show that combining the non-

genetic QCancer-10 model with either genome-wide or GWAS-significant PRS significantly improves 

model performance and clinical benefit, with greatest improvements seen in the QCancer-10+LDP 

model. The QCancer-10+LDP models have higher discrimination in UKB than any previously 

published CRC risk score.6,9 

 

Our models could be used to improve or instigate risk-stratified CRC screening. QCancer-104 has 

recently been recommended to guide shared decision making around CRC screening.5 Our QCancer-

10+PRS risk models would provide more accurate risk information for patients and healthcare 

professionals on which to base screening decisions. Our study predicts that QCancer-10+PRS models 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 1, 2022. ; https://doi.org/10.1101/2021.09.22.21263962doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.22.21263962
http://creativecommons.org/licenses/by/4.0/


 13 

have a greater net-benefit and avoid more interventions than QCancer-10 across a wide range of 

clinically-relevant risk thresholds, with the greatest benefit from QCancer-10+LDP. The sensitivities 

achieved using QCancer-10+PRS exceed those of other integrated models recently validated in 

UKBioank.6 The genome-wide SNP genotyping required for LDpred2 is reliably performed from saliva 

samples, and is rapid, inexpensive and straightforward to analyse. The sensitivities and decision 

curves provided by QCancer-10+LDP could therefore be used to inform clinical decision making. 

 

Of the PRS methods evaluated, LDpred2-grid and LDpred2-grid-sp models had highest 

discrimination, explained more of the variation in risk, and were well calibrated. The improvement in 

performance between the derivation and validation cohorts when using the PRS models probably 

results from lower genetic homogeneity in the latter. Evaluation of the PRS in a geographically 

external cohort demonstrates portability of the models. The Geographic Validation Cohort was well 

matched in age to the derivation cohort, but had a higher proportion of women; prevalence of CRC 

was higher, at 1.79% compared to 1.51% in the derivation cohort. We would expect performance in 

Northern European individuals in the general population to be similar to that of the Validation 

Cohort.  

 

Our PRS findings are in line with a recent study in which a PRS derived using LDpred software (an 

earlier version of LDpred2) out-performed both machine learning approaches and a 140 GWAS-

significant SNP PRS.7 In contrast, a recent study comparing Lassosum software with clumping and 

thresholding approaches in UK Biobank found the optimal CRC PRS to contain just 87 SNPs, with an 

age- and sex-adjusted AUC of just 0.617.8 Several genome-wide PRS software tools are now 

available, with differences in performance across disease types,
21

 highlighting the importance of 

evaluating multiple approaches in different phenotypes. Previous studies have found that models 

combining GWAS-significant PRS and non-genetic risk predictors perform better than PRS alone6 or 

non-genetic risk factors alone.
9
 Our work supports and extends this by demonstrating the stepwise 

improvement in performance obtained with genome-wide PRS. 

 

A key strength of our study is the avoidance of overlap between our GWAS meta-analysis datasets 

and modelling cohorts, thus reducing overfitting of the PRS and performance optimism.
10

 We used 

expected genotype dosages rather than allele counts in each PRS, incorporating uncertainty in 

genotype imputation, and applied correction for ascertainment bias to effect sizes in the GWAS-

significant model. Our GWAS-significant PRS used stringent inclusion criteria, including only SNPs 

which replicated in our UKB-free meta-analysis.  
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UKB provides a large sample size, extensive phenotyping, completeness of data recording, and 

linkage to external datasets. Linkage to cancer registry data in UKB ended in 2015/16 at the time of 

our study, so we have only been able to follow-up for a median 7 years; updating this will improve 

risk estimates and permit estimation of risks over a longer follow-up. The UKB age range of ~40-70 is 

similar to that of bowel cancer screening (50 to 74 in England and Scotland), but narrower than 25 to 

84 used in the original Qcancer-10 study.4 However, model performance in UKB is arguably unlikely 

to reflect relative performance in the general population, for several reasons. Model performance 

will vary between populations with different prevalence or risk of a disease – known as the 

