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 Abstract.  1 

Systolic and diastolic blood pressure (S/DBP) are highly correlated modifiable risk factors for 2 

cardiovascular disease (CVD).   We report here a bidirectional Mendelian Randomization (MR) 3 

and pleiotropy analysis of systolic and diastolic blood pressure (BP) summary statistics from the 4 

UKB-ICBP BP genome-wide association study (GWAS) and construct a composite genetic risk 5 

score (GRS) by including pleiotropic variants. The composite GRS captures greater (1.11-3.26 6 

fold) heritability for BP traits and increases (1.09- and 2.01-fold) Nagelkerke’s R2 for 7 

hypertension (HTN) and cardiovascular disease (CVD). We replicated 118 novel BP pleiotropic 8 

variants including 18 novel BP loci using summary statistics from the Million Veteran Program 9 

(MVP) study.  An additional 219 novel BP signals and 40 novel loci were identified after meta-10 

analysis of the UKB-ICBP and MVP summary statistics but without further independent 11 

replication. Our study provides further insight into BP regulation and provides a novel way to 12 

construct a GRS by including pleiotropic variants for other complex diseases.   13 

 14 

Key words: Pleiotropy, Mendelian Randomization, Genetic risk score, gene-age 15 

interaction. 16 

 17 

 18 
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Introduction 1 

Poorly controlled blood pressure (BP) accounts for a large portion of the risk for 2 

cardiovascular disease (CVD), stroke, and heart failure1. Understanding biological mechanisms 3 

for BP regulation could thus potentially help improve BP control and lead to a reduction in the 4 

burden of CVD.  BP, characterized by systolic and diastolic blood pressure (SBP/DBP), are 5 

long-standing risk predictors for CVD.  To date, genome-wide association studies (GWAS) have 6 

been performed on BP traits by focusing on main effects and in studies that included subjects of 7 

diverse ancestry over 1,000 BP-associated loci have been identified2-14. Genome-wide search of 8 

gene-environment interactions on BP traits have also been recently conducted, however, only a 9 

few new gene-environment interactions have been identified, in part owing to low statistical 10 

power13; 14.  Although many GWAS variants are shared between SBP and DBP, both of which 11 

are correlated, some seem associated only with SBP or DBP, suggesting evidence of trait-12 

specific biological mechanisms. It has been reported that joint analysis of SBP and DBP leads to 13 

the identification of BP variants missed by analyzing SBP or DBP separately9. However prior 14 

studies have not addressed the mechanisms underlying the SBP-DBP relationship, reflecting 15 

arterial stiffness or arterial compliance 15. Dissecting the causal relationships of SBP and DBP 16 

variants, in particular, whether they affect SBP and DBP through the same (mediation) or 17 

different (pleiotropic) paths, and how many pleiotropic variants contribute jointly to these highly 18 

correlated traits, is thus important for understanding the biology of BP regulation.  19 

Genetic risk scores (GRS) are constructed as weighted linear combinations of individual 20 

variant effects estimated from GWAS to predict individual-level risk of a common disease. An 21 

overall GRS is the average of SBP- and DBP-specific GRS3; 6. However, published BP GRS’s 22 

have explained ~6% of the heritability of SBP and DBP, and have limited predictive power for 23 
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HTN and CVD.  GWAS of gene-age interaction analysis have also identified genetic variants 1 

with age-dependent effect sizes, including for BP16; 17, lipid levels18 and BMI19. A recent study 2 

based on a proportional hazards model reported age-varying risk profiles in nine diseases, 3 

including HTN20. However, these studies were under powered because the interactive 4 

contribution by variant and age is often weak.      5 

In this study we address the mechanistic relationship between SBP and DBP by 6 

performing a bidirectional Mendelian Randomization (MR) 21  and GWAS pleiotropy analysis 7 

using summary statistics from >750,000 subjects of European ancestry from the UKB and ICBP 8 

consortium6, followed by summary statistics of 318,891 multi-ethnic subjects from the Million 9 

Veteran Program (MVP) 12. We searched for novel BP variants with pleiotropic effects and 10 

constructed a composite GRS using variants with and without pleiotropic effects, and studied the 11 

age-varying effects of GRS for prediction of BP, HTN and CVD in European, African and Asian 12 

descent individuals. 13 

 14 

Material and Methods 15 

Summary statistics of UK Biobank (UKB) and International Consortium for Blood 16 

Pressure (ICBP). UKB and the ICBP consists of data on 458,577 UK and 299,024 European des 17 

cent subjects. GWAS of SBP and DBP were conducted in UKB and ICBP separately and the 18 

results were meta-analyzed.3; 6  Our analysis was based on the summary results from the UKB 19 

and ICBP GWAS that were calculated based on up to 757,601 participants and ~7.1 M 20 

genotyped and imputed SNPs with MAF ≥ 1% for variants present in both the UKB data and 21 

ICBP meta-analysis for SBP, DBP and pulse pressure (PP defined as SBP-DBP).  22 
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Summary statistics of the Million Veteran Program (MVP). The BP summary statistics of the 1 

Million Veteran Program (MVP) consists of 318,891 predominantly male multiethnic 2 

participants from Hispanic, non-Hispanic whites, blacks, Asians and Native Americans.12  There 3 

were 18.2M genotyped and imputed SNPs in the summary statistics . The MVP data were used 4 

for replication analysis as well as meta-analysis with UKB-ICBP.  5 

 6 

UKB individual level data.  7 

Participants in the UKB were genotyped using a custom Affymetrix UK Biobank Axiom 8 

array 22. Genotypes were imputed by the UKB using the Haplotype Reference Consortium 9 

reference panel 23; we retained variants with imputation Rsq > 0.3. Related individuals with 10 

pairwise kinship coefficient greater than 0.0884 (suggested by UKB) were removed from 11 

analysis, resulting in 451,174 individuals of European, African and Asian ancestries. The 12 

principal components were calculated by UKB with genotype data within each ancestry to 13 

account for population structure.  14 

We analyzed three BP traits in UKB: SBP, DBP and PP. We calculated the mean SBP 15 

and DBP values from two baseline BP measurements and added 15 and 10 mmHg to SBP and 16 

DBP, respectively, for individuals who took antihypertensive medications. Hypertensive cases 17 

were defined as either SBP 140 or DBP90 or taking antihypertensive medications. CVD cases 18 

in UKB were defined using self-reported baseline information and the ICD9 and ICD10 19 

diagnostic codes on hospital admissions. The CVD cases includes ICD9 ("4109", "4119","4129", 20 

"4139", "4140", "4141", "4148", "4149") and ICD10 (I210, I211, I212, I213, I214, I219, I21X, 21 

I220, I221, I228, I229,  I230, I231, I232, I233, 234, I235, I236, I238, I240, I241, I248, I249, 22 

I250, I251, I252, I253, I254, I255, I256, I258, I259) codes These data identified 35,968 CVD 23 
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cases in subjects with European, African and Asian ancestries. The study was approved by the 1 

Case Western Reserve University Institutional Review Board (STUDY20180592). 2 

 3 

Mendelian Randomization analysis.  We performed a bi-directional MR analysis of SBP and 4 

DBP by applying the software IMRP24 and MRmix 25 , as well as estimated the causal 5 

contributions of BP on Coronary Artery Disease (CAD), myocardial infarction (MI) and Stroke. 6 

