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ABSTRACT

Accurate tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been
critical in efforts to control its spread. The accuracy of molecular tests for SARS-CoV-2 has been
assessed numerous times, usually in reference to a gold standard diagnosis. One major
disadvantage of that approach is the possibility of error due to inaccuracy of the gold standard,
which is especially problematic for evaluating testing in a real-world surveillance context. We
used an alternative approach known as Bayesian latent class modeling (BLCM), which
circumvents the need to designate a gold standard by simultaneously estimating the accuracy of
multiple tests. We applied this technique to a collection of 1,716 tests of three types applied to
853 individuals on a university campus during a one-week period in October 2020. We found
that reverse transcriptase polymerase chain reaction (RT-PCR) testing of saliva samples
performed at a campus facility had higher sensitivity (median: 0.923; 95% credible interval:
0.732-0.996) than RT-PCR testing of nasal samples performed at a commercial facility (median:
0.859; 95% CrI: 0.547-0.994). The reverse was true for specificity, although the specificity of
saliva testing was still very high (median: 0.993; 95% CrI: 0.983-0.999). An antigen test was
less sensitive and specific than both of the RT-PCR tests. These results suggest that RT-PCR
testing of saliva samples at a campus facility can be an effective basis for surveillance screening
to prevent SARS-CoV-2 transmission in a university setting.

INTRODUCTION

Molecular testing has played a vital role in efforts to suppress transmission of SARS-CoV-2.
This applies in both community settings (1, 2) and in more specialized settings, such as
hospitals (3, 4), workplaces (5, 6), schools (7, 8), and travel (9, 10). Although many contextual
factors affect the success of testing (11, 12), the foundation of any successful testing program is
the availability of tests that are sufficiently sensitive and specific to achieve the program’s
objectives.

Most evaluations of the sensitivity and specificity of molecular tests for SARS-CoV-2 have been
performed in reference to a diagnostic that was considered a gold standard (13). Designating a
diagnostic as a gold standard makes the calculation of sensitivity and specificity straightforward,
as true positive (TP), true negative (TN), false positive (FP), and false negative (FN) test
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outcomes can all be defined clearly in reference to the gold standard. Under this assumption,
sensitivity can be estimated as TP / (TP + FN) and specificity as TN / (TN + FP).

A key limitation of this approach is that the estimates it yields are only as reliable as the gold
standard on which they are based. The most common gold standard is reverse transcriptase
polymerase chain reaction (RT-PCR) testing (14). This standard is far from golden, however.
Especially with respect to sensitivity, the performance of these tests for SARS-CoV-2 has been
found to vary as a function of the method of sample extraction (15, 16), day of infection (17, 18),
and disease severity of the subject (19). Furthermore, designation of one method as a gold
standard makes it impossible to evaluate whether another test might actually have better
sensitivity or specificity than the presumed gold standard (20).

One way to circumvent the limitations associated with relying on a gold standard is to use an
alternative method for analysis, such as Bayesian latent class modeling (BLCM) (21). This
method involves joint estimation of the sensitivity and specificity of each type of test used, by
virtue of considering the possibility that any given test result could have been erroneous for
some, all, or none of the tests used. This approach has been applied in some cases for
molecular tests for SARS-CoV-2, resulting in differences relative to estimates that relied on a
gold standard (22–24). For example, in a meta-analysis comparing RT-PCR testing of
nasopharyngeal and saliva samples, allowing for imperfections in both types of tests resulted in
higher estimates of specificity and narrower uncertainty about sensitivity (23).

In this study, we applied BLCM to a data set from a SARS-CoV-2 testing program in a university
setting during October 2020. A unique feature of this data set is that it includes both RT-PCR
and antigen tests, which have not been compared in previous BLCM analyses for SARS-CoV-2
that we are aware of (22–24). Another unique feature of this data set is that the majority of
subjects were tested for surveillance screening and were not suspected of being infected at the
time of testing. This presents an opportunity to quantify test performance in a context that is
highly relevant for public health (11). Moreover, the fact that the majority of subjects were in the
18-25 age range presents an opportunity to quantify test performance in a population for which
tests may be less sensitive (19) yet are of high value for surveillance (7, 8).