‘spectrum effect’. As UKB has a lower incidence of disease than the general population of screening 

age, one might expect sensitivity to increase (which is of benefit in a screening test) when applied to 

a population with higher risk.
28

 Furthermore, all of our models appeared to perform less well in 

females. For PRS, wide confidence intervals in the Geographic Validation Cohort mean this finding 

should be interpreted with caution, but for models that include QCancer-10, this difference was not 

unexpected. The known healthy volunteer bias that exists in UKB is especially marked in women (for 

example, the reduction in all-cause mortality and overall cancer incidence in UKB relative to the 

general population is greater for women than men).29 In addition, the available sample size and 

number of incident cases for women in our Integrated Modelling Cohort fell slightly short of sample 

size requirements (see Supplementary Methods). As a result our estimates of risk may be less 

precise for women, and external validation would be essential prior to implementation. The 

QCancer-10 model has previously been shown to perform worse when validated in UKB than in the 

QResearch validation.4 This is likely to be due to the differences in age distribution between the 

general population sample used to develop the original QCancer-10 score and the more restricted 

UKB sample in this study. External validation of a separate QCancer (colorectal) score for 

symptomatic patients in an independent population-based cohort showed comparable performance 

to the discovery study.
30

 Overall, risk model performance should be validated in a population 

representative of the screening population, and we have shown that PRS calibration can be largely 

corrected in new (ethnically similar) populations by recalibration.  

 

Further limitations of our study may include unknown differences in the demographics of the 

contributing base GWAS datasets and UKB. We did not include Mendelian CRC syndromes in the 

genetic model, and doing so would almost certainly improve risk prediction. Another major 

limitation of our study, and PRS generally, is that most models are developed in individuals of 

European ethnicity. Although most CRC risk SNPs appear to be shared across ethnic groups, 
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quantitative risk estimates cannot readily be transferred across populations,31 and, as anticipated, 

our PRS performed poorly in the Minority Ethnic Validation Cohort.
31-33

 As minority ethnic 

populations often have higher CRC associated mortality and lower screening uptake,34 further work 

is urgently needed to expand PRS for CRC in these populations to avoid exacerbating existing health 

inequalities. 

 

With a renewed focus on prevention and early diagnosis in healthcare,35 refined risk prediction is 

likely to have a significant role. It has been proposed that risk scores could be used to improve 

diagnosis in symptomatic individuals (for example, https://ourfuturehealth.org.uk/). However, the 

combined risk score alone is unlikely to achieve the performance standards required for diagnostic 

tests, and would need to be evaluated carefully in combination with quantitative faecal 

immunochemical test (FIT) results, symptoms and clinical signs. 

 

In population cancer screening programmes, in contrast, a risk score with moderate predictive value 

has considerable potential for improving current performance through patient stratification. Our risk 

score predicts that ~10% of the population aged ~40-70 have relative risks of CRC high enough to 

warrant enhanced surveillance under guidelines used in familial risk.36 The risk models constructed 

here perform at a level that may well be clinically useful in population screening.37 In practice, we 

envisage that risk scores are likely to be used alongside FIT to allocate colonoscopy more effectively, 

maintaining universal access to screening whilst improving performance. Nevertheless, we 

emphasise that validation of the risk score in a cohort representative of the screening population 

and evaluation in a prospective trial are required to evaluate the performance, acceptability and 

cost effectiveness of a combined risk model in a FIT-based bowel cancer screening programme.  
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Table 1: Demographic data and medical conditions included in QCancer-10 models, in male and 

female Integrated Modelling Cohorts, and in cases. Values are numbers (%) unless otherwise 

indicated. CRC – colorectal cancer, IQR – interquartile range, NA – not applicable. *not included in 

model for females but provided for information. 

 
 Male 

whole cohort  

(n = 196091) 

Male cases  

(n = 1895) 

Female 

whole cohort  

(n = 238946) 

Female cases  

(n = 1458) 

Follow-up (years), median (IQR)   7.1 (1.3) 3.7 (3.5) 7.1 (1.3) 3.8 (3.4) 

Age (years), median (IQR)   58 (13) 63 (8) 57 (13) 61 (10) 

Geographical region     

          East Midlands 13254 (6.8) 127 (6.7) 16175 (6.8) 88 (6.0) 

          London 25843 (13.2) 203 (10.7) 33080 (13.9) 150 (10.3) 

          North East 22789 (11.6) 221 (11.7) 27688 (11.6) 174 (11.9) 

          North West 30259 (15.4) 325 (17.2) 35278 (14.8) 203 (13.9) 