Considering an exposure (𝑌1) and an outcome (𝑌2) the following association model as described 7 

in Figure 1A was used: 8 

𝑌1 = 𝛾1𝐺 + 𝑈 + 𝜀1                                 
𝑌2 = 𝛽𝑌1 + 𝛾2𝐺 + 𝑈 + 𝜀2 ,                   

  (1) 9 

where 𝐺 is a genetic instrumental variable (IV), 𝛾1 and 𝛾2 are the direct contributions of 𝐺 to 10 

exposure and outcome,  β is the causal effect of the exposure 𝑌1 to the outcome 𝑌2,  U represents 11 

confounding factors and ε1 and ε2 are error terms, respectively. MR analysis estimates the causal 12 

effect β through the genetic IV 𝐺. A valid genetic IV satisfies 𝛾1 ≠ 0 and 𝛾2 = 0, representing 13 

the genetic contribution to outcome through the mediation of the exposure. We termed these 14 

variants (𝛾2 = 0) as mediation variants. We define a pleiotropic variant as one with 𝛾1 ≠ 0 and 15 

𝛾2 ≠ 0, interpreted as the genetic contributions to exposure and outcome through two 16 

independent paths (or a pleiotropic path) (Figure 1A). IMRP is an iterative approach combining 17 

the pleiotropy test and the MR analysis. The iteration starts by performing MR-Egger analysis26 18 

to estimate the causal effect of an exposure to outcome, following by inverse variance weighted 19 

(IVW)27; 28 analysis until the causal effect estimate converges.  The causal effect is estimated by 20 

IVW after excluding all identified pleiotropic variants. At each iteration step, IMRP perform 21 

pleiotropy test to update which genetic instrument variants show pleiotropy (P<0.05) using the 22 

test: 23 
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 𝑇𝑃𝑙𝑒𝑖𝑜 =  
Γ̂−𝛽�̂�

√𝑣𝑎𝑟(Γ̂−𝛽�̂�)
,         (2) 1 

where Γ̂  and 𝛾 are the estimated effect sizes of a genetic IV on exposure and the outcome, 2 

respectively, and 𝛽 is the causal estimate which is updated at each iterative step. We have 3 

previously shown that 𝑇𝑃𝑙𝑒𝑖𝑜  tests the null hypothesis 𝛾2 = 0 24.  In MR analysis, a valid IV 4 

satisfies 𝛾1 ≠ 0, therefore rejecting null hypothesis 𝛾2 = 0 and suggesting a pleiotropic effect. 5 

IMRP takes advantage of MR-Egger, which is less biased, and IVW, which is more efficient. 6 

IMRP can be applied to GWAS summary statistics of an exposure and an outcome obtained with 7 

overlapping or unique samples. To ensure the causal estimate is robust, we also applied a 8 

substantially different MR approach MRmix 25, an estimating equation approach that assumes 9 

Γ̂ − 𝛽𝛾 follows a normal mixture model.  MRmix usually shows a good trade-off between bias 10 

and variance even with more than 50% invalid IVs 25. MRmix requires standardized summary 11 

statistics and IMRP does not. For a continuous trait, the effect size is rescaled by 
𝑧

√𝑛
, where z and 12 

n correspond to the z-score for an IV and the sample size, respectively, with its standard error 
1

√𝑛
. 13 

For a binary trait, the effect size is rescaled by 
𝑏𝑒𝑡𝑎

√𝑝(1−𝑝)
, where beta and p correspond to the effect 14 

size and minor allele frequency of an IV, respectively. This standardizing procedure has been 15 

used in MRmix25.  16 

 17 

GWAS of pleiotropy analysis for SBP and DBP. After performing a bi-directional MR 18 

analysis of SBP and DBP and estimating the causal effects of SBP on DBP and DBP on SBP, we 19 

extended the pleiotropy test 𝑇𝑃𝑙𝑒𝑖𝑜 to all 7.1M SNPs by fixing the causal effects estimated from 20 

IMRP analysis in the two causal paths, using UKB-ICBP summary statistics (Figure 1B and C). 21 

This is equivalent to performing GWAS for two new traits: BPpleio1 = DBP − 𝛽 × SBP and 22 
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BPpleio2 = SBP − 𝛽′ × DBP, where 𝛽 and 𝛽′  are the estimated causal effects of SBP on DBP and 1 

DBP on SBP, respectively: 2 

𝐵𝑃𝑝𝑙𝑒𝑖𝑜1(2) = γ2G + ε.  (3) 3 

Equivalently, 𝑇𝑃𝑙𝑒𝑖𝑜 tests the null hypothesis 𝛾2 = 0. Unlike MR analysis where the IVs are 4 

selected to be associated with exposure, we required the pleiotropy test 𝑇𝑃𝑙𝑒𝑖𝑜 for both BPpleio1 5 

and BPpleio2  to be significant to declare a pleiotropic variant. We performed the same analysis for 6 

replication using MVP summary statistics.  Meta-analysis of UKB-ICBP and MVP was further 7 

performed to increase statistical power and to identify additional variants. 8 

We applied the LD score regression method29 to test for genomic inflation in the GWAS 9 

pleiotropy analysis. It is expected that BPpleio1(2) will have a large genomic control inflation 10 

coefficient because of large sample sizes, genetic variants in high LD and a large number of BP 11 

variants6. We examined the degree of inflation from the intercept of the LD score regression.  12 

 13 

Novel locus definition. Novel loci were defined as genome wide significant pleiotropy variants 14 

> 1Mb away from known BP variants as well as LD r2 <0.1 with any known BP variants. Novel 15 

signals at a known locus were genome wide significant pleiotropy variants within 1 Mb of 16 

known BP variants as well as not being in LD with any known BP variants (r2 < 0.1) at the locus. 17 

The 1000G European ancestry data was used as the reference genetic data for LD calculation.  18 

 19 

Functional annotations. We evaluated all sentinel SNPs at novel loci for evidence of mediation 20 

of expression quantitative trait loci (eQTL) and splicing quantitative trait loci (sQTL) in all 44 21 

tissues using the Genotype-Tissue Expression (GTEx) database. Following the method in 22 

Evangelou et al.6, a locus is annotated with a given eGene(sGene) only if the most significant 23 
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eQTL(sQTL) SNP for the given eGene(sGene) is in high LD (r2 ≥ 0.8) with the sentinel SNP. 1 

We performed overall enrichment tests using the mediation and pleiotropic variants separately. 2 

We used DEPICT30 (Data-driven Expression Prioritized Integration for Complex Traits) to 3 

identify tissues and cells that are highly expressed at genes within the BP mediation and 4 

pleiotropic loci. We also used DEPICT to test for enrichment in gene sets associated with GO 5 

ontologyies, mouse knockout phenotypes and protein-protein interaction networks. We reported 6 

significant enrichments with a false discovery rate of 0.05. Analysis was done using the platform 7 

Complex-Traits Genetics Virtual Lab31.  8 

 9 

Genetic risk score (GRS) and pleiotropic Genetic Risk Scores (pGRS). We constructed a 10 

traditional genetic risk score using independent genome wide significant BP variants from UKB-11 

ICBP. We first constructed SBP and DBP weighted GRSs and then derived a single BP core 12 

GRS (cGRS) as the average of SBP and DBP GRSs. This approach has been previously used6 to 13 

estimate the combined effect of BP variants on BP, hypertension and CVD. Analogously, we 14 

constructed a pleiotropic genetic risk score (pGRS) using the variants detected in pleiotropy 15 

analysis. We first constructed BPpleio1 and BPpleio2 weighted GRSs and next derived the pGRS as 16 

the difference of BPpleio1 and BPpleio2 GRSs.  Because most of the genetic variants associated with 17 