METHODS

Sample collection

All samples for this study were collected during a five-day period from Monday, October 12
through Friday, October 16, 2020. In total, 1,716 tests were performed on samples collected
from 853 individuals, with multiple tests for a single individual applied to specimens collected on
the same day. Most individuals (811) participated in response to a request for surveillance
testing, while others (42) participated either as a result of reporting symptoms associated with
COVID-19 (29), because of suspected exposure through contact (10), or because they had
previously tested positive and were undergoing a second test four days later (3). Participants
consisted of 846 students, and 7 faculty and staff. The majority (87.6%) of students were
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between the ages of 18 and 22 inclusive, with a range of 18-39, a median age of 20, and a
mean age of 21.2. The median age of staff was 40, and two members of staff were over the age
of 65, with a range of 29-72 (Fig. S1). These individuals received a total of 833 commercial
RT-PCR tests on nasal swab specimens, 846 in-house RT-PCR tests on saliva specimens, and
37 antigen tests on nasal swab specimens. We refer to these tests hereafter as commercial,
saliva, and antigen tests, respectively. A majority of individuals (799) received commercial and
saliva tests but not an antigen test, a subset (27) received all three tests, and the remainder (27)
received either one or two tests in other combinations.

Laboratory testing

SARS-CoV-2 Detection in Saliva Samples

Following the University of Notre Dame IBC approved protocol (20-08-6161), fresh saliva
samples were obtained from study participants and tested for the presence of SARS-CoV-2
within 17 hours after collection. Steps for the detection of SARS-CoV-2 through RT-qPCR in
saliva samples were adapted from Ranoa et al. (25). A minimum of 200 μl of saliva were
collected from each participant in a barcoded nuclease free 50mL conical tube. Following
collection, samples were heat inactivated by incubating in a 95 °C circulating water bath for 30
min. After cooling to room temperature, the inactive specimen was diluted at a 1:1 ratio (vol/vol)
with 2xTris-Borate-EDTA buffer (0.089M Tris, 0.089M Borate, 0.002M EDTA in final 1x buffer
solution), followed by vigorous vortexing to ensure thorough mixing. The diluted saliva was then
subjected to RT-qPCR (1 reaction per sample) using the TaqPath COVID-19 Combo kit (Thermo
Fisher Scientific), which includes three primer/probe sets specific to SARS-CoV-2 genes
(ORF1ab, S-gene, N-gene), and one MS2 bacteriophage control target. Briefly, 5μl diluted saliva
was added to a freshly prepared reaction mix containing 2.5μl TaqPath1-Step Multiplex Master
Mix (No ROX) (4X), 0.5μl COVID-19 Real Time PCR Assay Multiplex, 0.5μl MS2 phage control,
and 1.5μl nuclease-free water. Reactions were set up in a 96-well plate format (0.1mL
MicroAmp Fast Optical 96-Well reaction plate (Applied Biosystems)), with each plate containing
a positive control diluted to 4 copies/μl and a no template control (nuclease-free water), as well
as the MS2 control internal to each sample. All RT-qPCR reactions were carried out using
QuantStudio RT-qPCR instruments (Applied Biosystems). Reaction parameters were set as
follows: Hold Stage 25 °C 2:00min, 53 °C 10:00min, 95 °C 2:00min; PCR Stage (40X) 95 °C
3sec, 60 °C 30sec; 1.6 °C/sec ramp for all stages; run mode “fast.” Targets, reporter dyes, and
quencher information for RT-qPCR instrument was set up according to TaqPath COVID-19
Combo kit manufacturer’s instructions.

