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ABSTRACT 

Using real-world data and past vaccination data, we conducted a large-scale experiment to quantify 

bias, precision and timeliness of different study designs to estimate historical background (expected) 

compared to post-vaccination (observed) rates of safety events for several vaccines. We used 

negative (not causally related) and positive control outcomes. The latter were synthetically 

generated true safety signals with incident rate ratios ranging from 1.5 to 4.  

Observed vs. expected analysis using within-database historical background rates is a sensitive but 

unspecific method for the identification of potential vaccine safety signals. Despite good 

discrimination, most analyses showed a tendency to overestimate risks, with 20%-100% type 1 error, 

but low (0% to 20%) type 2 error in the large databases included in our study. Efforts to improve the 

comparability of background and post-vaccine rates, including age-sex adjustment and anchoring 

background rates around a visit, reduced type 1 error and improved precision but residual 

systematic error persisted. Additionally, empirical calibration dramatically reduced type 1 to nominal 

but came at the cost of increasing type 2 error. 

Our study found that within-database background rate comparison is a sensitive but unspecific 

method to identify vaccine safety signals.  The method is positively biased, with low (<=20%) type 2 

error, and  20% to 100% of negative control outcomes were incorrectly identified as safety signals 

due to type 1 error. Age-sex adjustment and anchoring background rate estimates around a 

healthcare visit are useful strategies to reduce false positives, with little impact on type 2 error. 

Sufficient sensitivity was reached for the identification of safety signals by month 1-2 for vaccines 

with quick uptake (e.g., seasonal influenza), but much later (up to month 9) for vaccines with slower 

uptake (e.g., varicella-zoster or papillomavirus). Finally, we reported that empirical calibration using 

negative control outcomes reduces type 1 error to nominal at the cost of increasing type 2 error. 
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INTRODUCTION 

As regulators across the world evaluate the first signals of post-marketing safety potentially 

associated with coronavirus disease 2019 (COVID-19) vaccines, they rely on the use of historical 

comparisons with so-called “background rates” for the events of interest to identify outcomes 

appearing more often than expected following vaccination. However, a literature gap remains on the 

reliability of these methods, their associated error(s), and the impact of potential strategies to 

mitigate them. We therefore aimed to study the bias, precision, and timeliness associated with the 

use of historical comparisons between post-vaccine and background rates for the identification of 

safety signals. We tested strategies for background rate estimation (unadjusted, age-sex adjusted, 

and anchored around a healthcare visit), and studied the impact of empirical calibration on type 1 

and type 2 error. 
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MANUSCRIPT TEXT 

BACKGROUND 

One of the most common study designs in vaccine safety surveillance is the use of a cohort study with 

a historical comparison as a benchmark. This design allows the observed incidence of adverse events 

of the studied vaccine following immunization (AEFI) to be compared with the expected incidence of 

AEFI projected based on historical data (1). Alleged strengths include greater statistical power to 

detect rare AEFIs, as well as improved timeliness in detecting potential safety signals by leveraging 

retrospective data for analysis. There are, however, also caveats with this study design (2). Firstly, the 

historical population must be similar to the vaccinated cohort to obtain comparable estimates of 

baseline risk. Secondly, the design is subject to various temporal confounders such as seasonality, 

changing trends in the detection of AEFIs, and variation in diagnostic or coding criteria over time. 

Thirdly, the design is highly dependent on an accurate estimation of background incidence rates of 

the AEFIs for comparison. 

Historical rate comparison has been suggested for use in several vaccine safety guidelines, including 

the European Network of Centres of Pharmacoepidemiology and Pharmacovigilance (ENCePP), 

Council for International Organizations of Medical Sciences (CIOMS), and Good Pharmacovigilance 

Practices (GVP). It has also been applied extensively in various clinical domains, including the Center 

for Disease Control and Prevention (CDC)’s Vaccine Safety Datalink (VSD) project, which used 

background rates to detect safety signals for the human papillomavirus vaccine (HPV) (3), adult 

tetanus-diphtheria-acellular pertussis (Tdap) vaccine (4), and a broad range of paediatric vaccines (5, 

6). Historical data were used in Australia to detect signals for the rotavirus vaccine (7), and in Europe 

to detect signals for the influenza A H1N1 vaccine (8-10). While this study design is widely 

implemented, there is high variability in the specifics of methods used to calculate historical rates, 

including selection of target populations, time-at-risk windows, observation time and study settings.   