BPpleio1 and BPpleio2 demonstrated pleiotropy evidence, we termed this the pleiotropy genetic risk 18 

score. Noted that some SNPs contribute to both cGRS and pGRS because these variants are 19 

significantly associated with SBP or DBP, as well as BPpleio1 and BPpleio1. However, their weights 20 

represent their corresponding contributions to BP through the mediation and pleiotropy 21 

pathways.  We performed linear regression analyses by jointly modeling cGRS and pGRS with 22 

and without adding the interaction of age*cGRS and age*pGRS on BP in the UKB data. We 23 
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included the covariates of sex, age, BMI, geographical region and 10 genetic principal 1 

components in the linear regression analysis. The heritability explained by the cGRS and pGRS 2 

was calculated by the adjusted R2 in the linear regression adjusting out the covariates. Similarly, 3 

we performed logistic regression of cGRS, pGRS with and without age*cGRS and age*pGRS 4 

interactions on hypertension and cardiovascular events at baseline in the UKB data. The same 5 

covariates were included. We calculated the  Nagelkerke’s R2 to quantify the goodness-of-fit of 6 

the prediction by the cGRS and pGRS32. We examined whether pGRS is able to predict 7 

additional variations of BP, hypertension and CVD after accounting for cGRS. We also 8 

examined the age-varying effects of cGRS and pGRS by testing interaction effects. Our analysis 9 

included 386,752 unrelated individuals of European ancestry with phenotypes measured at 10 

baseline. For comparison, we further constructed the PP weighted GRS (ppGRS) and performed 11 

the above analysis. 12 

We assessed association of cGRS, pGRS and their interactions with age on BP in 13 

unrelated Africans (n = 7,904) and South Asians (n = 8,509) from the UKB to see whether BP–14 

associated SNPs identified from GWAS predominantly in Europeans are also associated with BP 15 

in populations of non-European ancestry. Analysis was also performed for ppGRS. All analyses 16 

were performed using residuals after adjusting for sex, age, BMI, geographical region and 10 17 

genetic principal components. 18 

 19 

Cross-trait lookups of novel loci: We supplied the index SNPs at the novel loci observed in UK 20 

Biobank-ICBP pleiotropic analyses to FUMA33 and GWAS catalog34 to investigate pleiotropy 21 

with non-BP traits, extracting all associations with P < 5 × 10-8 for all SNPs in high LD (r2 ≥0.8).   22 

 23 
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Results 1 

We present a bi-directional MR analysis of SBP and DBP using 1,125 and 1,183 2 

independent genome-wide significant variants for SBP and DBP (P< 5×10-8) as genetic IVs 3 

obtained from the UKB-ICBP GWAS6. We standardized SBP and DBP and obtained an identical 4 

causal effect of SBP on DBP and DBP on SBP (0.864 ± 0.005 and 0.862 ± 0.005 by IMRP, 5 

respectively, Supplementary Table 1), which is significantly larger than the observed trait 6 

correlation 0.738 between SBP and DBP in UKB European subjects, with an estimated 74.8% of 7 

variation is the shared causal contribution between SBP and DBP. The causal estimates by 8 

MRmix were concordant (0.89 ± 0.012 and 0.90 ± 0.01, respectively, Supplementary Table 1). 9 

Among the genetic IVs, 43% of the variants had pleiotropic effects on SBP and DBP.  10 

We next extended the pleiotropic effect analysis to search for variants by performing two 11 

GWAS of BPpleio1 and BPpleio2;  the Manhattan and QQ plots are presented in Figure 2.  The GC 12 

lambda value was 1.533 and LDSR intercept was 1.057 (0.013), with inflation ratio 4.23%, 13 

suggesting little inflation in the BPpleio1; a similar result was observed for BPpleio2. LD score 14 

regression analysis29 estimated 8.7% of the heritability arising from pleiotropic variants for 15 

BPpleio1. We calculated genetic correlations of BPpleio1 and BPpleio2 with SBP, DBP and PP using 16 

summary statistics (Supplementary Table 2).  BPpleio1 and BPpleio2 are genetically highly 17 

correlated (rg =-0.902±0.006), also highly correlated with PP (rg =-0.618±0.016 and 18 

0.897±0.004) but less so with SBP or DBP. BPpleio1 is negatively correlated with SBP as is 19 

BPpleio2 with DBP; in contrast, PP is positively correlated with both SBP and DBP.  20 

We observed 906 independent variants (r2 <0.1) reaching genome-wide significance in 21 

either BPpleio1 or BPpleio2 (P<5×10-8). To declare a variant as pleiotropic, we required one 22 

pleiotropy test P-value 5×10-8 and the other test P-value 0.05/906 by adjusting for multiple 23 
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comparisons. We observed 815 independent pleiotropy variants with 91 variants genome wide 1 

significant also for either SBP or DBP. Among them, 234 (or 29%) were not detected by the 2 

univariate GWAS analysis of SBP, DBP or PP in the original UK Biobank+ICBP consortium6 3 

(Supplementary Table 3). Among the 234 variants, 201 (or 86%) variants were not reported in 4 

any previous BP GWAS.  In the set of associations, 163 variants in 124 loci were within a 1Mb 5 

region of previously reported known BP loci but were not in LD with known BP variants (r2 6 

<0.1); the remaining 38 variants were at least 1Mb away from the previous reported known BP 7 

loci and resided at 35 loci; the corresponding locus zoom plots are presented in Supplementary 8 

Figure 1. We evaluated the associations of our sentinel SNPs at the 35 novel loci with other 9 

traits and disease using the GWAS Catalog34 and FUMA33. The GWAS Catalog and FUMA 10 

search of published GWAS showed that 29 of the 35 novel loci are also significantly associated 11 

with other traits, including lipid levels, cardiovascular-related outcomes, anthropometric traits, 12 

sleep traits, educational attainment, smoking, blood protein level and Schizophrenia 13 

(Supplementary Table 4).  14 

We defined the variants  with P-value of SBP < 5×10-8 and P-value of BPpleio1 >0.05/906, 15 

or P-value of DBP < 5×10-8 and P-value of BPpleio2 >0.05/906 into mediation variants, which 16 

resulted in 1,415 independent variants. We compared the SBP and DBP effect sizes for these 17 

mediation variants and   observed that the mediation variants have the same effect directions for 18 

SBP and DBP (Figure. 3). In comparison, 71% of pleiotropic variants show opposite effect 19 

directions for SBP and DBP, indicating new discoveries.   20 

Replication of novel signals in MVP. Since the BP summary statistics in MVP were obtained 21 

from multiethnic populations of non-Hispanic whites, non-Hispanic blacks, Hispanics, non-22 

Hispanic Asians and non-Hispanic Native Americans, we performed MR analysis to estimate 23 
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causal effect sizes between SBP and DBP in MVP, instead of using the causal effects estimated 1 

from UKB-ICBP. With a fewer number of IVs in MVP, we obtained relatively smaller but 2 

similar causal effect sizes (0.692 and 0.724) between SBP and DBP as compared to UKB-ICBP 3 

results, possibly due to the multiethnic samples in MVP (Supplementary Table 1). We then 4 

performed the pleiotropy test  𝑇𝑃𝑙𝑒𝑖𝑜 among the 201 novel variants (7 were not available in 5 

MVP).  We examined how many novel variants significantly associated with BPpleio1(2) (P<5×10-6 

8) in UKB-ICBP also showed replication with corresponding BPpleio1(2) at significance level 7 

P<0.05/201.  We were able to replicate 23 variants (Supplementary Table 3), including 2 novel 8 

loci (rs12470661 and rs73937040, Table 1). When we released the replication significance level 9 

criterion at P=0.05, we were able to replicate 118 variants including 19 variants at 18 novel loci 10 

(Table 1), with 84 variants having both BPpleio1 and BPpleio2 P-values < 0.05 (Supplementary 11 

Table 3) and all the 118 variants having the same effect direction between UKB-ICBP and 12 