          Scotland 14690 (7.5) 173 (9.1) 18729 (7.9) 150 (10.3) 

          South East 16812 (8.6) 165 (8.7) 21367 (9.0) 179 (12.3) 

          South West 16467 (8.4) 150 (7.9) 21086 (8.8) 136 (9.3) 

          Wales 8150 (4.2) 90 (4.7) 9942 (4.2) 63 (4.3) 

          West Midlands 18530 (9.4) 154 (8.1) 19783 (8.3) 128 (8.8) 

          Yorkshire and Humber  29297 (14.9) 287 (15.1) 35368 (14.8) 187 (12.8) 

Ethnicity     

          White/not recorded 185813 (94.8) 1848 (97.5) 224316 (94.6) 1399 (96.0) 

          Indian 2510 (1.3) 11 (0.6) 2601 (1.1) 12 (0.8) 

          Pakistani 903 (0.5) 1 (0.1) 616 (0.3) 4 (0.3) 

          Bangladeshi 132 (0.1) 0 (0.0) 61 (0.0) 0 (0.0) 

          Other Asian 841 (0.4) 2 (0.1) 748 (0.3) 2 (0.1) 

          Black African 1397 (0.7) 5 (0.3) 1412 (0.6) 6 (0.4) 

          Caribbean 1363 (0.7) 8 (0.4) 2498 (1.0) 10 (0.7) 

          Chinese 516 (0.3) 2 (0.1) 865 (0.4) 5 (0.3) 

          Other ethnic group 2616 (1.3) 18 (0.9) 3980 (1.7) 20 (1.4) 

Townsend deprivation index, 

median (IQR)   

-2.18 (4.19) -2.33 (4.19) -2.17 (4.09)* -2.38 (3.96)* 

BMI (kg/m2), median (IQR) 27.28 (5.04) 27.92 (5.11) 26.08 (6.23)* 26.42 (6.00)* 

Smoking status     

          Non-smoker 97088 (49.5) 739 (39.0) 142569 (59.8) 820 (56.2) 

          Ex-smoker 75100 (38.3) 935 (49.3) 74934 (31.4) 525 (36.0) 

          Light smoker 9361 (4.8) 84 (4.4) 8885 (3.7) 43 (2.9) 

          Moderate smoker 5816 (3.0) 43 (2.3) 7235 (3.0) 43 (2.9) 

          Heavy smoker 8726 (4.4) 94 (5.0) 4873 (2.0) 27 (1.9) 

Alcohol intake     

          Non-drinker 11985 (6.1) 89 (4.7) 22415 (9.4) 171 (11.7) 

          Trivial drinker 41810 (21.3) 335 (17.7) 96085 (40.3) 591 (40.5) 

          Light drinker 57817 (29.5) 521 (27.5) 76942 (32.3) 433 (29.7) 

          Moderate drinker 60694 (31.0) 624 (32.9) 37830 (15.9) 234 (16.0) 

          Heavy drinker 14960 (7.6) 205 (10.8) 3797 (1.6) 25 (1.7) 

          Very heavy drinker 8825 (4.5) 121 (6.4) 1427 (0.6) 4 (0.3) 

Medical history     

          Ulcerative colitis 1053 (0.5) 17 (0.9) 1211 (0.5) 12 (0.8) 

          Colorectal polyps 616 (0.3) 11 (0.6) 612 (0.3) 6 (0.4) 

          Diabetes 12893 (6.6) 184 (9.7) 7885 (3.3) 62 (4.3) 

          Breast cancer NA NA 9448 (4.0) 71 (4.9) 

          Uterine cancer NA NA 1030 (0.4) 16 (1.1) 

          Ovarian cancer NA NA 724 (0.3) 11 (0.8) 

          Cervical cancer NA NA 1711 (0.7) 10 (0.7) 

          Lung cancer 125 (0.1) 1 (0.1) NA NA 

          Blood cancers 1146 (0.6) 10 (0.5) NA NA 

          Oral cancer 483 (0.2) 12 (0.6) NA NA 

Family history of CRC 19505 (9.9) 266 (14.0) 22252 (9.3) 169 (11.6) 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 1, 2022. ; https://doi.org/10.1101/2021.09.22.21263962doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.22.21263962
http://creativecommons.org/licenses/by/4.0/