 

UNCERTAINTIES AND LIMITATIONS WITH THE USE OF HISTORICAL RATE COMPARISONS FOR 

VACCINE SAFETY MONITORING 

Several studies have acknowledged uncertainties associated with the use of background rates relating 

to temporal and geographical variations. In one study that applied both historical comparisons and 

self-controlled methods, a signal of seizure in the 2014 – 2015 flu season was detected in the latter 

analysis but not the former. The authors explained that one possible reason was that the historical 

rates used might not reflect the expected baseline rate in the absence of vaccination. A second 

explanation was a falsely elevated background rate because of the inclusion of events induced by a 

previous vaccine season. Other studies have highlighted the importance of accounting for 

demographic, secular and seasonal trends to appropriately interpret historical rates (5, 7). 

Nevertheless, the influence of such trends has not been studied systematically despite observed 

heterogeneity in historical incidence rates (5). 

It is also essential to consider the data source since there are differences in case ascertainment. This 

might lead to uncertainty in background rate estimates, especially in rare events(11). In addition, there 

might also be differences in the use of dictionary or codes to define an AEFI. For example, the 

spontaneous reporting system generally uses the Medical Dictionary for Regulatory Activities 

(MedDRA), while in observational databases different codes are used (e.g., International Classification 
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of Diseases (ICD), SNOMED-CT, READ) and the granularity of available coding can impact the sensitivity 

and specificity of phenotype algorithms. 

There have been suggestions on how to mitigate some of the differences between the historical and 

observed populations, including stratifying by age, gender, geographical or calendar time (3,5). While 

these approaches may reduce some differences, the distribution of the observed population is rarely 

known unless the study uses the spontaneous case’s demographic characteristics (of which the cases 

may be identified through the adverse event spontaneous system) as a proxy of the demographic 

characteristics of the observed population. This could potentially lead to a bias due to the estimation 

misclassification in each stratum based on the reporting rate (i.e. high vs. low reporting rates).  

Large databases that link medical outcomes with vaccine exposure data provide a means of assessing 

signals identified, as well as estimates of a true incidence of clinical events after vaccination. However, 

these systems can be affected by relatively small denominators (given the rarity of the event) of 

vaccinated subjects, and a time lag in the availability of data.  Very rare events or outcomes affecting 

a subset of the population might still be under-powered to assess a safety concern even when the 

data reflect the experience of millions of individuals (9). Heterogeneity in background rates across 

databases and age-sex strata may also persist even after robust data harmonization using common 

data models (12). 

 

OUR EXPERIMENT: INVESTIGATING THE BIAS, PRECISION AND TIMELINESS OF HISTORICAL RATE 

COMPARISONS FOR VACCINE SAFETY MONITORING 

We aimed to fill a gap in the existing literature by estimating the bias, precision and timeliness 

associated with the use of historical/background compared to post-vaccination rates of safety events 

using ‘real world’ (electronic health records and administrative health claims) databases from the US. 

Our study protocol is available in the EU PAS Register (EUPAS40259)(13), and all our analytical code is 

in GitHub (https://github.com/ohdsi-studies/Eumaeus). 

These data were previously mapped to the OMOP common data model (14). The list of included data 

sources, with a brief description, is available in Supplementary Table 1. 

We used retrospective data to study the following vaccines: 1) H1N1 vaccination (Sept 2009 to May 

2010), 2) different types of seasonal flu vaccination (Sept 2017 to May 2018), 3) varicella-zoster 

vaccination (Jan 2018 to Dec 2018), and 4) HPV 9-valent recombinant vaccine (Jan 2018 to Dec 2018). 

Specific RxNorm codes, follow-up periods, and cohort construction details are available in Appendix – 

Supplementary 2. Post-vaccination rates were obtained for the period of 1 to 9 months for H1N1 and 

seasonal flu, and 1 to 12 for varicella-zoster and HPV vaccines. Background (historical) rates were 

obtained from the general population, for the same range of months one year preceding each of these 

vaccines. To minimise confounding, three additional variations of background rates were estimated: 

1) age-sex adjusted rates; 2) visit-anchored rates; and 3) visit and age-sex adjusted rates. In the first, 

background rates were stratified by age (10-year bands) and sex. In the second option, background 

rates were estimated using the time-at-risk following a random outpatient visit. The third combined 

the two above to account for differences in socio-demographics and for the impact of anchoring 

(similar to anchoring post-vaccination in the exposed group). 

We employed negative control outcomes as a benchmark to estimate bias (15, 16). Negative controls 

are outcomes with no plausible causal association with any of the vaccines. As such, negative control 

outcomes should not be identified as a signal by a safety surveillance method, and any departure from 
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a null effect is therefore suggestive of bias due to type 1 error. A list of negative control outcomes was 

pre-specified for all four vaccine groups. To identify negative control outcomes that match the severity 

and prevalence of suspected vaccine adverse effects, a candidate list of negative controls was 

generated based on similarity of prevalence and percent of diagnoses that were recorded in an 

inpatient setting (as a proxy for severity). Manual review of this list by three clinical experts led to a 

final list including a total of 93 negative control outcomes. The full list is available in Supplementary 

Table 3.  

