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 Abstract 27 

The last three years have been spent combating COVID-19, and governments have been seeking optimal 28 

solutions to minimize the negative impacts on societies. Although two types of testing have been performed 29 

for this—follow-up testing for those who had close contact with infected individuals and mass-testing of 30 

those with symptoms—the allocation of resources has been controversial. Mathematical models such as the 31 

susceptible, infectious, exposed, recovered, and dead (SEIRD) model have been developed to predict the 32 

spread of infection. However, these models do not consider the effects of testing characteristics and resource 33 

limitations. To determine the optimal testing strategy, we developed a testing-SEIRD model that depends on 34 

testing characteristics and limited resources. In this model, people who test positive are admitted to the 35 

hospital based on capacity and medical resources. Using this model, we examined the infection spread 36 

depending on the ratio of follow-up and mass-testing. The simulations demonstrated that the infection 37 

dynamics exhibit an all-or-none response as infection expands or extinguishes. Optimal and worst follow-up 38 

and mass-testing combinations were determined depending on the total resources and cost ratio of the two 39 

types of testing. Furthermore, we demonstrated that the cumulative deaths varied significantly by hundreds 40 

to thousands of times depending on the testing strategy, which is encouraging for policymakers. Therefore, 41 

our model might provide guidelines for testing strategies in the cases of recently emerging infectious 42 

diseases. 43 

 44 
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1 Introduction 46 

The Coronavirus disease 2019 (COVID-19) emerged in Wuhan, China, raising concerns regarding global 47 

healthcare [1,2]. By April 2020, the COVID-19 Alpha variant pandemic had infected 5.5 million people, and 48 

350,000 people had died, owing to its high aerosol transmission ability and the lack of specific treatment in 49 

the early stages [3]. Medical resources in hospitals were primarily used to treat COVID-19 patients [1,2]. As 50 

of April 2020, approximately 10% of hospital beds, or 10–20% of ICU beds were occupied with COVID-19 51 

care [3–5]. Moreover, in May 2020, the COVID-19 Beta variant emerged. The society needed to be updated 52 

about the variant of concern (VOC) such as the Beta, Gamma, Delta, and Omicron variants every time a new 53 

variant emerged [6–8]. 54 

To minimize the number of deaths, society must be aware of the advantages and disadvantages of 55 

COVID-19 testing [9]. From an individual perspective, testing has advantages in that asymptomatic infected 56 

individuals can be detected and prepared for symptomatic treatment, whereas from a societal perspective, 57 

testing prevents secondary infections, expecting a reduction in the number of deaths [10–12]. The Alpha 58 

variant pandemic in April 2020, in which no specific treatment was established and testing characteristics, 59 

that is, sensitivity and specificity, were unknown, illustrates the drawbacks of testing, particularly in the 60 

early pandemic stage. From an individual perspective, the testing result had no impact on medical care 61 

because there was no specific treatment, but from a societal perspective, testing was performed aimlessly, 62 

and people were uncertain about the testing outcomes, resulting in the wastage of medical and human 63 

resources. Therefore, policymakers must consider the testing characteristics when determining the volume of 64 

testing at each early stage of an emerging VOC.  65 

The testing policies to minimize the number of deaths in the early stages of the COVID-19 Alpha 66 

variant pandemic were controversial [7,10,11,13,15–20], and the controversy was centered on the two 67 

extreme policies for balancing the medical supply and demand: mass-testing and no-testing [21]. According 68 

to the mass-testing policy, everyone must be tested for public health, regardless of their symptoms [22–24]. 69 

The mass-testing policy assumes that testing and hospitalization of asymptomatic patients are important for 70 

reducing the overall death rate even in the absence of a specific treatment. Conversely, the no-testing policy 71 

claims that testing must be limited to symptomatic patients [21]. According to the no-testing policy, 72 

asymptomatic patients cannot expect to benefit from mass-testing in the absence of a specific treatment. 73 

Despite differences in these two policies’ assumptions, they both support testing on people with symptoms. 74 

However, these approaches disagree regarding the size of the tested asymptomatic population.  75 

What testing strategy is most practical for minimizing the number of deaths? There are two testing 76 

strategies for people without symptoms: follow-up-testing-dominant strategy, which follows up and tests the 77 

exposed population, and mass-dominant testing strategy, which randomly tests the infected population. 78 