 21

Table 2: Apparent, internally and externally validated polygenic risk score (PRS) performance in logistic regression models (adjusting for age, sex, genotyping 

array and first 4 principal components). Values are performance indices plus 95% confidence intervals. Internal validation used 500 bootstrap samples. LDpred2-

inf – LDpred2 infinitesimal model; LDpred2-grid – LDpred2 grid model; LDpred2-grid-sp – LDpred2 sparse grid model; SCT – stacked clumping and thresholding; 

C+T – clumping and thresholding; GWAS-sig – GWAS significant; PRS OR per SD – odds ratio per standard deviation of polygenic risk score in the age- and sex-

adjusted model; C – C statistic; Dxy – Somers’ Dxy rank correlation; R2 – Nagelkerke’s �
�(explained variation); Slope – Calibration Slope; CITL – calibration-in-the-

large. * �
� for all models in the Minority Ethnic Validation Cohort <0 (indicating poorer performance than a model with no explanatory variables). Pairwise 

comparisons of performance metrics in validation cohorts were all significantly different P<0.001 except comparisons marked 
#
P=0.002, 

##
P=0.005, ^P=0.01, 

*P=1.  

 

LDpred2-inf LDpred2-grid LDpred2-grid-sp SCT C+T GWAS-sig Reference 

Number of SNPs 1,104,409 1,104,409 616,956 194,756 306,912 50 NA 

Apparent performance 

PRS OR per SD 1.435 (1.391 - 1.480) 1.584 (1.536 - 1.633) 1.571 (1.524 - 1.620) 1.417 (1.375 - 1.461) 1.425 (1.382 - 1.470) 1.390 (1.348 - 1.433) NA 

C 0.704 (0.697 - 0.712) 0.717 (0.711 - 0.725) 0.716 (0.710 - 0.723) 0.702 (0.695 - 0.711) 0.704 (0.697 - 0.711) 0.700 (0.693 - 0.707) 0.680 (0.672 - 0.687) 

Dxy 0.407 (0.394 - 0.423) 0.435 (0.422 - 0.451) 0.432 (0.419 - 0.446) 0.404 (0.389 - 0.422) 0.407 (0.394 - 0.423) 0.400 (0.386 - 0.414) 0.359 (0.344 - 0.374) 

R2 (%) 5.5 (5.1 - 5.9) 6.3 (5.9 - 6.8) 6.2 (5.8 - 6.7) 5.4 (5.0 - 5.9) 5.4 (5.1 - 5.9) 5.3 (4.9 - 5.7) 4.2 (3.8 - 4.6) 

R2 PRS (%) 1.3 (1.1 - 1.5) 2.1 (1.9 - 2.4) 2.0 (1.8 - 2.3) 1.2 (1.0 - 1.4) 1.2 (1.0 - 1.5) 1.1 (0.9 - 1.3) NA 

Scaled Brier (%) 0.87 1.05 1.03 0.86 0.85 0.83 0.60 

Internal validation 

C 0.703 0.717 0.716 0.701 0.703 0.700 0.679 

Dxy 0.406 0.434 0.432 0.403 0.406 0.400 0.358 

R2 (%) 5.4 6.3 6.2 5.4 5.4 5.3 4.2 

Slope 0.996 0.997 0.998 0.996 0.995 0.999 0.996 

Scaled Brier (%) 0.85 0.94 1.06 0.84 0.76 0.85 0.58 

Geographic Validation  

C 0.726 (0.704 - 0.748) 0.732 (0.710 - 0.752) 0.733 (0.710 - 0.753) 0.718 (0.696 - 0.739)^ 0.719 (0.696 - 0.740)^
 

0.703 (0.679 - 0.724) 0.677 (0.654 - 0.699) 

Dxy 0.452 (0.408 - 0.496) 0.464 (0.420 - 0.504) 0.466 (0.421 - 0.507) 0.436 (0.392 - 0.477)^ 0.438 (0.392 - 0.480)^ 0.405 (0.358 - 0.447) 0.353 (0.308 - 0.397) 

R2 (%)  7.0 (5.7 - 8.4)  7.6 (6.1 - 8.9)  7.6 (6.1 - 8.9)  6.4 (5.0 - 7.7)  6.6 (5.2 - 7.9)  5.4 (4.0 - 6.7)  3.8 (2.6 - 5.0) 

