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Abstract: 

Wastewater surveillance of SARS-CoV-2 has shown to be a valuable source of information 
regarding SARS-CoV-2 transmission and COVID-19 cases. Though the method has been used 
for several decades to track other infectious diseases, there has not been a comprehensive 
review outlining all of the pathogens surveilled through wastewater. The aim of this study is to 
identify what infectious diseases have been previously studied via wastewater surveillance prior 
to the COVID-19 Pandemic and identify common characteristics between the studies, as well as 
identify current gaps in knowledge. Peer-reviewed articles published as of August 1, 2020 that 
examined wastewater for communicable and infectious human pathogens on 2 or more 
occasions were included in the study. Excluded from this list were all reviews and methods 
papers, single collection studies, and non-human pathogens. Infectious diseases and 
pathogens were identified in studies of wastewater surveillance, as well as themes of how 
wastewater surveillance and other measures of disease transmission were linked. This review 
did not include any numerical data from individual studies and thus no statistical analysis was 
done. 1005 articles were identified but only 100 were included in this review after applying the 
inclusion criteria. These studies came from 38 countries with concentration in certain countries 
including Italy, Israel, Brazil, Japan, and China. Twenty-five separate pathogen families were 
identified in the included studies, with the majority of studies examining pathogens from the 
family Picornaviridae, including polio and non-polio enteroviruses. Most studies of wastewater 
surveillance did not link what was found in the wastewater to other measures of disease 
transmission. Among those studies that did compare wastewater surveillance to other measures 
of disease transmission the value observed was dependent upon pathogen and varied by study. 
Wastewater surveillance has historically been used to assess water-borne and fecal-orally 
transmitted pathogens causing diarrheal disease. However, numerous other types of pathogens 
have been surveilled using wastewater and wastewater surveillance should be considered as a 
potential tool for many infectious diseases. Wastewater surveillance studies can be improved by 
incorporating other measures of disease transmission at the population-level including disease 
incidence and hospitalizations. 
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Introduction: 

Infectious disease surveillance is most commonly conducted at the health center or the 
hospital,1 either through passive reporting or active case finding.2 This type of event-based 
infectious disease surveillance monitors trends in morbidity and mortality, alerting health 
systems when a statistically improbable uptick of events occurs. In this way, the number of 
cases, hospitalizations, and deaths from endemic infectious diseases such as malaria or 
influenza are tracked and the effectiveness of interventions such as mosquito control or 
vaccines can be monitored. Importantly, due to cost and non-representative access to molecular 
diagnostics, many pathogens under surveillance are characterized by their symptoms or 
syndromes, such as influenza-like illness. For emerging pathogens, event-based infectious 
disease surveillance may note an odd increase in some symptom or condition, notably as 
occurred with microcephaly and Zika,3,4 or pneumonia cases without a known cause as 
occurred with COVID-19.5 Event-based infectious disease surveillance requires a health system 
capable of observing an unexpected trend, a population with sufficient access to that health 
system, and a sufficiently large trend or cluster of odd cases to alert officials.  

Environmental surveillance, on the other hand, is a broad category for systems that 
monitor the presence or absence of a pathogen in the environment. Their defining characteristic 
is the circumvention of human behavior and health systems, which reduces bias, while still 
providing information regarding risks to human health. For example, environmental surveillance 
may routinely test known vectors for pathogens,6 alerting the public to the detection of, or an 
increase in, the pathogen in the vector population. 

Wastewater surveillance is a type of environmental surveillance that has historically 
been utilized to track water-borne or fecal-orally transmitted pathogens. The origins of 
wastewater surveillance hail back to the London cholera epidemic of the mid-1800’s, John 
Snow, and the Broad Street Pump, when a cesspool near a house with multiple cholera deaths 
was excavated and found to be leaking into the pump’s water supply.7 With the scientific 
evidence supporting germ theory, scientists began hunting sewage not only for cholera but also 
for other pathogens including salmonella typhi bacteria (typhoid),8,9 coxsackie viruses,10 and 
poliovirus.11 From the 1970’s onward, wastewater surveillance formed a critical component of 
the worldwide initiative to eradicate polio,12 and perhaps polio provides the best contrast 
between event-based and environmental surveillance systems. Whereas event-based polio 
surveillance relies on an unexpected increase in acute flaccid paralysis which occurs in only 
0.5% of polio cases,13 wastewater surveillance can detect poliovirus circulating in a community 
before any paralysis occurs.14 

The COVID-19 pandemic saw the broad adaptation of wastewater surveillance across 
the globe,15 as the limitations of event-based surveillance systems for an emerging pathogen 
were laid bare. Most interestingly, COVID-19 is a respiratory-transmitted pathogen, suggesting 
that a pathogen’s mode of transmission need not be fecal-oral or waterborne for wastewater 
surveillance to be useful. Could wastewater surveillance be a more widely applied tool, not only 
monitoring trends in waterborne or fecal-orally transmitted pathogens but also pathogens of 
pandemic potential and those causing the greatest burden of disease? SARS-CoV-2 is certainly 
the pathogen du jour, but as wastewater surveillance systems are erected should they also be 
incorporating other pathogens into their surveillance? Herein we present a systematic review of 
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wastewater surveillance for infectious disease, reporting the documented successes of testing 
wastewater for infectious disease pathogens that circulate primarily in humans.  