Uncertainty about how follow-up and mass-testing of asymptomatic populations will affect the number of 79 

deaths and determine the worst and optimal outcomes, particularly in the early stages of emerging VOC in 80 

the future, remains a challenge [7,10,11,13,15–20]. 81 
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In this study, we developed a testing-SEIRD model, aiming to evaluate a testing strategy that 82 

combines follow-up and mass-testing in terms of minimizing the number of deaths during the early stages of 83 

the emerging VOC. The testing-SEIRD model considers the testing characteristics, testing strategies, 84 

hospitalized subpopulation, and the amount of medical resource [25]. Using this model, we examined the 85 

optimal and worst testing strategies under the assumption that medical resources are both infinite and finite. 86 

We found that the optimal testing strategy significantly depends on the cost ratio between mass and follow-87 

up testing. Therefore, this study provides insights into how to minimize the number of deaths in the absence 88 

of a specific treatment during the early stages of a pandemic.  89 

  90 
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2 Model 91 

To examine the impact of testing on the infection population dynamics, we developed a novel model by 92 

incorporating a hospitalized subpopulation, testing strategy, and testing characteristics into the classical 93 

SEIRD model. Generally, the subpopulation susceptible dynamics, exposed, infectious, recovered, and dead 94 

people best summarize the SEIRD model (Fig. 1A) as follows: 95 
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where S, E, I, R, and D indicate the populations of susceptible, exposed, infectious, recovered, and dead 96 

people, respectively; N indicates the total population, that is, N=S+E+I+R; b indicates the exposure rate, 97 

which reflects the level of social activity; and g, r, and d indicate the transition rates among the 98 

subpopulations. In this model, the recovered population is assumed to acquire permanent immunity, 99 

indicating that they will never be infected. 100 
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101 

Figure 1: Schematic of the classical SEIRD and testing-SEIRD models 102 

(A) Classical SEIRD model: An infectious population “I” exposes a susceptible population “S” at a rate inversely 103 

proportional to the infectious population. The exposed population “E” becomes infectious “I.” The infected population 104 

finally recovers “R” or is dead “D.” (B) Testing-SEIRD model: The population is divided into two subpopulations;105 

inside and outside the hospital. The exposed “Eo” and the infectious population outside “Io” are hospitalized if evaluated 106 

as positive after testing. A susceptible population “Sh” remains at the hospitals. The black lines indicate population 107 

transitions, regardless of the capacity effect. The blue lines indicate population transition, considering the capacity 108 

effect. Transitions from “Eo” to “Eh” and “Io” to “Ih” are categorized as hospitalized.  109 

 110 

To incorporate the testing characteristics and testing strategies into the classical SEIRD model, we111 

divided the population into outside and inside of the hospital (Fig. 1B). The dynamics of the population112 

outside the hospitals are described using the following:  113 
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and those inside hospitals are described using the following: 114 
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where Xo and Xh indicate each population outside and inside the hospital (X∈{S, E, I, R, D, N}), respectively; 115 

No and Nh indicate the total populations outside and inside hospitals, respectively (that is, No=So+Eo+Io+Ro+Rh 116 

and Nh=Sh+Eh+Ih); a indicates the rate of discharge of Sh from the hospital to the outside; u and g indicate the 117 

non-infection and infection rates, respectively; C indicates the capacity of hospitals. We assumed that the 118 

nature of the disease would determine these parameters; making them independent of hospitals both inside 119 

and outside. rj and dj (j∈{o, h}) indicate the recovery and death rates from infection, respectively, where ro < 120 

rh, and dh < do; f and m indicate the rates of follow-up and mass-testing, corresponding to the extent to which 121 

health centers follow exposed populations and take-up infected populations having symptoms, respectively; 122 

Sp and Se indicate specificity and sensitivity, respectively, as testing characteristics. The model assumed that 123 

I has a fixed proportion of symptomatic and asymptomatic individuals, and that symptomatic infected 124 

individuals receive mass-testing. The sigmoid function H(x) = 1/(1+exp(x)) introduced the hospitalization 125 

capacity. The parameter values and initial conditions are listed in Table 1 and discussed in the Materials and 126 

Methods section. 127 

 128 
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129 

Table 1: Variables and parameters in reports during the early stages of the pandemic 130 