Slope 1.137 (1.010 - 1.268) 1.091 (0.967 - 1.199) 1.104 (0.980 - 1.213) 1.076 (0.946 - 1.200) 1.098 (0.958 - 1.222) 0.994 (0.861 - 1.113) 0.936 (0.795 - 1.075) 

CITL 0.206 (0.120 - 0.272) 0.198 (0.113 - 0.262) 0.199 (0.115 - 0.264) 0.194 (0.107 - 0.260) 0.195 (0.110 - 0.261) 0.191 (0.104 - 0.258)* 0.191 (0.105 - 0.257)* 

Scaled Brier (%) 1.48 1.64 1.66 1.27 1.38 1.08 0.67 

Minority Ethnic Validation* 

C 0.588 (0.545 - 0.627) 0.602 (0.558 - 0.640)
##

 0.601 (0.559 - 0.640)
##

 0.589 (0.546 - 0.626) 0.597 (0.554 - 0.636) 0.587 (0.543 - 0.624) 0.585 (0.542 - 0.623) 

Dxy 0.176 (0.090 - 0.254) 0.203 (0.116 - 0.279)
##

 0.203 (0.118 - 0.281)
##

 0.179 (0.093 - 0.253) 0.195 (0.108 - 0.271) 0.174 (0.086 - 0.247) 0.171 (0.084 - 0.245) 

Slope 0.175 (0.096 - 0.258) 0.204 (0.122 - 0.288) 0.208 (0.126 - 0.294) 0.161 (0.088 - 0.240) 0.195 (0.110 - 0.281) 0.143 (0.071 - 0.213)
#
 0.144 (0.069 - 0.217)

#
 

CITL 1.299 (1.155 - 1.417) 1.336 (1.194 - 1.456) 1.325 (1.183 - 1.446) 1.360 (1.217 - 1.479) 1.310 (1.167 - 1.429) 1.392 (1.251 - 1.511) 1.343 (1.200 - 1.459) 

Scaled Brier (%) -0.02 0.04 0.03 -0.06 -0.06 -0.07 -0.15 
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Table 3: Apparent and internally validated performance of QCancer-10+LDP and QCancer-10+GWS 

models, compared with external validation of QCancer-10 in the same participants. Values are 

performance indices plus 95% confidence intervals. QCancer-10/PRS HR per SD – adjusted hazard 

ratio of QCancer-10 score or PRS in model per standard deviation of the PRS; C – Harrell’s C statistic; 

Dxy – Somers’ Dxy rank correlation; D – Royston’s D statistic; R2D – Royston and Sauerbrei’s �
�

�   

(explained variation); Slope – Calibration Slope. Pairwise comparisons of performance metrics were 

all significantly different P<0.001. *modelled using multiple fractional polynomial and therefore not 

presented. 

 
 QCancer-10+LDP QCancer-10+GWS QCancer-10 

Apparent Internal  

Validation 

Apparent Internal  

Validation 

 

Males 
QCancer-10 HR per 

SD 

2.309 (2.164 - 2.464) NA 2.334 (2.187 - 2.490) NA NA 

PRS HR per SD 1.592 (1.520 - 1.668) NA 1.453 (1.388 - 1.521) NA NA 

C  0.730 (0.720 - 

0.741) 

0.730  0.717 (0.707 - 

0.727) 

0.716 0.693 (0.682 - 0.704) 

Dxy  0.460 (0.440 - 

0.481) 

0.460  0.433 (0.414 - 

0.455) 

0.433 0.847 (0.841 - 0.852) 

D  1.282 (1.224 - 

1.341) 

1.280  1.209 (1.156 - 

1.267) 

1.207 1.058 (0.987 - 1.121) 

R2D (%) 28.2 (26.3 - 30.0) 28.1 25.9 (24.2 - 27.7) 25.8 21.1 (18.9 - 23.1) 

Scaled Brier (%) 0.81 0.80 0.81 0.80 0.59 

Slope NA 0.998 NA 0.998 0.995 (0.914 - 1.063) 

Females 
QCancer-10 HR per 

SD 

* NA 1.764 (1.655 - 1.881) NA NA 

PRS HR per SD * NA 1.359 (1.290 - 1.431) NA NA 

C  0.686 (0.672 - 

0.701) 