Presence/Absence analysis of the viral targets was performed using Applied Biosystems Design
and Analysis v2.4 software with a baseline set at 5 and Cq cutoff for all targets set at 37.
Results of the RT-qPCR test were interpreted as positive, negative, or invalid. A positive test
had at least 2 of the 3 gene targets present within the threshold settings. All positive and invalid
tests were subjected to repeat testing for confirmation.
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SARS-CoV-2 Commercial and Rapid Antigen Detection

Self-administered nasal swab samples were outsourced to LabCorp Inc. for viral detection with
a RT-PCR protocol (EUA200011). Rapid antigen assays were performed on self-administered
nasal swab samples with the Sofia2 Fluorescent Immunoassay Analyzer and the SARS Antigen
Fluorescent Immunoassay (FIA) for qualitative detection of the nucleocapsid protein from
SARS-CoV-2 (Quidel).

Statistical analysis

Model

For our analysis, we estimated eight parameters (Table 1), which together determine the
probability of each type of testing outcome. The likelihood of a given set of values of these
parameters is equal to the probability of the observed testing outcomes given those parameter
values. The data were defined according to the number of individuals with a given combination
of testing outcomes as ni,j,k, where i, j, and k refer to positive, negative, or missing results for
each of commercial, saliva, and antigen tests, respectively (Table 2).

Table 1. Parameter definitions and posterior estimates.

Symbol Definition Posterior median (95% CrI)

SeComm Sensitivity of commercial PCR test 0.859 (0.547-0.994)

SeSaliva Sensitivity of saliva test 0.923 (0.732-0.996)

SeAntigen Sensitivity of antigen test 0.748 (0.373-0.969)

SpComm Specificity of commercial test 0.998 (0.992-0.999)

SpSaliva Specificity of saliva test 0.993 (0.983-0.999)

SpAntigen Specificity of antigen test 0.978 (0.888-0.999)

PrevNon-surv Prevalence among non-surveillance samples 0.141 (0.058-0.258)

PrevSurv Prevalence among surveillance samples 0.018 (0.009-0.030)
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Table 2. Testing data. Each of the 853 study participants fell into one of the categories
represented by each row. These categories differed with respect to the reason for testing and
the outcome of each test. NA indicates that a given test was not performed for those individuals.
This table constitutes the full information used in our analysis.

Reason for
testing Commercial Saliva Antigen Number of

participants

Surveillance

- - - 3

- - NA 778

- NA NA 7

NA - NA 3

- + NA 4

+ - NA 1

+ + NA 9

NA + NA 7

Other

- - - 22

- - NA 7

NA - - 5

NA + + 4

By definition, test sensitivity and specificity are specified in reference to the true infection status
of an individual. Because we did not know the true infection status of any individual with
certainty, we defined the probability of a given set of testing outcomes (i.e., i, j, k) conditional on
the true status, which we refer to as s (this could be either + or -). This probability, Pr(i,j,k|s), is
defined as the product of the probabilities of each testing outcome given status s.

To account for the fact that the true status of any given infection is unknown, we used the law of
total probability to calculate the overall probability of the observed testing outcomes, Pr(i,j,k), as
the weighted average of the conditional probabilities of the observed testing outcomes,

Pr(i,j,k) = Pr(i,j,k|+) Prev + Pr(i,j,k|-) (1-Prev).

Denoting the set of all parameters as 𝞱, we defined the likelihood of the parameters given the
data, n, as

𝐿(θ|𝑛) =
{𝑖,𝑗,𝑘} ∈ 𝑛

∏ Pr(𝑖, 𝑗, 𝑘)
𝑛

𝑖,𝑗,𝑘.

In these calculations, different values of Prev are used depending on whether the individuals
were tested as part of surveillance efforts or for other reasons.
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Estimation procedure

Taking a Bayesian approach to parameter estimation, the posterior probability of the parameters
in 𝞱 was defined as

Pr(θ|𝑛) = 𝐿(θ|𝑛) Pr(θ)
Pr(𝑛) ,

where L(𝞱|n) is the likelihood defined above, Pr(𝞱) is the prior probability of the parameters, and
Pr(n) is the probability of the data. We assumed non-informative priors for sensitivity and
specificity parameters, and we assumed informative priors for the two types of prevalence that
were in loose alignment with estimated prevalence at the time and location of sample collection.
We avoided calculation of Pr(n) by using Markov chain Monte Carlo (MCMC) sampling. Details
about the prior assumptions and MCMC algorithm are provided in the Supplemental Text.