(A) Initial values for variables and parameters, (B) Reported sensitivity and specificity of the polymerase chain 131 

reaction (PCR) and CT for detecting COVID-19, Cells expressed as n/a indicate that we could not find the (C) reported132 

transition parameters using models. Values with † are calculated from the original values for comparison. All values 133 

have a [one/day] dimension. We could not find values or models for the cells expressed as n/a. The values with † equal 134 

original values are divided by the total population, and (D) Reported incubation period and infectious periods. Each135 

value has a [day] dimension. 136 

  137 
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3 Results 138 

First, we examined the basic behavior of the testing-SEIRD model using simulations, as shown in Fig. 2. 139 

Similar to the classical SEIRD model, the infection primarily expands, and infectious populations (Ih and Io) 140 

transiently increase in response to the presence of infectious people. Susceptible populations (Sh and So) 141 

gradually decrease and change into recovered populations (Rh and Ro) through the exposed (Eh and Eo) and 142 

infectious (Ih and Io) states. During this process, the number of dead people increases gradually, as shown in 143 

Fig. 2A. Because of hospital overcrowding, the outside and hospitalized populations decrease and increase in 144 

response to testing, respectively, and their time courses are affected (Fig. 2B). The outside and hospitalized 145 

populations are divided into five types of populations (susceptible, exposed, infectious, recovered, and dead) 146 

(Figs. 2C and 2D). According to Fig. 2E, daily reports of positive tests and deaths transiently increase with 147 

different peak timings, and the peak of positive tests precedes that of deaths. 148 

To evaluate the speed of an infectious outbreak, we computed the basic reproduction number RN, 149 

which is the expected number of infections caused by one infected person until recovery (see Materials and 150 

Methods). Reproduction numbers outside hospitals, RNo, switches from greater than one to less than one 151 

around the peak timing of infectious populations outside (Fig. 2F). Conversely, reproduction numbers inside 152 

hospitals, RNh, are less than one around the peak timing. This indicates that the infectious population in 153 

hospitals increases owing to outside factors rather than an infectious spread within the hospitals. The testing-154 

SEIRD model recapitulates the basic infection dynamics of the total population as observed in the classical 155 

SEIRD model (Fig. 2A) and enables us to examine the effect of the testing strategy and testing 156 

characteristics with different populations inside and outside hospitals.  157 
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158 

Figure 2: Changes in components over time in the testing-SEIRD model 159 

Time-courses of (A) populations of all infectious states, irrespective of being inside and outside hospitals; (B) 160 

populations inside and outside hospitals and dead populations, irrespective of infectious states; (C) populations of all 161 

infectious states inside hospitals; (D) populations of all infectious states outside hospitals; (E) Daily reports of positive 162 

test results, hospitalizations, and deaths; and (F) Time-courses of reproduction numbers inside and outside hospitals, as163 

described in Materials and Methods section. 164 

 165 

To investigate the impact of hospitalization capacity on infection dynamics, such as daily reports of 166 

positive test results, hospitalizations, and deaths, we simulated the testing-SEIRD model with various 167 

capacities (Figs. 3A–3C). The results demonstrate that as the capacity increases, the maximum positive tests, 168 
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maximum hospitalizations, and cumulative deaths linearly decrease, increase, and decrease, respectively.169 

They all plateau at approximately 30% capacity (Figs. 3D–3F), and notches are observed to reflect the 170 

capacity effect (Figs. 3B, 3D, 3E, 3F, 3G, 3H, and 3I). Additionally, we examined their peak timings and 171 

found that they changed nonlinearly within certain time window ranges (Figs. 3G–3I). These results suggest 172 

that the capacity change has a significant effect on the disease’s rate of spread but only a minor effect on 173 

timing.  174 

  175 

176 

Figure 3: Impact of hospitalization capacity on the three variables 177 

Time courses of (A) Daily reports of positive test results. (B) Daily reports of hospitalizations. (C) Daily reports of 178 

deaths with varying hospitalization capacity. C/N indicates the capacity normalized to the total population. 179 

Hospitalization capacity dependencies of (D) Maximum-positive reports. (E) Maximum hospitalizations. (F) 180 