0.685  0.668 (0.655 - 

0.683) 

0.668 0.645 (0.631 - 0.659) 

Dxy  0.372 (0.345 - 

0.402) 

0.37  0.337 (0.310 - 

0.366) 

0.335 0.822 (0.816 - 0.830) 

D  1.056 (0.979 - 

1.136) 

1.055  0.925 (0.850 - 

1.000) 

0.924 0.769 (0.695 - 0.847) 

R2D (%) 21.0 (18.6 - 23.5) 21 17.0 (14.7 - 19.3) 16.9 12.4 (10.3 - 14.6) 

Scaled Brier (%) 0.34 0.34 0.29 0.28 0.20 

Slope NA 0.996 NA 0.996 0.805 (0.724 - 0.899) 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 1, 2022. ; https://doi.org/10.1101/2021.09.22.21263962doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.22.21263962
http://creativecommons.org/licenses/by/4.0/


 23 

Table 4: Sensitivity of QCancer-10+LDP models for CRC diagnosis over 5 years of follow-up across 

the top 25 centiles of absolute risk in males and females. The absolute risk of the top 20% are 

highlighted. 

 

Centile Population per Absolute 5-year risk Cases per Cumulative % cases  

Males 
1 1960 2.75 64 3.4 

2 1961 2.34 61 6.6 

3 1961 2.10 70 10.3 

4 1961 1.94 56 13.3 

5 1961 1.81 55 16.2 

6 1961 1.71 57 19.2 

7 1961 1.63 60 22.4 

8 1961 1.55 41 24.6 

9 1961 1.49 41 26.8 

10 1961 1.43 48 29.3 

11 1961 1.38 48 31.8 

12 1960 1.33 35 33.6 

13 1961 1.29 44 35.9 

14 1961 1.25 31 37.5 

15 1961 1.21 35 39.3 

16 1961 1.17 33 41.0 

17 1961 1.14 35 42.8 

18 1961 1.11 32 44.5 

19 1961 1.08 30 46.1 

20 1961 1.05 29 47.6 

21 1961 1.02 25 48.9 

22 1961 1.00 32 50.6 

23 1960 0.97 37 52.6 

24 1961 0.95 27 54.0 

25 1961 0.93 24 55.3 

Females 
1 2384 1.53 58 4.0 

2 2385 1.27 50 7.4 

3 2385 1.13 48 10.7 

4 2385 1.04 37 13.2 

5 2385 0.97 37 15.7 

6 2385 0.91 31 17.8 

7 2385 0.87 39 20.5 

8 2385 0.83 33 22.8 

9 2385 0.80 29 24.8 

10 2385 0.77 40 27.5 

11 2385 0.74 26 29.3 

12 2385 0.72 25 31.0 

13 2385 0.70 19 32.3 

14 2385 0.68 24 33.9 

15 2385 0.66 22 35.4 

16 2385 0.64 24 37.0 

17 2385 0.63 14 38.0 

18 2385 0.61 23 39.6 

19 2385 0.60 22 41.1 

20 2385 0.59 19 42.4 

21 2385 0.57 17 43.6 

22 2385 0.56 19 44.9 

23 2385 0.55 20 46.3 

24 2385 0.54 29 48.3 

25 2385 0.53 15 49.3 
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Figure 1. UK Biobank participant flow diagram. Panel A shows quality control and derivation of PRS 

modelling cohorts. Panel B shows participant selection for the Integrated Modelling Cohorts. *More 

than one exclusion may apply per person. 
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Figure 2. Kaplan-Meier curves across four risk groups (group 4 being highest risk) for  

QCancer-10+LDP and QCancer-10+GWS models compared to QCancer-10 in men and women. QCa – 

QCancer-10 model; QCa+LDP – Qcancer-10+LDP model; QCa+GWS – QCancer-10+GWS model. 
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Figure 3. Decision Curve Analysis for QCancer-10+LDP, QCancer-10+GWS, and QCancer-10 models.  

Figures show net benefit in men (A) and women (B), and interventions avoided per 100 patients 

tested in men (C) and women (D). The thin grey line in net benefit curves indicates intervention for 

all, the thick black line no intervention.  
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