Validation

To validate our model, we applied it to 100 simulated data sets and compared inferred
parameter values to the true parameter values used to simulate the data. To ensure that the
model’s inferences were valid for data resembling those used in this study, we simulated the
same number of individuals tested with the same combination of tests as in our empirical data.
Simulated parameter values were drawn uniformly and independently from the 95% credible
interval of each parameter. We examined coverage probabilities and correlations between
median and true parameter values across the 100 simulated data sets.

Predictive value

Using the posterior parameter estimates, we calculated predictive values of the three tests
under two different contexts. These values represent the probability that the test’s indication,
whether positive or negative, reflects the true status of the individual being tested. The positive
predictive value is defined as

PPV = Se Prev / (Se Prev + (1 - Sp) (1 - Prev))

and the negative predictive value is defined as

NPV = Sp (1 - Prev) / ((1 - Se) Prev + Sp (1 - Prev)).

First, we calculated PPV and NPV during the one-week period of our study, accounting for
uncertainty in Prev in doing so. Second, we calculated PPV and NPV on a daily basis over the
course of the entire fall 2020 semester, accounting for daily changes in prevalence over time.
Our estimates for time-varying prevalence were based on an extrapolation of the daily incidence
of symptomatic cases (26) that accounted for the proportion symptomatic (27), the incubation
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period (28), and the probability that a test administered on a given day of infection would be
positive (11). This method is described in further detail in the Supplemental Text.

RESULTS

Pooling across all tests performed, test positivity was 2.5% (43/1,716). Positivity was lower
among individuals tested for surveillance purposes (1.9%) than among individuals tested for
other reasons (12.3%). Positivity was also lower among commercial tests (1.4%) than saliva
(3.1%) and antigen (13.5%) tests. Lower positivity among commercial tests held when
controlling for the method by which individuals came to participate in the study (Table S1).
Despite differences in positivity, the very low positivity overall meant that concordance was high:
99.3% between commercial and saliva tests, 96.3% between commercial and antigen tests, and
97.3% between saliva and antigen tests.

Our Bayesian analysis leveraged joint information about all observed combinations of testing
outcomes across the three types of tests (Table 2) to estimate a total of eight parameters (Table
1). Application of this method to 100 simulated data sets showed good coverage of true
parameter values (Supplemental Text, Fig. S2). Applying the method to empirical data
demonstrated good convergence (Fig. S3) and resulted in posterior samples with moderately
low correlation (Fig. S4), suggesting that the data were reasonably informative about the
parameters we sought to estimate.

Prevalence inferred by our Bayesian analysis was similar to test positivity for surveillance testing
(median: 1.8%; 95% credible interval: 0.9-3.0%) (Fig. 1A) and slightly higher for
non-surveillance testing (median: 14.1%; 95% CrI: 5.8-25.8%) (Fig. 1B). For saliva tests, we
estimated a sensitivity of 0.923 (95% CrI: 0.732-0.996) (Fig. 1C, green) and a specificity of
0.993 (95% CrI: 0.983-0.999) (Fig. 1D, green). Had we considered commercial tests to be a
gold standard, we would have instead estimated the sensitivity and specificity of saliva tests to
be 0.833 and 0.995, respectively. Similarly, for antigen tests, our estimate of sensitivity (0.748;
95% CrI: 0.373-0.969) (Fig. 1C, blue) was greater than an estimate made in reference to
commercial tests (0.5), and our estimate of specificity (0.978; 95% CrI: 0.888-0.999) (Fig. 1D,
blue) was lower than an estimate made in reference to commercial tests (1.0). These
discrepancies were a result of the fact that we did not consider commercial tests to be a gold
standard and estimated their sensitivity and specificity alongside that of the other two test types.
Doing so resulted in estimates of sensitivity of 0.859 (95% CrI: 0.547-0.994) (Fig. 1C, red) and
specificity of 0.998 (95% CrI: 0.992-0.999) (Fig. 1D, red) for commercial tests.
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\

Figure 1. Posterior parameter estimates. (A) Prevalence among individuals participating in
surveillance testing; (B) prevalence among individuals participating in testing for reasons other
than surveillance; (C) test sensitivity; and (D) test specificity. Colors in A and B distinguish prior
from posterior distributions, and colors in C and D distinguish different types of tests. Values
outside the 0-1 range occur only as a result of smoothing.