Cumulative deaths. Hospitalization capacity-dependencies of (G) Peak of daily reports of positive tests. (H) Peak of 181 

hospitalizations. (I) Peak of daily deaths. 182 

 183 

To illustrate the impact of the testing strategy on infectious outcomes, we examined the cumulative 184 

deaths, maximum number of positive tests and hospitalizations, varying follow-up, and mass-testing rates. 185 

The infectious spread shows an all-or-none response depending on the testing strategy (red and blue regions 186 

in Fig. 4). Sensitivity analyses demonstrated the robust maintenance of such a profile regardless of the model 187 

parameters (Figs. S1 and S2). The number of cumulative deaths was almost constant with a small amount of 188 

both the follow-up and mass-testing (red region in panels in the first row of Fig. 4A); however, the 189 

combination of follow-up and mass-testing successfully suppressed the infectious disease spread (blue region 190 
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in the panels in the first row of Fig. 4A). Furthermore, the maximum number of hospitalizations was 191 

immediately saturated by either the follow-up or mass-testing because of the limited hospitalization capacity 192 

(panels in the first row in Fig. 4B). The maximum number of positive tests increased more quickly with 193 

follow-up testing compared with mass-testing (panels in the first row in Fig. 4C). According to statistics, the 194 

number of cumulative deaths varied significantly depending on the strategies; there was a 724-fold 195 

difference between the 90596 and 125 deaths at the optimal and worst strategies with a 1:1 cost ratio for 196 

follow-up to mass-testing. Other infectious outcomes also depend on the strategies: there was a 466-fold 197 

difference between 49424 and 106 hospitalizations and a 250-fold difference between 96525 and 135 daily 198 

positive tests with the same cost ratio. 199 

Subsequently, realistic scenarios were considered adapting to the limited resource L. Practically, the 200 

follow-up and mass-testing rates cannot be controlled because of the limited medical resources for both 201 

follow-up and mass-testing. Therefore, it is necessary to determine the amount of resources allocated to the 202 

follow-up and mass-testing. Here, we consider all the possible decisions subject to the limited resource L as 203 

follows: 204 

� � ��� � ���,#	3.1
  

where cf and cm indicate the costs for follow-up and mass-testing, respectively; f and m indicate the extent of 205 

follow-up and mass-testing. We illustrated three lines using various L, cf, and cm, based on the disease, 206 

economic, and technological situations of each country (panels in the first row of Fig. 4). The three colored 207 

lines in the heat maps correspond to settings that are L=500, cf =1, and cm =10 in the green line; L=300, cf =1, 208 

and cm =5 in the blue line; and L=100, cf =1, and cm =1 in the orange line, respectively. Given the total 209 

amount of resources, we selected the optimal testing strategy on the line represented by Equation (3.1). We 210 

demonstrated that the worst decisions (that is, the choice of f and m) significantly varied depending on the 211 

situation (panels in the last row of Fig. 4).  212 

Regarding the high resources and low ratio of the cost of follow-up testing to that of the mass-testing 213 

cost, the number of cumulative deaths abruptly increases as the resource fraction of mass-testing exceeds 214 

90% (green line in Fig. 4A). This indicates that the mass-dominant testing is the worst strategy for 215 

minimizing the cumulative deaths. Conversely, the number of cumulative deaths abruptly decreases at the 216 

resource fraction of 20–30% (blue line in Fig. 4A) assigned to mass-testing owing to low resource 217 

availability and a high ratio of follow-up to mass-testing costs. Contrary to the previous case, this result 218 

suggests that follow-up-dominant testing is the worst strategy. Regarding the intermediate situation between 219 

the two cases above, the simulation showed a U-shape with the resource fraction assigned to mass-testing 220 

ranging from approximately 10–80% (orange line in Fig. 4A). These results suggest that both follow-up and 221 

mass-dominant testing strategies should be avoided. The choice of f and m also changed in the profiles of 222 

maximum hospitalizations and positive reports (Figs. 4B and 4C). The optimal strategy for each 223 

country/region depends on resource availability.  224 
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225 