Methods: 

Systematic Literature Review 

Following PRISMA guidelines16, we searched PubMed, SCOPUS, Science Direct and 
Google Scholar for studies looking at wastewater-based surveillance of infectious diseases 
(both viral and bacterial) in human populations and published before August 1st, 2020. For the 
databases (PubMed, SCOPUS, and Science Direct), search terms included Mesh headings, 
MeSH terms, and text words and synonyms, including “Wastewater”, “Waste water”, “Sewage”, 
“Sewer”, “Environmental”, “Surveillance”, “Disease”, “Feces”, "wastewater-based epidemiology", 
"Environmental surveillance", “Environmental Epidemiology “, “Wastewater Surveillance “, 
"Environmental Monitoring", "Wastewater Monitoring", “Virus”, “Bacteria”. These terms were 
combined using the boolean terms “AND” and “OR” when applicable. Similar terms were used 
but with filters on Google Scholar to limit the search to material of interest. The filters included 
the inclusion of the characters “doi” to look for a Digital Object Identifier to ensure that it was a 
published work, and the exclusion of the terms "systematic review", "literature review", "meta-
analysis", and "review" in the title. The boolean term “NOT” was used to aid in excluding these 
terms. All sources, databases and Google Scholar, were filtered to look for texts in the English 
language. The search string used for each individual database and Google Scholar, as well as 
the filters used, can be found in Appendix 1. 

Once article lists were pulled from their respective sources, duplicates were removed, 
using Microsoft Excel’s built-in remove duplicated function, using both title and authors as the 
reference for removal. Reviewers (Pruthvi Kilaru and Dustin Hill) screened titles and abstracts 
for remaining articles, retrieved articles for full-text review, and assessed full-text articles based 
on eligibility criteria. 
 

Eligibility Criteria 

We included published studies which tested wastewater for communicable and/or 
infectious human diseases on more than one occasion and during two or more time periods. 
Non-communicable diseases, such as diabetes and obesity, were excluded. As we defined 
surveillance as having the requirement of testing over time, all articles which tested wastewater 
only once and/or on a single day were excluded. Articles which discussed diseases not related 
to humans or not in the context of humans (e.g. influenza virus in pigs), were also excluded. 
Peer-reviewed journal articles were included as long as they were not reviews, systematic 
reviews, literature reviews, or meta-analyses. Non-peer reviewed journal articles such as 
research notes, research letters, and short communications were excluded. Methods papers 
that looked purely at and compared different techniques of drawing and sampling wastewater 
were also excluded if they did not offer analysis of pathogens naturally present in the 
wastewater. This included studies that spike wastewater with a pathogen only to look at 
recovery in the context of comparing methods of sampling. Lastly, we excluded all papers which 
reported the surveillance of SARS-CoV0-2. This determination was made to support the utility of 
environmental surveillance outside of emergency/pandemic situations, to determine what and 
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where disease surveillance has been conducted in the past, and to support expansion and 
extension of surveillance to other pathogens and regions. 

 
Data Extraction 

We initially extracted the following information from the articles meeting the eligibility 
criteria: period of sampling, country the sampling occurred in, pathogen(s)/disease(s) being 
monitored, number of samples pulled, amount of sample pulled, sample type (grab, composite, 
other), method of detection, overall findings, was genetic typing done, and did the researchers 
connect their findings to population health. The primary information of interest were the 
disease(s) being monitored, method of detection, and if the authors connected their findings to 
population health.  

 
Role of the funding source 
 There was no funding source for this study. 

Results 

Literature searches initially identified 1005 entries (after removing duplicates), of which 
159 abstracts met the inclusion criteria. After review of the articles, 100 scientific papers were 
included (Figure 1, Table 1).  

 

 

4 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.26.21261155doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.26.21261155
http://creativecommons.org/licenses/by-nc/4.0/


5

Figure 1. PRISMA flow chart of articles included in the review. Reasons for exclusion include: 
hypothetical Models – the experiment was hypothetical and no data were collected; methods 
comparison – the paper compared multiple recovery methods; not pathogen – paper focused on 
non-communicable diseases (e.g. diabetes); not surveillance – sampled only once or for non-
surveillance purposes; not WW-based – wastewater was not directly tested;  pathogen removal 
– paper looked at removal techniques of pathogens in wastewater;  not relevant* - e.g. diseases 
not tied to human population, effect on other species/animals 
 

Across the 100 included articles, studies were conducted in 38 countries with the most 
studies conducted in Italy (10 studies), China (8 studies), Japan (7 studies), Israel (7 studies), 
and Brazil (7 studies). These 5 countries accounted for 39% (39/100) of the studies conducted 
across all articles.  
 

Figure 2. Global distribution of studies of wastewater surveillance for infectious disease. 
 