MVP: thus, our identified novel pleiotropic signals were replicable.   13 

We further examined the BPpleio1(2) effect size consistency of the 815 independent 14 

pleiotropic variants between UKB-ICBP and MVP. For comparison, we also examined the SBP 15 

and DBP effect size consistency of the independent 1,415 mediation variants between UKB-16 

ICBP and MVP. We observed that the BPpleio1(2) effect sizes have higher correlations for the 17 

pleiotropic variants than the mediation variants (Figure. 4, correlation 0.90 vs 0.74), even after 18 

exclusion of 2 significant outliers (rs113081691 and rs17057329). We observed that 96% of 19 

pleiotropic variants have consistent effect directions between UKB-ICBP and MVP. We then 20 

performed inverse variance weighted meta-analysis to combine the summary statistics of 21 

BPpleio1(2) for UKB-ICBP and MVP. The combined pleiotropy evidence was further strengthened 22 

for the 118 novel variants (Table 1 and Supplementary 3).  23 
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 1 

Functional annotations. We performed expression quantitative trait locus (eQTL) analysis 2 

using GTEx data. Among the 35 novel loci listed in Supplementary Table 3, we identified 26 3 

with expression quantitative trait locus (eQTL) (Supplementary Table 5) and 11 with Splicing 4 

Quantitative Trait Loci (sQTLs) (Supplementary Table 6). The eQTLs were most often 5 

enriched in arterial tissues, followed by adipose, heart and nerve tibial tissues.  SNP rs17713879 6 

is an eQTL affecting expression of the SH3YL1 and ACP1 genes in 34 tissues and is also a sQTL 7 

affecting splicing of these two genes in 50 tissues. SNP rs112500920 is an eQTL affecting 8 

expression of several genes, including EFL1 and AB3B2, in multiple tissues, notably adipose and 9 

arterial tissues. SNP rs12478520 is an eQTL affecting expression of multiple genes, including 10 

C2orf72, HTR2B, ARMC9 and PSMD1.  11 

In the UKB-ICBP data, we identified 815 independent pleiotropic variants. We also 12 

observed 1,451 independent mediation variants,. We assessed tissue enrichment of BP loci using 13 

DEPICT30 at a false discovery rate (FDR) < 5% but separated 1,415 mediation from 815 14 

pleiotropic variants in the analysis. DEPICT identified enrichment across 43 and 51 tissues and 15 

cells using mediation and pleiotropic variants, respectively (Supplementary Table 7). The 16 

enriched tissues are highly similar (correlation=0.78) but there are also notable differences 17 

(Supplementary Figure 2a).  Enrichment was greatest for arteries in the cardiovascular system 18 

for both mediation and pleiotropic variants (P= 1.28 × 10-3 and 2.19 × 10-11, respectively). In 19 

general, enrichment observed for mediation variants were also observed for pleiotropic variants, 20 

but not vice versa.  For example, heart related tissues, aortic valves and atrial appendage were 21 

enriched for pleiotropic variants (P< 1.38 × 10-4) but not for mediation variants (Supplementary 22 

Table 7). Pathway enrichments for mediation variants and pleiotropic variants were less well 23 
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correlated (correlation=0.51, Supplementary Figure 2b). Pleiotropic variants were enriched in 1 

many molecular pathways that were missed by mediation variants, including response to hypoxia, 2 

oxygen levels, basement membrane, and renal system development (P<8.66×10-7, 3 

Supplementary Table 8). In contrast, negative regulation of transcription from RNA 4 

polymerase II promoter, histone deacetylase binding, hormone receptor binding and Ras protein 5 

signal transduction, among others, were only enriched by mediation variants (P<6.09×10-7 , 6 

Supplementary Table 8). 7 

Evaluation of enriched mouse knockout phenotype terms by both mediation and 8 

pleiotropic variants implicated abnormal cardiovascular physiology, disorganized myocardium, 9 

abnormal vascular branching morphogenesis and organogenesis, among others. However,  10 

pleiotropic variant-enriched mouse phenotypes include abnormal kidney morphology, impaired 11 

wound healing, dilated heart right ventricle, abnormal aorta morphology , increased systemic 12 

arterial SBP and increased body weight (P< 1.65 × 10-7).   Mediation variants-enriched mouse 13 

phenotypes include pericardial edema, wavy neural tube, and decreased systemic arterial BP 14 

(P<1.83×10-4 , Supplementary Table 8).  Common protein–protein interaction subnetwork 15 

enrichments for both mediation and pleiotropic variants include LAMA1, ITGB1, WNT1 and 16 

many SMAD subnetworks. Pleiotropic variant enriched top significant subnetworks include the 17 

HSPG2, TGM2, MMP9, FBN1 and DDR1 subnetworks (P<1.76× 10-7), as compared to 18 

mediation variant enriched subnetworks, SRC, YWHAQ and RAPGEF1 (Supplementary Table 19 

9). 20 

 21 

Improved prediction of BP, hypertension and CVD by including pleiotropic variants. 22 

Polygenic scores derived from multiple related traits can improve prediction of outcomes 35-38. 23 
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Chasman et al. decomposed a GRS into nearly independent components relative to biological 1 

mechanisms inferred from pleiotropic relationships 39 while Udler et al. factorized the genetic 2 

association matrix according to different classes of genetic variants relative to traits 40. However 3 

these approaches do not use the discovered pleiotropic variants directly. Here we construct a 4 

traditional BP GRS using all independent 1,615 BP variants from the UKB-ICBP, which we term 5 

the core genetic risk score (cGRS) (see Material and Methods). We further constructed a pGRS 6 

using the 906 variants associated with BPpleio1 or BPpleio2,  which is a genetic risk score from 7 

pleiotropic variants. We jointly modeled cGRS and pGRS adjusting for age, gender, BMI and 10 8 

principal components, and observed that pGRS significantly predicted BP traits, as well as risk 9 

of HTN and CVD, conditional on cGRS in all models (Table 2A and Figure 5) in the UKB 10 

European ancestry subjects. The cGRS captured 5.91%, 6.09% and 2.23% SBP, DBP and PP 11 

heritability excluding pGRS and 7.13%, 6.75% and 7.27% including pGRS, or a 1.11- to 3.26-12 

fold increase. Similarly, Nagelkerke’s R2 for HTN and CVD was 4.71% and 0.47% excluding 13 

pGRS and 5.14% and 0.53% including pGRS, representing a 1.09- and 1.14-fold increase. We 14 

observed odds ratios (ORs) of 1.64 and 1.15 for individual cGRS and pGRS on the risk of HTN 15 

(P < 1 × 10-300), respectively.  The observed ORs of individual cGRS and pGRS for CVD were 16 

1.21 and 1.06 (P = 1.71 × 10-231 and P = 2.74 × 10-25), respectively, and increased to 1.66 and 17 

1.19 (P = 9.83 × 10-97 and P = 1.28 × 10-13) when comparing the upper versus lower quantiles of 18 

the cGRS and pGRS, respectively.  However, the odds ratios were further increased to 6.78 and 19 

2.44 (P < 1 × 10-300 and P = 1.15 × 10-39) for HTN and CAD, respectively, when comparing the 20 

top decile and quintile with bottom decile and quintile of cGRS and pGRS (Figure 5).  We 21 

observed a clear advantage of including pGRS over cGRS only (Figure 5).  It has been 22 

suggested that there are gene and age interactions that contributing to blood pressure and 23 
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hypertension16; 17; 20. However, the detected interactions are limited because of low statistical 1 

power.  We thus examined the interaction effects between age and cGRS and pGRS. After 2 

including the interactions of age and cGRS and pGRS the main effects for cGRS and pGRS on 3 