Figure 4: Infectious spread based on the testing strategy 226 

The panels in the first row represent the number of (A) cumulative deaths, (B) maximum hospitalizations, and (C) 227 

maximum daily positive tests depending on the rates of follow-up and mass-testing. The three lines in these heatmaps 228 

represent the possible testing strategies subject to different total resources for testing with different ratios for the testing 229 

costs. L=500, cf =1, and cm =10 in the green line; L=300, cf =1, and cm =5 in the blue line; and L=100, cf =1, and cm =1 in 230 

the orange line. The panels in the second row represent the numbers along the three lines in the heatmaps. The panels in 231 

the third row represent semilog-plots of the second row.  232 

 233 

Moreover, we examined the effects of the testing characteristics (that is, sensitivity and specificity) 234 

on the three variables (that is, the number of cumulative deaths, hospitalizations, and positive tests). We 235 

conducted sensitivity analyses for Se and Sp using values ranging from zero to four in 0.01 increments. We 236 

obtained almost the same heatmaps in the sensitivity-specificity space although the heatmaps were inverted 237 

along the x-axis (Fig. 5). The Equations (2.7), (2.8), (2.12), and (2.13) reveal that sensitivity and one-238 

specificity essentially play the same roles in the follow-up and mass-testing. The sensitivity and specificity 239 

of the test cannot be changed, whereas the testing strategy can be arbitrary. If the sensitivity is low, an 240 

increase in the mass-testing rate can produce the same infectious result with high sensitivity. Conversely, if 241 

the specificity is low, a decrease in the follow-up testing rate can produce the same infectious result with 242 

high specificity. Therefore, we must manage the optimal testing strategy based on the testing sensitivity and 243 

specificity that cannot be changed. 244 
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245 

Figure 5: Infectious spread based on the testing properties 246 

Numbers of (A) Cumulative deaths, (B) Maximum hospitalizations, and (C) Maximum daily positive tests based on the 247 

sensitivity and specificity of the testing.  248 

 249 

We investigated how the infection is spread based on the testing strategy. However, this is from the 250 

viewpoint of a perfect observer who knows the exact timeline of the latent populations. Practically, we were 251 

unable to determine all the model variables, such as the exposed and infectious populations inside and 252 

outside hospitals; however, we could merely monitor positive reports by follow-up and mass-testing. In this 253 

study, we verified whether these two types of positive reports reflect the latent infectious population, which 254 

is the most resource-consuming and challenging social issue. Using regression analysis (see Materials and 255 

Methods), we demonstrate that latent infectious populations can be predicted from daily positive reports of 256 

follow-up and mass-testing (Figs. 6A–6C). These results suggest that the infectious population is not only 257 

proportional to the total number of follow-up and mass-testing positive results but also proportional to their 258 

weighted sum (Fig. 6D). There are some situations where weights can be negative, depending on the model 259 

parameters. We found that follow-up testing’s weight for positive reports was negative with high positive 260 

predictive values. This is because the negative weight of Pf represses the estimates of the latent number of 261 

infectious people, reflecting a low positive predictive value (Fig. 6D). 262 
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 263 

Figure 6: Prediction of infectious population from daily reports of positive test results 264 

(A-C) The Green and orange lines indicate the simulated and predicted infectious populations (Ih and Io) with different 265 

testing strategies. The linear regression as wfPf + wmPm, where wf and wm indicate the weights and Pf and Pm indicate the 266 

daily positive reports of follow-up and mass-testing, namely, f (1-Sp) and mSe, respectively, was used to estimate the 267 

infectious populations. The least square method was used to estimate the weights. (D) The estimated weights for Pf and 268 

Pm are plotted, considering various combinations of ratios of the follow-up cost to the mass-testing cost (Pf /Pm).  269 

 270 

271 
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4 Discussion 272 

Conclusion 273 

We developed a testing-SEIRD model with two discrete populations inside and outside hospitals, the 274 

impact of testing strategy (follow-up testing [f], and mass-testing [m]), and testing characteristics (sensitivity 275 