Within the included articles, the most prevalent pathogens found were viruses from the 
families Picornaviridae, Calciviridae, Adenoviridae, Reoviridae, and Hepeviridae (Figure 3). Of 
the most prevalent families, three of them are known to have pathogens contributing to diarrheal 
diseases (Picornaviridae, Caliciviridae, and Reoviridae) and make up 57.5% of the pathogens 
studied across all articles. Within the Piconaviridae family, the most prevalent genus studied 
was enteroviruses, with poliovirus being the most popular among that genus. Enteroviruses 
made up 32.5% (52 instances) of pathogens found in all of the articles. Additionally, there were 
20 other families of pathogens that appeared between 1 - 9 times within our literature review, 
with a mean of 2.2 appearances and a median of 2 appearances each. Considering the global 
burden of disease (Figure 4), diarrheal diseases were the most represented among studies of 
wastewater surveillance, with other infectious diseases with a great burden not found in this 
systematic review. Infectious diseases of international concern were better represented, with 
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only influenza and HIV/AIDS not represented among studies of wastewater surveillance (Figure 
4). 

Figure 3. Bar graph showing the families of pathogens found in the included articles and their 
frequency. 
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Figure 4. Pathogens surveilled in wastewater (orange group) are not reflected in the greatest 
burden of disease except for diarrheal diseases (gray group). Many infectious diseases of 
international concern (blue group) have been surveilled in wastewater, however as represented 
by an asterisk (*). 
 

A number of studies correlated the level of an infectious disease pathogen found in 
wastewater to relevant measures of transmission such as population-level incidence, without 
reporting if public health action or policy was influenced by wastewater surveillance or not. 
Studies have linked the level of norovirus in wastewater to incidence of gastroenteritis,17 levels 
of hepatitis E virus in wastewater to incidence of hepatitis E,18 and level of enteric viruses in 
wastewater to the incidence of acute diarrhea.19 Other studies compared population 
seroprevalence to the level of hepatitis A virus20 and hepatitis E virus21 found in wastewater. In 
comparison with the incidence of clinical cases, wastewater surveillance provided early warning 
of hepatitis A virus and norovirus outbreaks in Sweden.22 However, in the Netherlands 
wastewater surveillance did not serve well in an early warning capacity for a variety of 
enteroviruses.23 Wastewater surveillance correlated well with outbreaks of enterovirus,24 
hepatitis A virus,25 and Salmonella enterica.26,27 In Russia, outbreaks of aseptic meningitis 
caused by echovirus type 6 correlated with levels in wastewater, but outbreaks of aseptic 
meningitis caused by echovirus type 30 did not.28 A few studies directly compared the sensitivity 
of surveillance for the incidence of acute flaccid paralysis (a type of non-specific clinical 
surveillance) to wastewater surveillance for poliovirus, finding that wastewater surveillance was 
more sensitive and combining the two systems was optimal.29–32 The most common type of 
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comparison of wastewater surveillance with clinical cases linked the genetic diversity of bacteria 
or viral strains found in wastewater surveillance back to samples from clinical cases of 
meningitis, gastroenteritis, or diarrhea-related illness.33–53 These studies did not examine the 
use of wastewater surveillance to inform of outbreaks or correlate levels of the pathogens found 
in wastewater to trends in population-level incidence over time.  
 A handful of publications documented the utility of wastewater surveillance to assess the 
impact of public health interventions. Wastewater surveillance was able to confirm the cessation 
of the transmission of vaccine-derived poliovirus following a transition from oral poliovirus 
vaccine to inactivated poliovirus vaccine in numerous studies.54–57 Wastewater surveillance was 
also used to assess the impact of rotavirus vaccine deployment in Rio de Janeiro, Brazil.58 
 When considering the use of wastewater surveillance to inform public health action or 
policy, the most common reported application was to document the elimination of wildtype 
poliovirus transmission.59–65 In countries with circulation of wildtype poliovirus, wastewater 
surveillance has been used to guide vaccination efforts. In Nigeria, directed vaccine efforts 
based on results from wastewater surveillance interrupted polio transmission in numerous 
areas.66 In Mumbai, India, wastewater surveillance was used to alert importation of wild-type 
poliovirus and inform subsequent vaccine distributions.67 And in Israel, the importation of 
wildtype poliovirus was detected using wastewater surveillance which then led to an expansion 
of wastewater surveillance and vaccination campaigns to prevent re-establishment of poliovirus 
transmission.68 No articles were identified that documented the use of wastewater surveillance 
to inform public health action for any other pathogen than poliovirus. 
 The majority of articles reporting on wastewater surveillance included no comparison to 
other measures of transmission such as clinical cases of disease. Some articles assessed the 
presence of poliovirus,69–72 either wildtype or vaccine-derived, including potential neurovirulence 
of vaccine-derived poliovirus.73–75 Many articles documented the diversity of non-polio 
enteroviruses found in wastewater, 73,76–92 with a variety of focuses including rotavirus,93–97 
norovirus,88,92,98–100 astrovirus,101,102 polyomavirus,103 Saffold virus,104 hepatitis A virus,85 hepatitis 
E virus,105 mastadenovirus,106 Aichi virus,107 and human bocavirus.107 Surveillance of Giardia 
and/or Cryptosporidium was also documented.108,109 Other studies examined the extent of 
antimicrobial resistance,110,111 or virulence genes,112 in Escherichia coli or Salmonella bacteria. 