BP, HTN and CVD were unchanged. However, we observed a significant interaction effect of 4 

age and cGRS for all BP traits and HTN but not CVD. The interaction of age and pGRS 5 

significantly contributed to all BP traits, HTN and CVD (P value between 3.0×10-2 and 7.74×10-6 

29, Table 2A).       7 

Extension to other ancestries. We examined associations with BP and CVD of the above 8 

defined European cGRS and pGRS in unrelated African (N=7,904) and South Asian (N=8,509) 9 

subjects in the UKB (Table 2. B, C). Although sample sizes were much smaller than among 10 

UKB European subjects, the cGRS is significantly associated with SBP, DBP, PP, HTN and 11 

CVD in both the UKB African- and Asian ancestry subjects. In the UKB African ancestry 12 

individuals, including the pGRS results in a 1.10- to 2.44-fold increase of SBP, DBP and PP 13 

heritability. Nagelkerke’s R2 for HTN and CVD has 1.23- and 1.22-fold increases, respectively. 14 

Similar increments in the UKB Asian cohort is also observed (Table 2. C).  Significant 15 

interactions of age and pGRS were again observed for BP traits and CVD in UKB Asians (Table 16 

2. C).  17 

Comparison between BPpleio1(BPpleio2) and PP. We noted PP is genetically positively correlated 18 

with both SBP and DBP but BPpleio1 or BPpleio2 is negatively correlated with SBP and DBP 19 

(Supplementary Table 2). Among the 815 pleiotropic variants, 274 were genome wide 20 

significant with either SBP or DBP and 467 with PP. We then calculated the GRS of PP (GRSPP) 21 

in UKB using the independent variants associated with PP by the effect sizes estimated in the 22 

UBK-ICBP data. We observed that the GRSPP is positively correlated with both the GRSs of 23 
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SBP and DBP. In comparison, the pGRS is again oppositely correlated with the GRSs of SBP 1 

and DBP (Supplementary Table 2). We next compared BP variances explained by the GRSPP 2 

and pGRS in UKB. In general, GRSPP and pGRS can account for similar amounts of BP, HTN 3 

and CVD variation (Supplementary Table 9).  However, when we included cGRS, pGRS and 4 

GRSPP in a regression model, we observed that all three genetic risk scores significantly 5 

predicted variation in BP, HTN and CVD in UKB European subjects (Supplementary Table 9), 6 

suggesting pGRS and GRSPP identify different aspects of trait variations. 7 

 8 

Mendelian Randomization of BP on CAD, MI and stroke. We downloaded published GWAS 9 

summary statistics for CAD41, MI42 and stroke43 and performed MR analysis of SBP, DBP, PP, 10 

BPpleio1 and BPpleio2 on CAD, MI and Stroke (Table 3). For SBP and DBP, IVs were the genetic 11 

variants genome wide significantly associated with SBP and DBP but with no pleiotropic 12 

evidence. For BPpleio1 and BPpleio2, IVs were the genetic variants associated with BPpleio1 and 13 

BPpleio2. For PP, we selected all variants independently associated with PP as the IVs. The effect 14 

size and standard error of an IV for BPpleio1 or BPpleio2 were the corresponding numerator and 15 

denominator of the test statistic 𝑇𝑃𝑙𝑒𝑖𝑜 in equation (2). As expected, SBP, DBP and PP causally 16 

contributed to CAD, MI and stroke. The new trait - BPpleio - also causally contributed to CAD, 17 

MI and stroke, suggesting a primary causal pleiotropy pathway that is not associated with BP 18 

mediation pathway directly contributing to the outcomes (Table 3). The estimated ORs ranged 19 

from 1.66 to 1.85 per SD unit increase in BP on the three outcomes using mediation variants and 20 

ranged from 1.13 to 1.48 using pleiotropic variants. Our analysis identified 1 to 22% IVs 21 

demonstrating pleiotropic effects for BP and the three clinical outcomes (Table 3).  22 
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Meta-analysis of UKB-ICBP and MVP. We performed the inverse variance weighted meta-1 

analysis of pleiotropy test to combine UKB-ICBP and MVP. We observed an additional 219 2 

novel signals with either BPpleio1 or BPpleio2 at a significance level 5×10-8, including an additional 3 

40 novel loci (Supplementary Table 10). 4 

 5 

Discussion  6 

Our analysis of GWAS summary statistics from over 1 million subjects have here revealed 7 

important aspects of the genetic architecture of the two principle and highly correlated BP traits, 8 

SBP and DBP.  The bi-directional MR analysis of SBP and DBP demonstrated that 1 SD unit 9 

increase of SBP leads to 0.86 SD unit increase of DBP, and vice versa, indicating that SBP and 10 

DBP share 74.8% of its variation. We assume these arise from  common genetic factors and 11 

common biological mechanisms between SBP and DBP. This shared causal contribution is 12 

substantially higher than the 55.6% estimated by phenotype correlation analysis of SBP and DBP 13 

in UKB European ancestry subjects. We then identified the genetic variants that impact SBP and 14 

DBP through two different paths: 1) mediation path (either from SBP to DBP or vice versa) and 15 

departure from the mediation path (pleiotropic path, Figure 1). We defined the variants 16 

contributing to BP traits through the pleiotropic path as pleiotropic variants, which have different 17 

biological process from the BP variants through the mediation path. We observed that most of 18 

the BP variants identified through SBP or DBP univariate associations were mediation variants 19 

and would be expected to be discovered in either the SBP or DBP GWAS. By examining the 20 

variants departing from the mediation paths, we identified 815 independent variants 21 

demonstrating pleiotropy evidence in the original UK Biobank + ICBP consortium data6, of 22 

which 201 were undetected by univariate GWAS of SBP, DBP or PP in literature.  Replication 23 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2021. ; https://doi.org/10.1101/2021.09.08.21263225doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.08.21263225
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

 

analysis in the MVP confirmed 118 of the 201 novel variants, including the 18 novel loci (Table 1 

1 and Supplementary Table 3).  Pleiotropic variants often demonstrated an effect size opposite 2 

in direction for SBP and DBP and yet contributed 8.71% heritability of the newly defined BP 3 

trait (Figure 3). The effect sizes of pleiotropic variants also demonstrated a higher correlation 4 

than that of the mediation variants between UKB-ICBP and MVP, suggesting that the pleiotropic 5 

variants may be more transferable across ethnic populations. BPpleio1 and BPpleio2 were highly 6 

correlated with PP (ρ ≥0.62) in UKB whites, taken as an indicator of arterial stiffness and 7 

considered as an independent risk factor for CVD44. However, BPpleio1 and BPpleio2 were less 8 

correlated than PP with either SBP or DBP, which is consistent with pGRS being less correlated 9 

than GRSPP with either SBP or DBP-defined GRS (Supplementary Table 2). Thus, BPpleio1 or 10 

BPpleio2 represent a different risk factor of CVD from PP. This is consistent with the finding that 11 

GRSs of SBP, DBP, PP and BPpleio all contribute to risk of CAD, Stroke and MI in the MR 12 

analysis (Table 3). Thus, our results clearly suggest that a substantial fraction of BP variants 13 

affect both SBP and DBP through pleiotropic effects. By combining UKB-ICBP and MVP, we 14 

identified an additional novel 219 variants with pleiotropic evidence, including 40 novel loci, 15 

although independent replication of these latter results are warranted (Supplementary Table 16 

10). Thus, pleiotropic variant searches in existing datasets can identify many new BP genes. 17 

In addition to the traditional BP GRS3; 6, which we termed the core genetic risk score 18 

cGRS,  the pleiotropic genetic risk score pGRS independently predicted BP, HTN and CVD 19 

outcomes (Table 2) in the UK Biobank European ancestry subjects. Additionally, including the 20 

pGRS led to substantial increments in heritability explained for BP traits (Table 2 and Figure 21 