[Se] and specificity [Sp]) on three important variables (the number of maximum positive tests, maximum 276 

hospitalizations, and cumulative deaths (Fig. 1)). By simulating the model with parameters representing the 277 

early stages of the COVID-19 Alpha variant pandemic, we demonstrated that the optimal and the worst 278 

testing strategies are subject to limited medical resources (Fig. 4). Additionally, we highlighted the 279 

possibility that the infectious population can be predicted by a weighted sum of positive follow-up and mass-280 

testing reports (Fig. 6). 281 

 282 

4-1 Related work 283 

Infectious dynamics models, such as SEIRD models and their alternatives, which have been widely 284 

used for policy making through model simulation, are abundant [1,26-46]. Although some of the previous 285 

models included a hospital compartment [1,26-28,30,34], they did not consider the testing strategy and 286 

testing characteristics. Our model assumes that in certain models, the exposed people do not infect the 287 

susceptible ones but they end up being affected [1,26-38]. All models, except the model with intervention 288 

strategies, [39] did not consider the testing cost. Similar to our model, three studies modeled the control of 289 

infectious outbreaks, which addressed the possibility of an optimal solution for controlling infectious 290 

outbreaks [39], the stable situation depending on the proportion of the susceptible population [40], and the 291 

basic reproduction number depending on contact rate [43]. However, to the best of our knowledge, no model 292 

has been developed that considers the effects of both testing characteristics and limited medical resources on 293 

the number of deaths. Consequently, our testing-SEIRD model introduced new factors: the hospital 294 

compartment, testing strategy, testing characteristics, and medical resources, compared with the previous 295 

SEIRD model (Figs. 2–4). The testing-SEIRD model also comprehensively encompasses the classical 296 

SEIRD model, which corresponds to the condition where f and m are both zero. 297 

 298 

4-2 Model prediction 299 

Our model has three advantages. First, the testing-SEIRD model provides the optimal testing 300 

strategy for various situations. The model provides heatmaps based on the three variables’ numbers in the 301 

space of the testing strategy (Fig. 4). These heatmaps indicate the best direction, which is shown by the blue 302 

region in Fig. 4. This corresponds to the settling of infections using the shortest path. Second, the testing-303 

SEIRD model can predict the optimal and worst strategies, considering the limited medical resources and 304 

ratios for the testing costs (Fig. 4). Because the total costs of medical resources and testing depend on the 305 
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country, our model provides an optimal testing strategy unique to each country. Third, the testing-SEIRD 306 

model demonstrates that the latent number of infectious populations can be predicted from daily positive 307 

reports of the follow-up and mass-testing (Fig. 6).  308 

 309 

4-3 Validity of the model components 310 

Here, we discuss the validity of the model components, which is not factored by the previous models. 311 

First, we focus on the transition from Eo to Eh (Fig. 1). We assume that the follow-up testing causes the 312 

hospitalization of the exposed population. Populations who have only recently been exposed but have not yet 313 

developed symptoms do not participate in the tests. They only test when the follow-up encourages them. 314 

Second, in relation to the transition from Io to Ih, we assume that the mass-testing causes the hospitalizations 315 

of the infectious population, which is defined as a person with symptoms. In our model, we address the rate 316 

of mass-testing as a modifiable parameter because the rate depends on the volume of tests, such as PCR and 317 

the degree of social penalty if it is positive. Third, we consider the transition from Eo to So and Eh to Sh. In our 318 

model, all the exposed populations are not necessarily infected and some return susceptible compared with 319 

the previous models, which assume that all exposed populations are destined to be infected [28,30,32,33,35-320 

38,47-49]. Consistent with our model, some exposed populations return to susceptible populations without 321 

developing symptoms. Finally, because the above-mentioned assumptions regarding exposure, infection, and 322 

hospitalization processes are common in VOCs, our model is not specific to the Alpha variant but is 323 

applicable to other VOCs [8]. Combining new components and the testing-SEIRD model is consistent with 324 

the previous simulation model and reflects and incorporates a practical viewpoint. 325 

 326 

4-4 Validity of the model parameters 327 

 We used parameters from earlier reports before the Beta variant emerged in South Africa in May 328 

2020 [8] (Table 1) because the earlier reports contained homogeneous Alpha variant data. After May 2020, 329 

the reports present an inhomogeneous mixture of multiple variants. A sensitivity analysis was performed 330 

after setting the sensitivity and specificity of testing to 0.7 each, as shown in (Fig. 4). The results were 331 

robustly guaranteed. The incubation and infectious periods remained roughly stable in VOCs, while the 332 

number of reproductions and mortality rates differed among variants [8,12,14]. A sensitivity analysis of b 333 

and u provided a robust guarantee for the number of reproductions and reinfections [42] effects (Fig. S1). 334 