Discussion 

We found that wastewater surveillance has been used extensively to guide public health 
policy and interventions to eliminate and eradicate poliovirus, but we found no reports of 
wastewater surveillance being used proactively for other pathogens. With the COVID-19 
pandemic, wastewater surveillance has been proactively used by a variety of organizations, 
including institutions of higher education,113 local health departments, and national 
governments. Linking wastewater surveillance to public health interventions, however, can be 
challenging. From our review, the most obvious link between wastewater surveillance and public 
health policy/intervention was the confirmation of the absence of transmission of polio, as well 
as early notification or confirmation of outbreaks. Linking wastewater surveillance to population-
level incidence should also be straightforward, but we found relatively few studies doing so. 
There certainly is difficulty in obtaining incidence rates for a variety of pathogens, but this should 
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not prevent scientists from comparing wastewater surveillance to syndromic surveillance, e.g. 
incidence of diarrhea, gastroenteritis, or pneumonia. Increased collaboration between 
epidemiologists, microbiologists, and environmental engineers is needed to maximize the 
knowledge gained from studies of wastewater surveillance.  

As evidenced in this review, epidemiologists have typically thought of wastewater 
surveillance only as a tool to surveil pathogens that are either waterborne or fecal-orally 
transmitted. For example, a recent textbook highlights the potential for wastewater surveillance 
for waterborne pathogens, but completely ignores pathogens of other transmission types.114 
This narrow focus overlooks the potential utility of wastewater surveillance for sexually-
transmitted, respiratory-transmitted, and vector-borne diseases of pandemic potential.115,116 
Indeed, only one of the six times that the World Health Organization has declared a public 
health emergency of international concern (a term conceptualized in 2005) has the pathogen 
been waterborne or fecal-orally transmitted (poliovirus compared to H1N1 influenza, ebola 
twice, Zika, and COVID-19).117 In addition, the only pandemics in the 20th century were caused 
by influenza and HIV/AIDS.  

The COVID-19 pandemic has shown wastewater surveillance to be an effective tool for a 
respiratory-transmitted pathogen.118 Given the low cost and population-level representation that 
a single wastewater sample provides, further research into the utility of wastewater surveillance 
for infectious diseases in general is needed. Among other pathogens that are not waterborne 
nor fecal-orally transmitted, we found reports of Zika and Ebola virus in wastewater, suggesting 
that they could be potential targets of continuous wastewater surveillance. Wastewater 
surveillance could be useful for other high-burden infectious diseases as well. Evidence from 
the 1990’s suggests HIV can be detected in wastewater,119 although this systematic review 
found no reports of surveilling HIV in wastewater. Tuberculosis can also be found in 
wastewater,120 even to the extent of endangering sewage workers.121 But again this systematic 
review found no reports of surveilling tuberculosis in wastewater. Bearing in mind that 
wastewater surveillance is useful for tracking antimicrobial resistance122 should wastewater be 
useful for surveilling tuberculosis, then it could potentially be used to surveil multi-drug resistant 
tuberculosis as well. Malaria can be easily diagnosed in human feces,123 which leaves us to 
speculate the possibility for finding and surveilling this pathogen in wastewater. Numerous 
groups are currently assessing the capacity to find influenza in wastewater, but H1N1 influenza 
was not found in the wastewater of the Netherlands during the 2009 pandemic.124  
 Wastewater surveillance should be considered a general tool for public health going 
forward. In order to maximize its utility, further understanding of what pathogens can and cannot 
be surveilled using wastewater is needed. A variety of factors affect the probability that a 
pathogen will be found in wastewater and then documented in the scientific literature. 
Publication bias certainly plays a role, with numerous pathogens neglected in the scientific 
literature,125 as well as negative results not being published. Along these lines different types of 
studies are needed including studies of load shedding dynamics, pathogens’ persistence in 
wastewater, and the relationship between levels of a pathogen found in wastewater and other 
measures of transmission such as population-level incidence. Perhaps most important for public 
health, more studies are needed that assess the utility of wastewater surveillance to guide 
policy and public health intervention. 
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Table 1: Characteristics of wastewater surveillance studies included in the systematic review. 
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Pathogen (as reported 
in article) Family (Genus) 

Population 
health 
measures 
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(Parechovirus) Yes 

Alfonsi et al. 
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2016 Italy hepatitis E virus (HEV) Hepeviridae (Hepevirus) Yes 

Ajonina et al. 
2013109 N/A Germany Giardia Cysts Hexamitidae (Giardia) No 

Antona et al. 
200724 

2000 - 
2004 France 

Enteroviruses (including 
polioviruses) 

Picornaviridae 
(Enterovirus) Yes 

Aw et al. 201090 
2007 - 
2007 Singapore 

Human Adenoviruses, 
astroviruses, 
enteroviruses, 
noroviruses and 
hepatitis A virus (HAV) Numerousa Yes 

Barril et al. 201596 
2009 - 
2011 Argentina Rotaviruses Reoviridae (Unspecified) No 