5). Although we observed consistent opposite directional effects of pGRS for SBP and DBP in 22 

UK Biobank European-, African- and Asian- ancestry subjects, the prediction of HTN and CVD 23 
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risk was significantly improved by including pGRS (Figure 5 C and D). The cGRS and pGRS 1 

defined in European participants both consistently and significantly predicted BP, HTN and 2 

CVD in UK Biobank Africans and Asians, suggesting that pGRS is able to improve prediction 3 

accuracy across populations.  Recent studies have suggested that cGRS models alone have 4 

modest improvement of predictive accuracy for CAD45-47. The principle outcome of this set of 5 

analyses, therefore, demonstrates that adding pGRS significantly improves the prediction model 6 

over cGRS alone.  This approach of constructing polygenic risk scores is conceptually different 7 

from existing approaches using multiple related traits35-38 and can be generalized to other 8 

diseases by incorporating multiple disease-related traits through pleiotropy analysis.  9 

In our analysis, the UK Biobank Europeans was a part of data for identifying BP variants 10 

and pleiotropic variants. We then constructed the cGRS and pGRS in UK Biobank data by using 11 

the estimated effect sizes of the independent genome wide significant variants from UKB-ICBP 12 

summary statistics as the weights. This procedure was used in Evangelou et al.6 and was not 13 

involved in a model selection. However, there is a potential winner’s curse effect as suggested by 14 

Evangelou et al. When we applied the cGRS and pGRS to the UK Biobank Africans and Asians, 15 

we again observed the improved R2 (Supplementary Table 9), suggesting that adding cGRS 16 

improves the prediction power. 17 

Our analysis avoided an examination of the interaction of individual variants and age 18 

because of insufficient power. We were able to observe interaction effects of both cGRS and 19 

pGRS with age in UKB Europeans for SBP, DBP, PP and HTN although the interaction for CVD 20 

was only significant for pGRS (Table 2).  Age-pGRS interactions were also replicated in Asians 21 

despite a substantially smaller sample size. We observed that the interaction contribution to 22 

phenotype variation was consistently small (0.1% to 0.3% BP heritability in both UKB 23 
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Europeans and Asians). The negative interaction contributions of both cGRS and pGRS to DBP 1 

may partially explain the decline of DBP after 60 years older 48. In comparison, the interaction of 2 

age and cGRS was positive for SBP, suggesting genetic effects on SBP increases in older 3 

individuals.  As noted, the cGRS interaction effects in UKB Europeans could not be observed in 4 

UKB Africans or Asians, likely as a result of the latter’s smaller sample size. In comparison, the 5 

age-modulated interaction of pGRS was observed in both UKB European and Asian subjects, 6 

indicating stronger pGRS interactions than for the GRS. In our functional annotation analysis, 7 

we observed a wider range of BP related tissues and biological pathways for the BP pleiotropic 8 

variants than mediation variants, which implies that pleiotropic variants are influenced by a 9 

wider range of environmental factors and therefore continue to make genetic contributions over 10 

the life span.  11 

Our analysis approach bears some similarity with a recent developed GWAS-by-12 

subtraction49. However, there are significant differences. 1) The GWAS-by-subtraction is based 13 

on a genomic structure equation model (genomic-SEM) and our method is based on MR. 2) 14 

GWAS-by-subtraction assumes that all genetic effects on one trait affect the other. In contrast, 15 

our method does not make this assumption. Instead, our method estimates the causal effects in 16 

both directions. 3) The GWAS-by-subtraction tests the null hypothesis Γ̂ − γ̂σg/hE
2  =0, where  Γ̂  17 

and γ̂ are the estimated effect sizes of a SNP on two traits (trait 1 and 2), σg is the genetic 18 

covariance between the two traits and hE
2  is the heritability of trait 2. In contrast, our method tests 19 

the null hypothesis  Γ̂ − βγ̂ =0 and γ̂ − β′Γ̂ =0 where β and β′ are the two causal effects 20 

estimated from MR. Noted that σg/hE
2  is not the same as causal effect β when pleiotropic 21 

variants exist. The GWAS-by-subtraction includes the pleiotropic variants in estimating genetic 22 
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covariance and our method does not. Therefore, our method is less affected by pleiotropic 1 

variants. However, further research is warranted in understanding these two methods better.  2 

Our analysis was performed on two highly correlated BP traits, which led to define 3 

mediation and pleiotropy variants. We were able to identify a “core” mediation pathway shared 4 

by both SBP and DBP, and a pleiotropy pathway that has different effects to SBP and DBP.   5 

Our method is therefore useful in analyzing different symptoms of a disease for understanding 6 

the biological mechanism of the disease. Furthermore, our approach can also be applied to less 7 

genetically correlated phenotypes to identify pleiotropic variants. In this case, we will less likely 8 

to identify “core” phenotypes as we observed in BP traits.    9 

Our study also supports an omnigenic model for complex traits50-52. In fact, it could be 10 

inferred that pleiotropic variants act on multiple peripheral genes to impact the expression of 11 

core genes.  As a result, pleiotropic variants have weak effects on a phenotype and are more 12 

difficult to detect in a traditional BP GWAS that focuses on single trait analysis, as observed 13 

here. In comparison, mediation variants may be more likely to occur in core genes.  We 14 

acknowledge that the data presented here can only provide suggestive rather than conclusive 15 

evidence for that hypothesis.   16 

In conclusion, our new findings here include identifying 815 independent BP pleiotropic 17 

variants - 201 of which were not previously identified in BP GWAS in the UKB-ICBP study; of 18 

these, 118 were confirmed including 18 novel BP loci.  In addition, 219 novel BP signals and 40 19 

novel loci were identified by combining UKB-ICBP and MVP. Our way to construct polygenic 20 

risk score represents a substantial advance in understanding the genetic architecture of the highly 21 

correlated SBP and DBP. 22 

 23 
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URLs 1 

CTG-View: https://view.genoma.io/ 2 

Depict: https://data.broadinstitute.org/mpg/depict/ 3 

GTEx: www.gtexportal.org 4 

FUMA: https://fuma.ctglab.nl/ 5 

IMRP:  https://github.com/XiaofengZhuCase/IMRP 6 

MRmix://github.com/gqi/MRMix 7 

 8 

Data Availability 9 

Full summary statistics related to UKB-ICBP were obtained through request to the authors of 10 

UKB-ICBP Paul Elliott or Mark Caulfield.  Summary statistics relating to the Million Veteran 11 

Program (MVP) are publically available with the accession code phs001672.v1.p1: 12 

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001672.v1.p1. The 13 

UK BioBank data are available upon application to the UKBiobank 14 

(https://www.ukbiobank.ac.uk). The coronary artery disease and myocardial infraction summary 15 

statistics can be downloaded at http://www.cardiogramplusc4d.org/data-downloads/; Stroke 16 

summary statistics can be downloaded at: http://megastroke.org/privacy.html. 17 
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 2 

 3 

Figure Legends 4 

 5 

Figure 1. Path diagram in MR and Pleiotropic analysis. A. General path diagram in MR analysis. 6 

B and C. Path diagrams when SBP causally contributes to DBP and DBP causally contributes to 7 

SBP, respectively. 8 

 9 

Figure 2.  Manhattan and QQ plots for genome wide pleiotropy tests between SBP and DBP 10 

using UK Biobank-ICBP summary statistics. The GWAS of pleiotropy tests is equivalent to 11 

performing GWAS for two new traits: BPpleio1=DBP − 𝛽 ∗ SBP and BPpleio2=SBP − 𝛽′ ∗ DBP, 12 

where 𝛽 and 𝛽′  are the estimated causal effects of SBP on DBP and DBP on SBP, respectively. 13 