While comparison of median sensitivities and specificities implies that some tests were more
sensitive or specific than others, the wide uncertainty of our estimates must be considered when
making such comparisons. We obtained more nuanced insight into the relative sensitivities and
specificities of the three tests by calculating the proportion of samples in which the sensitivity of
one test exceeded that of another, and likewise for specificity. On that basis, we found a
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probability of 0.69 that the saliva test was more sensitive than the commercial test (Table S2).
The probabilities that the saliva and commercial tests were more sensitive than the antigen test
were 0.88 and 0.71, respectively. The probabilities that the commercial test was more specific
than the saliva and antigen tests were 0.86 and 0.92, respectively (Table S3). The saliva test
was more specific than the antigen test with probability 0.81.

Joint inference of test properties and the prevalence of infection allowed us to estimate the
frequency of different outcomes from surveillance testing (Fig. 2). Due to its high sensitivity, the
saliva test was predicted to yield the most true positives (16.1 per 1,000 tests; 95% CrI:
8.2-27.6) (Fig. 2A) and the fewest false negatives (1.3 per 1,000 tests; 95% CrI: 0.07-5.4) (Fig.
3C). At the other extreme, 1,000 antigen tests were predicted to yield 12.7 true positives (95%
CrI: 5.4-23.9) and 4.4 false negatives (95% CrI: 0.5-13.1). Antigen tests also had the lowest
specificity, resulting in the largest number of false positives (21.3 per 1,000 tests; 95% CrI:
0.8-110.3) (Fig. 2B). Commercial tests were estimated to perform best in this regard, yielding
only 2.1 false positives per 1,000 tests (95% CrI: 0.1-7.5).
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Figure 2. Estimates of the frequency of different testing outcomes. Out of 1,000 tests,
panels show the number of (A) true positives, (B) false positives, (C) false negatives, and (D)
true negatives. Colors distinguish different types of tests. Values outside the 0-1,000 range
occur only as a result of smoothing.

Because of their high specificity and the low prevalence of infection, commercial tests had the
highest positive predictive value during the study period (0.87; 95% CrI: 0.62-0.99) (Fig. 3A).
Given such low prevalence, all tests had high negative predictive values and were predicted to
result in mostly true negatives (Fig. 3B) for the vast majority of tests. Under a scenario of
surveillance screening at random from the campus population during the fall 2020 semester, we
estimated that saliva tests during the semester would be expected to have median positive
predictive values as low as 0.001 (95% CrI: 0.0004-0.012) on August 1 and as high as 0.82
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(95% CrI: 0.64-0.98) on August 22 (Fig. 4B). Negative predictive values of the saliva test never
would have been less than a median of 0.997 (95% CrI: 0.990-0.999) under this scenario (Fig.
4E). Commercial tests would have had higher positive predictive values under this scenario (Fig.
4A), and both commercial and antigen tests would have had lower negative predictive values
(Fig. 4D & F).

Figure 3. Estimates of the predictive values of each test during the study period. Panels
show estimates of (A) the positive predictive value and (B) the negative predictive value. Colors
distinguish different types of tests. Values outside the 0-1 range occur only as a result of
smoothing.
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Figure 4. Positive predictive value (top) and negative predictive value (bottom) over the
course of the entire semester. These values represent the probability that a positive or
negative test result under random surveillance screening would have accurately relayed the true
positive or negative status of the individual being tested. Change over time was a result of
time-varying prevalence of detectable infection (black lines, right axis). Uncertainty reflects
uncertainty about sensitivity and specificity of each type of test: commercial (red), saliva (green),
antigen (blue).