Béji-Hamza et al. 
2014126 

2007 - 
2008 Tunisia Hepatitis A 

Picornaviridae 
(Hepatovirus) Yes 

Berchenko et al. 
201731 

2013 - 
2013 

Isreal (and 
Palestine) 

Poliovirus (WT and 
Vaccine Derived) 

Picornaviridae 
(Enterovirus) Yes 

Beyer et al. 202037 
2014 - 
2019 Germany 

Hepatitis E Virus 
Genotype 3 Hepeviridae (Hepevirus) Yes 

Bisseux et al. 
201853 
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2015 France 

adenovirus, norovirus, 
rotavirus, parechovirus, 
enterovirus (EV), 
hepatitis A (HAV) and E 
(HEV) viruses Numerousb No 

Bisseux et al. 
202043 
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2015 France Enteroviruses 

Picornaviridae 
(Enterovirus) Yes 

Cesari et al. 
201080 

2005 - 
2008 Italy 

Poliovirus and Non-
Poliovirus Enteroviruses 

Picornaviridae 
(Enterovirus) No 

Chowdhary et al. 
200864 
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2006 India 

Poliovirus (WT and 
Vaccine Derived) 

Picornaviridae 
(Enterovirus) Yes 

Coulliette-Salmond 
et al. 201963 

2016 - 
2017 Haiti 

Poliovirus (WT and 
Vaccine Derived) 

Picornaviridae 
(Enterovirus) No 

Cowger et al. 
201732 

2011 - 
2013 Pakistan Wild type poliovirus 

Picornaviridae 
(Enterovirus) Yes 

Delogu et al. 
201859 

2009 - 
2015 Italy 

Poliovirus and Non-
Poliovirus Enteroviruses 

Picornaviridae 
(Enterovirus) No 

Deshpande et al. 
200367 

2001 - 
2001 India Poliovirus (WT) 

Picornaviridae 
(Enterovirus) Yes 

Diemert et al. 
201926 

2010 - 
2011 

United States 
of America Salmonellosis 

Enterobacteriaceae 
(Salmonella) Yes 

Elmahdy et al. 
2020107 

2017 - 
2017 Egypt Adenovirus 

Adenoviridae 
(unspecified) Yes 

Esteves-Jaramillo 
et al. 201454 

2010 - 
2010 Mexico 

Poliovirus (Vaccine 
Derived) 

Picornaviridae 
(Enterovirus) Yes 

Farias et al. 201882 
2013 - 
2014 Argentina 

Human enteroviruses 
(not-including polio) 

Picornaviridae 
(Enterovirus) No 
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Farias et al. 201991 
2009 - 
2014 Argentina 

Non-Polio Enteroviruses 
(NPEVs) 

Picornaviridae 
(Enterovirus) Yes 

Farkas et al. 
201487 

2016 - 
2017 

United 
Kingdom 
(Wales) Numerousc Numerousd No 

Ferraro et al. 
2020104 

2017 - 
2018 Italy Scaffold Viruses N/A No 

Fioretti et al. 
201646 

2013 - 
2014 Brazil Human Sapovirus Caliciviridae (Sapovirus) Yes 

Fioretti et al. 
201849 

2013 - 
2014 Brazil Genogroup IV norovirus Caliciviridae (Norovirus) Yes 

Fumian et al. 
201158 

2009 - 
2010 Brazil Rotavirus specie A Reoviridae (Unspecified) No 

Fumian et al 
201934 

2013 - 
2014 Brazil Norovirus Caliciviridae (Norovirus) Yes 

Garcia et al. 
201292 

2010 - 
2011 Brazil Numerouse 

Circoviridae (Circovirus), 
Adenoviridae 
(Unspecified), 
Caliciviridae (Norovirus) No 

Grabow et al. 
199975 

1996 - 
1997 South Africa 

Poliovirus (WT and 
Vaccine Derived); 
Enteroviruses 

Picornaviridae 
(Enterovirus) No 

Gonzalez et al. 
201961 

2015 - 
2015 Colombia 

Poliovirus (WT and 
Vaccine Derived) 

Picornaviridae 
(Enterovirus) No 

Grøndahl-Rosado 
et al. 201488 

2011 - 
2012 Norway 

Norovirus; Enteric 
Adenoviruses 

Adenoviridae 
(Unspecified), 
Caliciviridae (Norovirus) Yes 

Harvala et al. 
201440 

2009 - 
2010 

United 
Kingdom 
(Scotland) 

Human Enteroviruses 
and parechoviruses 

Picornaviridae 
(Enterovirus, 
Parechovirus) Yes 

Hassine-Zaafrane 
et al. 201442 

2007 - 
2010 Tunisia GI and GII NoV strains Caliciviridae (Norovirus) Yes 

Hassine-Zaafrane 
et al. 201538 

2007 - 
2010 Tunisia 

G and P types of group 
A rotaviruses Reoviridae (Unspecified) Yes 

Heitman et al. 
200236 

1998 - 
2000 Canada 

Giardia and 
Cryptosporidium 

Hexamitidae (Giardia), 
Cryptosporidiidae 
(Cryptosporidium) No 

Hellmér et al. 
201422 

2013 - 
2013 Sweden Numerousf Numerousg Yes 

Hutinel et al. 
201947 

2016 - 
2016 Sweden 

E. Coli (Antibiotic 
Resistance) 

Enterobacteriaceae 
(Escherichia) Yes 

Iaconelli et al. 
2020105 

2011 - 
2019 Italy hepatitis E virus (HEV) Hepeviridae (Hepevirus) No 

Ivanova et al. 
201928 

2004 - 
2017 Russia 

Human enteroviruses 
(including polio) 