A. and B. Manhattan and QQ plots for BPpleio2. C. and D. Manhattan and QQ plots for BPpleio1.  14 

The horizontal line in Manhattans represents P-value=5×10-8. The top and bottom Manhattan 15 

plots are highly similar, indicating the consistence of the two directional MR analysis.  16 

 17 

Figure 3. Comparison between the SBP and DBP effect sizes for mediation (black dots) and 18 

pleiotropic (red dots) variants in UKB-ICBP. 19 

 20 

Figure 4. Comparison between the effect sizes between UKB-ICBP and MVP. A. SBP effect 21 

sizes of mediation variants. B. DBP effect sizes of mediation variants. C. BPpleio1 effect sizes for 22 

pleiotropic variants. D. BPpleio2 effect sizes for pleiotropic variants. The two variants 23 

rs113081691 and rs17057329 in the red circles in A. and B. represent substantial different effect 24 

sizes of SBP and DBP between UKB-ICBP and MVP, likely driven by multi-ethnic samples 25 

from MVP.  26 

 27 

Figure 5. Relationship the core genetic risk score (cGRS) and pleiotropic genetic risk score 28 

(pGRS) with blood pressure, risk of hypertension and cardiovascular disease in UK Biobank. (A) 29 

sex adjusted mean systolic blood pressure (SBP); (B) sex adjusted mean diastolic blood pressure; 30 

(C) odds ratios of hypertension (HTN) and (D) odds ratios of cardiovascular disease (CVD). 31 

cGRS was calculated in every decile and pGRS was calculated every quintile. Odds ratios were 32 

calculated by comparing each of the cGRS deciles and pGRS quintiles with the lowest decile and 33 

twentieth. The curves with pGRS=0 represent the models without including pGRS. 34 

 35 

 36 

 37 
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Table 1. The 17 novel BP loci identified by pleiotropic analysis 
SNP CHR BP UKB-ICBP 

P_SBP 

UKB-ICBP 

P_DBP 

UKB-ICBP 

P_PP 

UKB-ICBP 

Ppleio
a  

MVP  

Ppleio
a 

UKB-ICBP 

-MVP Ppleio
a 

Genes 

rs11162906 1 80500074 3.19×10-2 1.75×10-2 1.78×10-6 2.41×10-9 1.53×10-3 3.54×10-11 AC098657.2 

rs17713879 2 254215 5.19×10-2 2.66×10-2 2.05×10-5 3.75×10-8 8.92×10-4 1.35×10-10 SH3YL1 

rs3136302 2 48021379 4.08×10-1 5.84×10-5 9.62×10-6 2.96E-11 4.48×10-2 8.30×10-12 MSH6 

rs6735304 2 101617631 4.18×10-2 2.38×10-2 1.43×10-6 1.47×10-8 6.21×10-4 6.36×10-11 RPL31/TBC1D8 

rs12470661 2 232060050 5.09×10-2 3.07×10-3 6.68×10-7 5.33×10-11 1.97×10-4 4.55×10-14 HTR2B/ARMC9 

rs10947978 6 41471608 7.01×10-1 9.89×10-6 1.44×10-5 2.65×10-11 1.84×10-2 3.26×10-12 LINC01276 

rs56098119 6 90296727 7.63×10-2 1.38×10-2 6.81×10-6 1.69×10-8 2.89×10-2 1.77×10-9 ANKRD6 

rs150953973 6 120780033 2.98×10-1 9.7×10-4 4.01×10-6 3.54×10-9 1.64×10-2 1.85×10-10 RNU6-214P 

rs180271 7 93539479 6.11×10-1 1.72×10-4 2.63×10-5 3.69×10-9 2.05×10-3 2.92×10-11 GNGT1 

rs11989271 8 122632611 1.51×10-1 8.47×10-4 7.80×10-7 1.14×10-10 9.37×10-3 1.38×10-11 HAS2 

rs10868842 9 73119085 1.57×10-1 3.58×10-4 9.71×10-6 1.37×10-11 4.07×10-3 2.54×10-13 LINC00583 

rs12768143 10 22808844 3.92×10-2 5.03×10-3 8.61×10-8 9.18×10-11 1.58×10-2 2.39×10-11 PIP4K2A 

rs1343676 12 33537387 7.19×10-1 2.03×10-7 8.65×10-7 9.56×10-15 4.04×10-4 3.04×10-16 SYT10 

rs7322054 13 38246708 6.71×10-1 1.99×10-7 7.76×10-4 1.04×10-11 1.01×10-2 5.86×10-13 TRPC4 

rs61972411 13 100602630 2.82×10-4 6.59×10-1 1.87×10-7 1.45×10-8 1.89×10-2 2.23×10-9 LOC101927437 

rs62621400 15 101718239 2.25×10-1 1.70×10-3 1.94×10-5 3.76×10-9 1.64×10-3 2.34×10-11 CHSY1 

rs116643984 15 101791212 1.64×10-1 7.73×10-5 5.14×10-8 4.04×10-13 6.86×10-3 1.60×10-14 CHSY1 

rs73937040 18 3258733 7.08×10-2 2.07×10-2 7.77×10-6 4.67×10-8 2.06×10-6 1.17×10-12 MYL12A/MYL12B 

rs146827176 20 35169916 6.48×10-1 3.10×10-6 1.01×10-3 2.13×10-9 5.08×10-3 3.82×10-11 LOC101926987|MYL9 

aThe p-values of pleiotropy test for BPpleio1 and BPpleio2 were consistent in general and we reported the lesser one here. The detailed 

summary statistics and corresponding P values were listed in Supplementary Table 3. 
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Table 2: Associations of the cGRS, pGRS and their interactions with age on blood pressure traits, hypertension and 

cardiovascular events in unrelated populations in UK Biobank European, African and Asian descents.  
 

cGRS pGRS Heritabilityc 
Age*cGRS Age*pGRS  

Trait 

Effe

cta 95% CI P 

Effe

cta 95% CI P 

GR

S  

only 

(%) 

GRS

+ 

PGR

S 

(%) 

fold 

chang

e 

 Effec

ta 95% CI P 

Effec

ta 95% CI P N 

A. Europeans 

SBP 4.56 (4.51;4.62) < 10-300 2.01 (1.96;2.07)  < 10-300 5.91 7.13 1.21 0.011 (0.004;0.01) 

 

2.02×10
-3 0.068 

(0.014;0.123
) 

 

1.32×10
-2 

385,54
9 

DBP 2.44 (2.41;2.47) < 10-300 

-

0.83 (-0.86;-0.80) < 10-300 6.09 6.75 1.11 

-

0.026 

(-0.030;-

0.022) 

1.41×10
-39 

-

0.101 

(-0.132;-

0.071) 

8.40×10
-11 

385,56

0 

PP 2.12 (2.09;2.16) < 10-300 2.84 (2.80;2.88) < 10-300 2.23 7.27 3.26 0.037 (0.032;0.04) 
1.40×10

-51 0.170 (0.132;0.20) 
1.05×10

-18 

385,54
9 

HTN 1.64 (1.63;1.66) < 10-300 1.15 (1.14;1.16) < 10-300 4.71 5.14 

 

1.09 0.997 (0.996;0.99) 

1.50×10
-11 1.005 (1.004;1.00) 

7.74×10
-29 

385,55

4 

CVD 1.21 (1.20;1.23) 

1.71×10-

231 1.06 (1.05;1.08) 

 2.74×10-

25 0.47 0.53 

 
 

1.14 0.999 (0.997;1.00) 