DISCUSSION

With respect to sensitivity, there were important differences between our modeled estimates and
those based on raw test data. The clearest difference was for the commercial test, for which we
obtained a median estimate of 86% for sensitivity. Had we considered that test to be a gold
standard, we would have obtained a point estimate for the sensitivity of the saliva test 16%
lower than our median estimate, and 33% lower for the antigen test. On the contrary, we found
support for the saliva test likely being more sensitive than the commercial test, which would not
have been possible to infer had we assumed a gold standard (20). Our finding that the saliva
test was more sensitive than the commercial test, which was based on a nasal swab sample, is
consistent with findings from other studies (29–32). We estimated that the antigen test had
markedly lower sensitivity than either of the RT-PCR tests, which is also consistent with other
studies (33). Given that only 37 individuals received an antigen test, it is important to bear in
mind that uncertainty about its properties is high.

With respect to specificity, the medians of our modeled estimates were slightly lower than
estimates based on the commercial test as a gold standard. Even so, our specificity estimate for
the saliva test (median: 0.993; 95% CrI: 0.983-0.999) was strikingly similar to an independent
estimate (median: 0.992; 95% CrI: 0.982-0.998) that also used a BLCM, but in the context of a
meta-analysis (23). Our analysis generated high confidence in the commercial test being the
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most specific and the antigen test being the least specific, with probability 0.8. Our median
estimate of 0.978 for antigen test specificity was within the range of published estimates for
seven different antigen tests (34), which had median values ranging from 0.985 to 1.0 for five
tests and from 0.889 to 0.948 for two outliers. Uncertainty about test specificity was relatively
low in our estimates, given that the vast majority of the individuals we tested were likely true
negatives.

These test sensitivities and specificities have implications for several metrics of public health
importance. Given its high sensitivity, the saliva test was expected to detect the most true
positives and produce the fewest false negatives, as indicated by a high negative predictive
value. For the purpose of identifying infections in surveillance screening so that they can be
isolated and their transmission curtailed, this test was most ideal, especially at times of high
prevalence. Given its high specificity, the commercial test was expected to result in the fewest
false positives and the most true negatives, as indicated by a high positive predictive value.
These properties are ideal from the perspective of minimizing unnecessary demand on
resources for case isolation and contact tracing, more so at times of low prevalence when
demand is already low. The antigen test performed least well in all regards. While this may
make it seem like a less desirable option, it should be noted that sensitivity over the course of
infection as a whole need not be paramount. In the event that a test has high sensitivity around
the time of peak infectiousness, its value for curtailing transmission could still be very high (35).

Given the implications of our estimates of sensitivity and specificity, it is important to understand
their empirical basis. It is notable that, out of 853 individuals tested, only six had discrepant
results. In four of those cases, the saliva test was positive and the commercial test was
negative. In two, the commercial test was positive and one or both of the other tests were
negative. A strength of our modeling approach is that it integrated across all of the available
information to inform its estimates, rather than those six discrepancies alone. The model also
took into account the higher positivity of the saliva and antigen tests, as compared to the
commercial test. Likewise, it was capable of balancing that with indications that the antigen test
had lower specificity, which could explain its higher observed test positivity in part. Additionally,
the model was able to account for higher positivity among non-surveillance tests due to higher
prevalence in that group, which is important given that the three types of tests were not applied
evenly across the two groups. These competing influences on our estimates underscore the
value of the BLCM approach we used, which was able to balance them appropriately and
express that balance in the form of quantitative descriptions of uncertainty.

Although our analysis was able to provide insight into the properties of these three tests, there
were some uncertainties that we were unable to resolve. Correlations among three
parameters—SeComm, SpSaliva, and PrevSurv—were indicative of uncertainty about whether the four
individuals with positive saliva tests and negative commercial tests resulted from false-positive
saliva tests or false-negative commercial tests. More data would be helpful for resolving this
uncertainty, although doing so would require relatively rare discrepant results. Another limitation
of our study is that the only information we used to resolve uncertainty about true infection
status was whether individuals were tested for surveillance purposes. Given that prevalence
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differed by an order of magnitude between these groups, this was quite beneficial. However,
additional information—such as recent contacts or status as student, faculty or staff—could
have potentially helped narrow this type of uncertainty further. Doing so would have required
estimating more parameters and could have made the analysis more susceptible to bias if an
increasingly complex model were not specified properly.