Picornaviridae 
(Enterovirus) Yes 

Kargar et al. 
201394 

2010 - 
2011 Iran Rotaviruses Reoviridae (Unspecified) No 

Kazama et al. 
201650 

2012 - 
2013 Japan 

Norovirus genogroups I 
and II Caliciviridae (Norovirus) Yes 

Kazama et al. 
201717 

2013 - 
2016 Japan Norovirues Caliciviridae (Norovirus) Yes 
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Kiulia et al. 201097 
2007 - 
2008 Kenya 

NoV genogroup I (GI), 
NoV genogroup II (GII), 
HAV, RV, SaV, HAstV, 
HAdV and enteroviruses Numeroush No 

Kumazaki et al. 
201545 

2007 - 
2012 Japan Rotavirus C Reoviridae (Unspecified) Yes 

La Rosa et al. 
201425 

2012 - 
2013 France Hepatitis A Virus (HAV) 

Picornaviridae 
(Hepatovirus) Yes 

Lamba et. al. 
2018110 

2014 - 
2014 India 

Carbapenem-Resistant 
Enteric Bacteria (CRE) 

Enterobacteriaceae 
(Unspecified) No 

Li et al. 201195 
2007 - 
2008 China Rotaviruses Reoviridae (Unspecified) No 

Lizasoain et al. 
201876 

2011 - 
2013 Uruguay Human Enteroviruss 

Picornaviridae 
(Enterovirus) No 

Lodder et al. 
201251 

2011 - 
2011 Netherlands 

Poliovirus (Vaccine 
Derived) 

Picornaviridae 
(Enterovirus) Yes 

Lu et al. 201535 
2009 - 
2012 China 

Enteroviruses 
(Echovirus type 30) 

Picornaviridae 
(Enterovirus) Yes 

Lun et al. 2019106 
2016 - 
2017 Australia 

Human 
mastadenoviruses 
(HAdVs) 

Adenoviridae 
(Mastadenovirus) Yes 

Mabasa et al. 
201899 

2015 - 
2016 South Africa 

Noroviruses (NoV) 
(Particularly GII.4) Caliciviridae (Norovirus) No 

Majumdar et al. 
201884 

2013 - 
2017 

UK (Scotland 
and Englad); 
Pakistan; 
Senegal Numerousi 

Picornaviridae 
(Enterovirus) No 

Majumdar et al. 
201884 

2015 - 
2015 

United 
Kingdom 
(Scotland) 

Human Enteroviruses 
(Non-Polio) 

Picornaviridae 
(Enterovirus) No 

Manor et al. 199929 
1989 - 
1997 

Isreal (and 
Palestine) Poliovirus (WT) 

Picornaviridae 
(Enterovirus) Yes 

Manor et al. 200774 
1989 - 
2005 

Isreal (and 
Palestine) Poliovirus (WT) 

Picornaviridae 
(Enterovirus) No 

Manor et al. 201468 
2013 - 
2013 Isreal 

Wild poliovirus type 1 
(WPV1) of the South 
Asia (SOAS) lineage 

Picornaviridae 
(Enterovirus) Yes 

Martins et al. 
2019108 

2014 - 
2015 Brazil 

Cryptosporidium and 
Giardia 

Hexamitidae (Giardia), 
Cryptosporidiidae 
(Cryptosporidium) No 

Mas Lago et al. 
200356 

1997 - 
1998 Cuba 

Poliovirus (WT and 
Vaccine Derived) 

Picornaviridae 
(Enterovirus) Yes 

McCall et al. 
202052 

2017 - 
2018 

United States 
of America Numerousj Numerousk No 

Monge et al 201823 
2007 - 
2016 Netherlands Echovirus type 6 (E6) 

Picornaviridae 
(Enterovirus) Yes 

Motayo et al. 
201693 

2014 - 
2015 Nigeria Rotaviruses Reoviridae (Unspecified) No 

Muluh et al. 201666 
2012 - 
2015 Nigeria 

Poliovirus (WT and 
Vaccine Derived) 

Picornaviridae 
(Enterovirus) Yes 

Nakamura et al. 
201555 

2010 - 
2013 Japan 

Poliovirus (WT and 
Vaccine Derived) 

Picornaviridae 
(Enterovirus) Yes 
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O'Brien at al. 
201789 

2016 - 
2016 Uganda Numerousl Numerousm No 

de Oliveira Pereira 
et al. 201660 

2011 - 
2012 Brazil 

Poliovirus (WT and 
Vaccine Derived) 