 
4.25×10

-1 1.002 (1.00;1.004) 

 3.0×10-

2 

385,55

4 

CVD
b 1.66 (1.58;1.74) 9.83×10-97 1.19 (1.14;1.25) 1.28×10-13 0.74 0.89 

 
1.20 1.002 (0.995;1.00) 

6.14×10
-1 1.004 (0.996;1.01) 

3.37×10
-1 96,963 

B. Africans 

SBP 2.71 (2.28;3.13) 1.45×10-39 1.21 (0.77;1.65) 8.34×10-8 1.74 1.91 1.10 0.010 

(-

0.041;0.061) 

7.0 ×10-

1 0.045 

(-

0.007;0.096) 

9.02 

×10-1 7,802 

DBP 1.53 (1.27;1.79) 4.19×10-31 

-
0.35 (-0.62;-0.08) 1.09×10-2 1.59 1.73 1.09 

-
0.015 

(-
0.046;0.016) 

3.36 
×10-1 0.002 

(-
0.029;0.033) 

9.0 ×10-

1 7,802 

PP 1.18 (0.91;1.45) 1.61×10-17 1.56 (1.28;1.84) 2.05×10-27 0.75 1.83 2.44 0.025 

(-

0.007;0.057) 

1.28 

×10-1 0.043 (0.010;0.07) 

1.1 ×10-

2 7,802 

HTN 1.32 (1.25;1.39) 7.17×10-27 1.04 (0.99;1.09) 1.54×10-1 0.84 1.08 
 

1.29 1.001 (0.994;1.00) 
8.26 
×10-1 1.005 (0.999;1.01) 

1.2 ×10-

1 7,807 

CVD 1.14 (1.03;1.26) 9.88×10-3 1.07 (0.97;1.19) 1.85×10-1 0.18 0.22 

 

1.22 1.003 (0.992;1.01) 

6.04 

×10-1 1.000 (0.989;1.01) 1.0 7,807 

C. Asians 

SBP 2.92 (2.54;3.30) 2.71×10-50 1.25 (0.86;1.64) 3.21×10-10 2.53 3.00 1.18 
-

0.011 
(-

0.056;0.035) 
6.49 
×10-1 0.015 

(-
0.030;0.060) 

5.12 
×10-1 8,327 

DBP 1.69 (1.47;1.91) 5.95×10-51 

-

0.64 (-0.87;-0.42) 1.69×10-8 2.58 2.89 1.12 

-

0.017 

(-

0.043;0.009) 

1.96 

×10-1 

-

0.047 

(-

0.073;0.021) 

3.64 

×10-4 8,327 

PP 1.23 (0.97;1.48) 3.85×10-21 1.89 (1.63;2.15) 1.50×10-46 1.00 3.33 3.33 0.007 

(-

0.023;0.037) 

6.65 

×10-1 0.062 

(0.032;0.092

) 

4.71 

×10-5 8,327 

HTN 1.37 (1.30;1.44) 3.90×10-36 1.10 (1.05;1.16) 9.27×10-5 1.84 2.08 

 

  1.13 0.998 

(0.992;1.004

) 

5.23 

×10-1 1.006 (1.00;1.012) 

3.86 

×10-2 8,332 

CVD 1.18 (1.10;1.26) 2.87×10-6 1.08 (1.01;1.16) 2.81×10-2 0.19 0.39 

 

2.01 1.003 

(0.995;1.012

) 

4.50 

×10-1 0.991 (0.983;1.0) 

4.27 

×10-2 8,332 
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Sex, age, BMI, 10 PCs and geographic regions were adjusted. cGRS and pGRS were jointly modeled in the regression analyses. 
aThe effect represents regression coefficient for SBP, DBP and PP and represents odd ratio for HTN and CVD. 
b The effect for CVD represents the odd ratio when comparing top quantile with bottom quantile of GRS and PGRS. 
c The heritability for HTN and CVD represents the Nagelkerke’s R2. 
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Table 3. Using mediation variants and pleiotropy variants separately in MR analysis with outcomes: CAD, MI and STROKE 

   IMRP MRmix 

Outcome Exposure # of 

IVsa 

Causal 

effectb 

95% CI P # of 

PVsc  

Causal 

effectb 

95% CI P 

CAD SBP 758 1.85 (1.73;1.97) 3.73×10-78 103 1.80 (1.56;2.09) 2.68×10-15 

MI SBP 756 1.77 (1.65;1.90) 1.60×10-57 89 1.72 (1.42;2.08) 3.57×10-8 

stroke SBP 758 1.66 (1.55;1.76) 1.37×10-57 77 1.70 (1.29;2.24) 1.80×10-4 

CAD BPpleio1 730 1.48 (1.34;1.63) 2.64×10-14 150 1.49 (1.06;2.10) 0.022 

MI BPpleio1 729 1.32 (1.18;1.47) 7.11×10-7 125 1.43 (1.09;1.88) 9.41×10-3 

stroke BPpleio1 730 1.42 (1.30;1.55) 1.98×10-14 92 1.16 (0.81;1.67) 0.417 

CAD DBP 774 1.85 (1.74;1.97) 1.16×10-80 105 1.86 (1.60;2.16) 5.38×10-16 

MI DBP 771 1.85 (1.73;1.98) 3.22×10-68 91 1.86 (1.51;2.29) 5.65×10-9 

STROKE DBP 773 1.67 (1.57;1.77) 2.77×10-60 79 1.88 (1.51;2.33) 8.84×10-9 

CAD BPpleio2 730 1.37 (1.24;1.50) 4.63×10-11 157 1.34 (1.02;1.75) 0.037 

MI BPpleio2 729 1.13 (1.02;1.25) 0.017 134 1.31 (1.05;1.63) 0.527 

STROKE BPpleio2 730 1.28 (1.18;1.39) 5.07×10-9 90 1.13 (0.80;1.59) 0.491 

CAD PP 899 1.53 (1.45;1.62) 3.76×10-50 22 1.61 (1.43;1.82) 6.11×10-15 

MI PP 898 1.41 (1.33;1.50) 3.31×10-29 17 1.46 (1.31;1.64) 4.03×10-11 

STROKE PP  899 1.46 (1.38;1.54) 2.98×10-44 8 1.20 (0.97;1.51) 0.095 
a# of IVs: number of genetic instrumental variables that are genome wide significantly associated with exposure. For SBP and DBP, 

IVs were the genetic variants associated with SBP and DBP but with no pleiotropic evidence of SBP and DBP, respectively. For 

BPpleio1 and BPpleio2, IVs were the genetic variants associated with BPpleio1 and BPpleio2, respectively. 
b causal effect represents odd ratio 
c# of PVs: number of pleiotropic variants detected by IMRP among the IVs. 

CAD: coronary artery disease 

MI: myocardial infraction  
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Figure 1. 
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Supplementary Materials 

 

Supplementary Figure 1. Locus zoom plots for 35 novel loci (selected from Table 1) 
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Supplementary Figure2. A. Tissue enrichment correlation using mediation and pleiotropic 

variants.  Each dot represents a tissue. Above the red horizontal line are the tissues enriched by 

mediation evidence with FDR<5%.  The points falling in the right side of the red vertical line are 

the tissues enriched by pleiotropy.  (correlation=0.78) 
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Supplementary Figure 2. B. Pathway enrichment correlation using mediation and pleiotropic 

variants.  Each dot represents a gene set pathway. Above the red horizontal line are the pathways 

enriched by mediation evidence with FDR<5%.  The points falling in the right side of the red 

vertical line are the pathways enriched by pleiotropy evidence. (Spearman Rank 

correlation=0.552, -log10(P) Pearson correlation=0.478) 
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