Mortality was considered in the model with do and dh and these values were sensitivity analyzed (Fig. S2). A 335 

sensitivity analysis robustly guaranteed a or the rate of discharge from Sh (Fig. S3). Although these values 336 

are based on the COVID-19 Alpha variant, our sensitivity analysis indicates that the testing-SEIRD model 337 

robustly generated the optimal and worst testing strategies for other VOCs with different parameters.  338 

Our model does not assign a specific value to the basic reproduction number even though it is one of 339 

the most crucial variables in infectious diseases [39,51,52]. Instead, it is only obtained using Equations (5.1) 340 
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to (5.3). This is permissive because the reproduction number depends on the exposure rate (b) [43], and we 341 

performed a sensitivity analysis for the value of b (Fig. S1). 342 

 343 

4-5 Future studies 344 

Considering the future perspectives of our model, first, our testing-SEIRD model only simulates an 345 

infection’s single peak time course. However, we observed several COVID-19 infection peaks in many 346 

countries [53]. To incorporate the multiple peaked dynamics, we must introduce the socio-psychological 347 

effects caused by policies such as lockdown and social distancing. Second, our model assumes that all 348 

populations are homogeneous and does not address stratification based on attributes such as gender, age, 349 

social activities, and comorbidities [54,55]. Future research should consider this perspective. Finally, our 350 

model did not include the effects of vaccination. There are current efforts to fight the spread of COVID-19 351 

using messenger RNA (mRNA) vaccines. Our results appear favorable; however, we do not know the 352 

duration of the effect of the vaccinations or the effectiveness of the acquired immunity against VOCs 353 

[53,56,57]. Therefore, the tug-of-war between the evolution of vaccines and the spread of virus remains 354 

elusive.  355 

  356 
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5 Materials and Methods 357 

5-1 Parameter set 358 

The parameters and initial conditions of the simulation are listed in Table 1A. We used parameters 359 

from the COVID-19 Alpha variant studies. The total population N was set to 1,000,000 according to the 360 

United Nations statistical papers: The World’s Cities in 2018 states that one in five people worldwide live in 361 

a city with more than one million inhabitants, and the median value of inhabitants is between 500,000 and 362 

one million [58]. Therefore, sensitivity Se and specificity Sp were both set to 0.7, corresponding to those of 363 

the PCR for detecting COVID-19 (Table 1B) [28,47,58-61]. The values of b, g, rh, ro, and dh are based on 364 

previous reports (Table 1C) [3,29–34,36–38,50]. The sum of u and g is the inverse of the incubation period 365 

during the exposed state, which is reportedly five days (Table 1C) [31–33,49,60]. The sum of r and d is the 366 

inverse of the infectious period during the infectious state, which is reportedly ten days (Table 1D) 367 

[31,32,35,60].  368 

 369 

5-2 Definitions of reproduction numbers 370 

We computed the time courses of the reproduction numbers inside and outside hospitals (RNh and 371 

RNo) using Fig. 2. 372 
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Here, the first, second, and third factors in these equations indicate the average infectious period, infection 373 

rate, and probability that the exposed state transits to the infectious state, respectively. The reproduction 374 

number in the classical SEIRD model was defined in previous studies [1,27–34] as follows: 375 
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 376 

5-3 Code and data availability 377 

All codes and data required to reproduce the results of this study are hosted in Github at 378 

https://github.com/bougtoir/testing-SEIRD. The Github repository contains Jupyter notebooks for Runge-379 

Kutta method differential equations and their visualization. The python codes described in the Jupyter 380 

notebooks can reproduce all figures in this study without the need for external files or settings. 381 

 382 

  383 
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Supporting information 566 

567 

Figure S1: Sensitivity analyses of parameters b and u on the number of cumulative deaths 568 

Simulations were performed using different values of b and u. 569 
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 571 

572 

Figure S2: Sensitivity analyses of do and dh on the number of cumulative deaths 573 

Simulations were performed using different values of do and dh, where (do, dh) of (0.01, 0.007) is a reference standard; 574 

(0.01, 0.001) means advance in treatment; (0.01, 0.01) means futile treatment; and (0.001, 0.0007) means reduction in 575 

overall mortality. 576 
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578 

Figure S3: Sensitivity analyses of parameter a on the number of cumulative deaths 579 

Simulations were performed using different values of parameter a. 580 
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