Picornaviridae 
(Enterovirus) No 

O'Reilly et al. 
201830 

2011 - 
2015 Pakistan 

Serotype-1 Wildtype 
Poliovirus 

Picornaviridae 
(Enterovirus) Yes 

Ozawa et al. 
201981 

2013 - 
2016 Japan 

Human enteroviruses 
(including polio) 

Picornaviridae 
(Enterovirus) No 

Pavlov et al. 
200671 

2001 - 
2003 South Africa 

Poliovirus and Non-
Poliovirus Enteroviruses 

Picornaviridae 
(Enterovirus) Yes 

Pellegrinelli et al. 
201378 

2005 - 
2010 Italy 

Poliovirus and Non-
Poliovirus Enteroviruses 

Picornaviridae 
(Enterovirus) No 

Pellegrinelli et al. 
201765 

2012 - 
2015 Italy 

Poliovirus and Non-
Poliovirus Enteroviruses 

Picornaviridae 
(Enterovirus) Yes 

Pellegrinelli et al. 
201985 

2016 - 
2016 Italy 

Enteroviruses and 
Hepatitis A Viruses 

Picornaviridae 
(Enterovirus, 
Hepatovirus) No 

Prevost et al. 
201519 

2013 - 
2014 France Numerousn Numerouso Yes 

Ram et al. 201641 
2013 - 
2015 Isreal hepatitis E virus (HEV) Hepeviridae (Hepevirus) Yes 

Richter et al. 
200562 

2005 - 
2007 Cyprus 

Poliovirus (WT and 
Vaccine Derived) 

Picornaviridae 
(Enterovirus) No 

Rosa et al. 201098 
2007 - 
2007 Italy 

GI and GII Norovirus 
Strains Caliciviridae (Norovirus) No 

Ruggeri et al. 
201548 

2010 - 
2011 Italy Rotaviruses Reoviridae (Unspecified) Yes 

Shaheen et al. 
2020107 

2017 - 
2018 Egypt 

Aichi virus (AiV) and 
human bocavirus 
(HBoV) 

Parvovirinae 
(Bocaparvovirus), 
Picornaviridae 
(Kobuvirus) No 

Shulman et al. 
200670 

1998 - 
2006 

Isreal (and 
Palestine) 

Poliovirus (Vaccine 
Derived) 

Picornaviridae 
(Enterovirus) No 

Tao et al. 201072 
2009 - 
2009 China 

Recombinant type 
3/type 2 poliovirus with a 
chimeric capsid VP1 

Picornaviridae 
(Enterovirus) Yes 

Tao et al. 2015100 
2013 - 
2013 China Norovirus Caliciviridae (Norovirus) No 

Tiwari et al. 201839 
2007 - 
2009 India Enteroviruses 

Picornaviridae 
(Enterovirus) Yes 

Torres et al. 
2016103 

2005 - 
2006; 
2011 - 
2013 Argentina Human Polyomavirues 

Polyomaviridae 
(Unspecified) No 

Wahjuhono et al. 
201457 

2004 - 
2007 Indonesia 

Vaccine Derived 
Poliovirus 

Picornaviridae 
(Enterovirus) No 

Wassaf et al. 
201421 

2007; 
2009 - 
2011 Argentina hepatitis E virus (HEV) Hepeviridae (Hepevirus) Yes 

Wieczorek et al. 
201583 

2011 - 
2011 Poland 

Non-Polio Enteroviruses 
(NPEVs) 

Picornaviridae 
(Enterovirus) No 
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Wong et al. 2013 
2006 - 
2007 

United States 
of America 

Pathogenic Human 
Viruses Numerousp No 

Vincent et al. 
200727 

2003 - 
2005 

United States 
of America Salmonella Enterica 

Enterobacteriaceae 
(Salmonella) Yes 

Vinje et al. 200473 
2000 - 
2000 

Haiti; 
Dominican 
Republic 

Poliovirus (Vaccine 
Derived) 

Picornaviridae 
(Enterovirus) Yes 

Yan et al. 201844 
2010 - 
2011 

United States 
of America 

Salmonella and 
Salmonellosis 

Enterobacteriaceae 
(Salmonella) Yes 

Yang et al. 2014112 
2010 - 
2011 

United States 
of America 

Enteropathogenic E. coli 
and enterohemorrhagic 
E. coli 

Enterobacteriaceae 
(Escherichia) No 

Yanez et al. 201420 
2009 - 
2010 Argentina Hepatitis A virus 

Picornaviridae 
(Hepatovirus) Yes 

Yao et al. 2017111 
2011 - 
2013 Spain enterobacterial species 

Enterobacteriaceae 
(Unspecified) No 

Yoshida et al. 
200069 

1993 - 
2015 Japan 

Vaccine Derived 
Poliovirus (Type-3) 

Picornaviridae 
(Enterovirus) No 

Zheng et al. 201386 
2009 - 
2012 China 

Non-Polio Enteroviruses 
(NPEVs) 

Picornaviridae 
(Enterovirus) No 

Zhou et al. 2014101 
2013 - 
2013 China Human astroviruses Astroviridae (Unspecified) No 