In addition, synthetic positive control outcomes were generated to measure type 2 error (14). Given 

the limited knowledge of such events and the lack of consistency in the true causal association 

amongst other problems [6], we computed synthetic positive controls with known (albeit in silico) 

causal associations with the vaccines under study [5,7]. Positive outcomes were generated by 

modifying negative control outcomes through injection of additional simulated occurrences of the 

outcome, with effect sizes equivalent to true incidence rate ratios (IRR) of 1.5, 2, and 4. With the 3 

mentioned true IRR, 93 negative controls were used to construct at most 93 × 3 = 279 positive control 

outcomes, although no positive controls were synthesized if for the negative control the number of 

outcomes was smaller than 25. The hazard for these outcomes was simulated to be increased for the 

period 1 day after vaccination until 28 days after vaccination, with a constant hazard ratio during that 

time.  

The estimated effect size for the association vaccine-outcome was based on IRR by dividing the 

observed (post-vaccine) over expected (historical) incidence rates. IRR were computed both with and 

without empirical calibration (17). This procedure first estimates the distribution of systematic error 

using the negative and positive control effect-estimates and their standard derivations, then returns 

calibrated p-values and confidence intervals.    

Bias was measured using: 1) Type 1 error, based on the proportion of negative control outcomes 

identified as safety signals according to p-value < 0.05; 2) Type 2 error, based on how often positive 

control outcomes were missed (not identified) as safety signals (p>0.05); 3) Area Under the receiver-

operator Curve (AUC) for the discrimination of effect size estimate between positive and negative 

controls; and 4) Coverage, defined by how often the true IRR was within the 95% confidence interval 

of the estimated IRR. 

Precision was measured using mean precision and mean squared error (MSE). Geometric mean 

precision was computed as 1 / (standard error)^2, with higher precision equivalent to narrower 

confidence intervals. MSE was obtained from the log of estimated IRRs and the log of the true HR. 

To understand the time it took the analysis method to identify a safety signal (aka timeliness), the 

follow-up (up to 12 months) occurring after each vaccine was divided into calendar months. For each 

month, the analyses were executed using the data accumulated until the end of that month, and bias 

and precision metrics were estimated.  

Finally, we studied the proportion of controls for which IRR were not estimable due to lack of 

participants exposed to the vaccine of interest. We also considered as not estimable (and therefore 

did not report) results for negative control outcomes with a population-based incidence rate changing 

>50% over time during the study period.  

 

FINDINGS 

Bias and precision 
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A total of four large databases were included, most including all four vaccines of interest: IBM 

MarketScan Commercial Claims and Encounters (CCAE), IBM MarketScan Multi-state Medicaid 

(MDCD), IBM MarketScan Medicare Supplemental Beneficiaries (MDCR), and Optum© de-identified 

Electronic Health Record dataset (Optum EHR). The basic socio-demographics of participants 

registered in each of these databases are reported in Table 1. All data sources had a majority of 

women, from 51.1% in CCAE to 56.23% in MDCD. As expected, data sources with older populations 

(e.g. IBM MDCR) had little exposure to HPV vaccination, but high numbers of participants exposed to 

seasonal influenza vaccination. All four data sources contributed information based on healthcare 

encounters in emergency rooms, outpatient as well as inpatient settings. 

Table 1. Socio-demographics of participants in the contributing data sources, and number of people 

contributing to the analyses of different vaccines per database 

Characteristics  CCAE  MDCR  MDCD  Optum EHR  

N   156,628,301 10,180,158 31,355,646 97,936,862 

Gender 
FEMALE  51.12% 55.27% 56.23% 53.57% 

MALE  48.88% 44.73% 43.77% 46.43% 

H1N1 vaccination 4,598,996 68,102 1,272,745 916,810 

Seasonal influenza vaccination  

 
26,049,416 2,073,263 8,874,620 19,272,358 

Zoster vaccination (Shingrix) 885,769 318,601 73,615 1,248,353 

HPV vaccination (Gardasil 9) 2,474,810 28 1,490,831 1,576,255 

Visit type 

Emergency Room Visit  96,540,106 18,193,226 88,932,340 88,309,754 

Inpatient Visit  26,354,555 9,758,649 17,608,722 55,025,828 

Outpatient Visit  3,458,510,610 692,011,670 1,901,593,906 2,000,705,685 

*CCAE: Commercial Claims and Encounters; MDCR: Truven Health MarketScan Medicare 

Supplemental; MDCD: Truven Health MarketScan Medicaid; Optum EHR: Optum© de-identified 

Electronic Health Record Dataset. 