In addition to limitations of our analysis, there were also limitations of our data set. First, a more
balanced testing effort across different test types and groups of subjects could have helped
reduce uncertainty about certain parameters, especially those relating to antigen tests. Second,
for individuals who truly were positive, we have no information about how many days elapsed
between their initial exposure and when they were tested. Given how variable test sensitivity is
over the course of an infection (11, 17), this factor alone could be a major driver of the
sensitivities we estimated. For example, individuals tested for surveillance screening had
presumably not displayed any symptoms up to the time of testing, making it possible that many
of our positive surveillance tests came from presymptomatic individuals with high viral loads
(36). Even so, the balance of saliva and commercial tests across individuals tested for
surveillance versus non-surveillance purposes was similar, meaning that any differences in the
timing of testing between these two groups should not have affected our inferences about the
relative sensitivities of these two types of tests.

In conclusion, our analysis leveraged all data collected from this study to estimate the
sensitivities and specificities of three types of tests, without the need to consider any of those
tests as a gold standard. These estimates are pertinent to a setting for which surveillance
testing has been (37, 38), and remains (39), a major emphasis of COVID-19 prevention.
Although there is appreciable uncertainty associated with our estimates, this uncertainty was
quantified carefully and could be reduced in the future by updating our estimates with additional
data. Bayesian analyses lend themselves to this naturally, given that posterior estimates from
one study can serve as prior estimates for another. All code and data from this study is available
at https://github.com/TAlexPerkins/SARSCoV2_BLCM to facilitate applications or extensions of
this work by others.
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SUPPLEMENTAL TEXT

Prior distributions

Regarding the prior probabilities of the parameters, Pr(𝞱), we assumed a uniform prior for all
sensitivity and specificity parameters. We explored uniform priors for the prevalence parameters
but found that such a choice could result in very high estimates of prevalence and very low
estimates of sensitivity and specificity, which seemed implausible based on other studies (23,
40). To reflect our assumption that the tests are likely more accurate than not and that infection
prevalence is likely to be relatively low, we adopted beta distributed priors with shape
parameters 1 and 99 for individuals recruited for surveillance testing. These parameters
correspond to a distribution with a mean infection prevalence of 0.01 skewed towards lower
values, which is generally consistent with model-based estimates of infection prevalence for St.
Joseph County, Indiana (40). For individuals tested for non-surveillance purposes, we adopted
beta distributed priors with shape parameters 1 and 9, which correspond to a distribution with a
mean infection prevalence of 0.10 skewed towards lower values. Values in that range are
generally consistent with test positivity for the state of Indiana (41).

Markov chain Monte Carlo algorithm

To avoid the challenges associated with calculating Pr(n) directly, we approximated the posterior
distribution of 𝞱 using Markov chain Monte Carlo. Specifically, we used the Metropolis-Hastings
algorithm as implemented with default settings in the BayesianTools (42) package in R (43). We
ran a total of 100,000 iterations across nine chains, applying a burnin at 10,000 iterations for
each and thinning every 100 samples. We assessed convergence through visual inspection of
traceplots and calculation of Gelman-Rubin statistics (Fig. S3). We assessed parameter
non-identifiability through pairwise correlation plots (Fig. S4).