Zhou et al. 2016102 
2014 - 
2014 China Human Astrovirus Astroviridae (Unspecified) No 

a. Caliciviridae (Norovirus), Astroviridae (Unspecified), Adenoviridae (Unspecified), Picornaviridae 
(Enterovirus, Hepatovirus) 

b. Adenoviridae (Unspecified), Caliciviridae (Norovirus), Reoviridae (unspecified), Picornaviridae 
(Parechovirus, Enterovirus, Hepatovirus), Hepeviridae (Hepevirus) 

c. Adenovirus (AdV), JC polyomavirus (JCV), noroviruses (NoVs), sapovirus (SaV) and hepatitis A and E 
viruses (HAV and HEV) 

d. Adenoviridae (Unspecified), Polyomaviridae (Unspecified), Caliciviridae (Norovirus, Sapovirus), 
Picornaviridae (Hepatovirus), Hepeviridae (Hepevirus) 

e. Porcine circovirus type 2 (PCV2), porcine adenovirus (PAdV), human adenovirus (HAdV) and human 
norovirus (NoV) 

f. Pathogenic Human viruses (norovirus, astrovirus, rotavirus, adenovirus, Aichi virus, parechovirus, hepatitis 
A virus, and hepatitis E virus) 

g. Caliciviridae (Norovirus), Astroviridae (Unspecified), Reoviridae (Unspecified), Adenoviridae (Unspecified), 
Picornaviridae (Kobuvirus, Parechovirus, Hepatovirus), Hepeviridae (Hepevirus) 

h. Caliciviridae (Norovirus, Sapovirus), Picornaviridae (Hepatovirus, Enterovirus), Astroviridae (Unspecified), 
Adenoviridae (Unspecified) 

i. Enteroviruses (coxsackievirus (CV), echovirus (E), and EV strains: CV-B5 Faulkner, E-3 Morrisey, E-7 
Wallace, E-20 JV-1, EV-D68 ATCC-VR 1197, EV-A71 C4/523-07T, CV-A16 and CV-B4) 

j. Adenoviridae, Astroviridae, Caliciviridae , Coronaviridae, Flaviviridae, Hepeviridae, Herpesviridae, 
Matonaviridae, Papillomaviridae, Parvoviridae, Picornaviridae, Poxviridae, Retroviridae, and Togaviridae 
(norovirus GII, sapovirus, hepatitis A virus, human herpesvirus 6, and human herpesvirus 8) 

k. Adenoviridae (Unspecified), Astroviridae (Unspecified), Caliciviridae (Norovirus, Sapovirus), Coronaviridae 
(Unspecified), Flaviviridae (Unspecified), Hepeviridae (Unspecified), Herpesviridae (Unspecified), 
Matonaviridae (Unspecified), Papillomaviridae (Unspecified), Parvoviridae (Unspecified), Picornaviridae 
(Hepatovirus), Poxviridae (Unspecified), Retroviridae (Unspecified), and Togaviridae (Unspecified) 

l. Adenovirus, Enterovirus, Rotavirus, Hepatitis A, Iridoviridae, Papillomaviridae, Polyomaviridae, Poxviridae, 
Picobirnaviridae, Reoviridae, Retroviridae, Anelloviridae, Circoviridae, Parvoviridae, Bunyaviridae, 
Orthomyxoviridae, Mononegavirales, AstrNidovirales, Nodaviridae, Picornaviridae, Adenoviridae, 
Herpesvirales, Human papillomavirus (HPV), Cacipacore virus, Flavivirus, Zika virus, astrovirus, 
picobirnavirus, circovirus, tanapox virus, Torque teno virus, Ebola virus 

m. Adenoviridae (Unspecified), Picornaviridae (Enterovirus), Reoviridae (Unspecified), Picornaviridae 
(Hepatovirus), Iridoviridae (Unspecified), Papillomaviridae (Alphapapillomavirus, Unspecified), 
Polyomaviridae (Unspecified), Poxviridae (Unspecified), Picobirnaviridae (Unspecified), Reoviridae 
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(Unspecified), Retroviridae (Unspecified), Anelloviridae (Unspecified), Circoviridae (Unspecified), 
Parvoviridae (Unspecified), Bunyaviridae (Unspecified), Orthomyxoviridae (Unspecified), Mononegavirales 
(Unspecified), Astroviridae (Unspecified), Flaviviridae (Unspecified), Hepeviridae (Unspecified), 
Nidovirales(Unspecified) , Nodaviridae (Unspecified), Picornaviridae (Unspecified), Filoviridae (Ebolavirus) 

n. Adenovirus, aichivirus, astrovirus, cosavirus, enterovirus, hepatitis A and E viruses, norovirus of genogroups 
I and II, rotavirus A and salivirus 

o. Caliciviridae (Norovirus), Astroviridae (Unspecified), Adenoviridae (Unspecified), Reoviridae (Unspecified), 
Picornaviridae (Enterovirus, Hepatovirus, Cosavirus, Salivirus), Hepeviridae (Hepevirus) 

p. Adenoviridae (Mastadenovirus), Astroviridae (Unspecified), Picornaviridae (Enterovirus) 
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