Estimation of time-varying prevalence

To obtain an estimate of time-varying prevalence, Prev(t), among the campus population, we
first estimated daily incidence of infection, IS(t), from the time series of symptomatic case
notifications, as described in (26). To do this, we deconvolved the symptomatic case
notifications with the incubation period distribution and the delay from symptom onset to testing.
The incubation period was modeled as a log-normal distribution with parameters μ = 1. 621 and
σ = 0.418 (28), and the delay from symptom onset to testing as a Poisson distribution with a
mean of two days. We used the backprojNP function in the R surveillance package (version
1.18.0) for the deconvolution (44). We then estimated the total number of infections by date of
infection, , by assuming that 57% of infections were symptomatic (27) and𝐼(𝑡) = 𝐼

𝑆
(𝑡) / 0. 57

that all symptomatic infections were ultimately tested under the intense on-campus testing
environment. Finally, we estimated Prev(t) as

,𝑃𝑟𝑒𝑣(𝑡) =
τ=−∞

𝑡

∑ 𝐼(τ)𝑆𝑒 𝑡 − τ( )
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where Se(t) is an estimate of sensitivity by day of infection by Grassly et al. (11).

Model validation

Overall, 98% of the 800 simulated parameter values (8 parameters x 100 simulated data sets)
fell within their respective 95% credible intervals. For all individual parameters, 95% or more of
simulated values fell within their 95% credible intervals. These results suggest that our posterior
estimates provide an appropriate description of uncertainty about the true values of the
parameters that we sought to estimate. In addition, median values from the posterior distribution
were well correlated with simulated values. Pearson correlations ranged from 0.40 for saliva
sensitivity to 0.76 for saliva specificity (Fig. S2). Within the range of simulated parameter values
we considered, these results suggest that the inference method produces median estimates in
the right general direction but that true parameters may lie elsewhere within the credible
interval.
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SUPPLEMENTAL TABLES

Table S1. Test positivity stratified by test type (columns) and reason participants were
tested (rows).

Commercial Saliva Antigen

Surveillance positivity 1.2% (10/802) 2.5% (20/805) 0% (0/3)

Non-surveillance
positivity

6.5% (2/31) 14.6% (6/41) 14.7% (5/34)

Table S2. Pairwise probabilities that one type of test (row) is more sensitive than another
(column).
Sensitivity Commercial Saliva Antigen

Commercial - 0.31 0.71

Saliva 0.69 - 0.88

Antigen 0.29 0.12 -

Table S3. Pairwise probabilities that one type of test (row) is more specific than another
(column).
Specificity Commercial Saliva Antigen

Commercial - 0.86 0.92

Saliva 0.14 - 0.81

Antigen 0.08 0.19 -

17

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 2, 2021. ; https://doi.org/10.1101/2021.07.31.21261425doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.31.21261425
http://creativecommons.org/licenses/by/4.0/


SUPPLEMENTAL FIGURES

Figure S1. Age distribution of participants. The main panel shows the overall age distribution
of study participants, while the inset panel shows the age distribution for individuals 30 and
older.
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Figure S2. Validation on simulated data. For each of 100 parameter sets drawn uniformly and
independently from the 95% credible interval of each parameter (x-axis), we simulated testing
outcomes for each individual from each category (i.e., reason for testing, which tests were
applied) in our empirical data set. For each of those simulated data sets, we obtained posterior
estimates of the eight parameters, the median and 95% credible intervals of which are displayed
here (y-axis). The dashed line shows a one-to-one relationship, and the Pearson correlation
between simulated and median inferred values for each parameter is displayed in each panel.
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Figure S3. Trace plots of the eight parameters. Traces of the model parameters over the
course of the MCMC chains reveal no visual indication of autocorrelation. This interpretation is
supported by potential scale reduction factors being at or below 1.01 for all parameters (both for
point estimates and upper confidence intervals) and the multivariate potential scale reduction
factor being 1.01, as assessed by the gelmanDiagnostics function from the BayesianTools
package in R.
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Figure S4. Correlation plot for the eight parameters. The most prominent correlations
occurred among SeComm, SpSaliva, and PrevSurv. This indicates some discrepancy between
commercial and saliva tests about samples collected through surveillance. Specifically, this
pattern is consistent with samples with a positive result under the saliva test but a negative
result under the commercial test. The existence of these correlations indicates some degree of
difficulty in determining the true latent state for samples for which that inconsistency occurs.
This figure was made with the correlationPlot function from the BayesianTools library in R.
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