Historical rate comparisons were –even in their simplest form— associated with low type 2 error (0% 

to 10%), but led to type 1 errors ranging between 30% (HPV in MDCD) and 100% (H1N1 and seasonal 

flu in Optum EHR). Adjustment for age and sex reduced type 1 error in some but not all scenarios, and 

had limited impact on type 2 error (maximum 20% in all the conducted analyses). However, age and 

sex adjusted comparisons were still prone to type 1 error, with most (12/13) analyses still incorrectly 

identifying >=40% negative controls as potential safety signals. Anchoring the estimation of 

background rates around a healthcare visit helped reduce type 1 error in some scenarios (e.g., H1N1 

in Optum EHR went from 100% to 50%), but increased it in others (e.g. H1N1 in CCAE increased from 

50% in the unadjusted to 80% in the anchored analysis). In addition, anchoring increased type 2 error 

in most of our analyses, although none exceeded 20% in any of the analyses. Finally, the analyses 

combining anchoring and age-sex adjustment led to observable reductions in type 1 error (e.g. from 

70% to 30% for HPV in CCAE), with negligible increases in type 2 error in most instances (e.g. from 10% 

to 20% for HPV in MDCD). Detailed results for unadjusted, age-sex adjusted, and anchoring scenarios 

are demonstrated in Figure 1.  
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Figure 1. Type 1 and Type 2 error in unadjusted, age-sex adjusted, and anchored background rate 

analyses  

CCAE: IBM MarketScan Commercial Claims and Encounters; MDCR: IBM Health MarketScan 

Medicare Supplemental; MDCD: IBM Health MarketScan Multi-state Medicaid; Optum EHR: 

Optum© de-identified Electronic Health Record Dataset. 

 

Historical rates comparison had overall good discrimination to distinguish true safety signals (i.e. 

positive control outcomes), with AUCs of 80% or over in all the analyses and databases. Age-sex 

adjustment and anchoring had little impact on this. Conversely, coverage was low, with many analyses 

failing to accurately measure and include the true effect of our negative and positive control outcomes 

(see Table 2). Coverage in unadjusted analyses ranged from 0 (H1N1 vaccines in Optum EHR) to 0.51 

(seasonal influenza vaccine in MDCR). Age-sex adjustment and anchoring had overall a positive effect 

on coverage, with little or no effect on discrimination (Table 2). Precision, as measured by mean 

precision and MSE, varied by database and vaccine exposure as reported in Table 2. Adjustment for 

age and sex and anchoring improved precision in most scenarios. 

Table 2. Discrimination (AUC), coverage, precision, and MSE in unadjusted (Unadj) as well as age-sex 

adjusted and anchored (Adj) analyses per vaccine and data source of interest 

Vaccine  

exposure 

Metric CCAE MDCD MDCR Optum EHR 

 Unadj Adj Unadj Adj Unadj Adj Unadj Adj 

H1N1 

AUC 0.91 0.93 0.76 0.86 N/A N/A 0.95 0.92 

Coverage 0.42 0.38 0.18 0.43 N/A N/A 0 0.22 

Mean  

precision 
148.85 132.95 99.1 75.46 

N/A N/A 
90.18 83.70 
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MSE 0.16 0.09 0.60 0.17 N/A N/A 0.78 0.23 

Seasonal  

influenza 

AUC 0.94 0.93 0.90 0.91 0.95 0.92 0.93 0.95 

Coverage 0.29 0.42 0.26 0.48 0.51 0.51 0.01 0.23 

Mean 

precision 
217.94 154.69 179.27 133.9 103.87 80.14 288.58 220.14 

MSE 0.13 0.10 0.26 0.12 0.09 0.09 0.92 0.11 

HPV 

AUC 0.82 0.84 0.88 0.87 NA NA 0.78 0.84 

Coverage 0.29 0.62 0.47 0.55 NA NA 0.28 0.52 

Mean  

precision 
82.44 61.73 71.99 59.08 NA NA 59.35 50.87 

MSE 0.39 0.21 0.4 0.19 NA NA 0.80 0.25 

Zoster 

AUC 0.86 0.96 N/A N/A 0.87 0.86 0.84 0.88 

Coverage 0.21 0.57 N/A N/A 0.39 0.59 0.08 0.20 

Mean  

precision 
98.16 89.12 

N/A N/A 
66.08 57.56 102.59 95.55 

MSE 0.49 0.21 N/A N/A 0.20 0.18 1.32 0.28 

 

The effect of empirical calibration 

Empirical calibration reduced type 1 error substantially, but increased type 2 error in all the tested 

scenarios (see Figure 2). In addition to this, calibration improved coverage without impacting AUC, 

and decreased precision in most scenarios (Table 3). 

Figure 2. Type 1 and type 2 error before vs. after empirical calibration 
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*CCAE: IBM MarketScan Commercial Claims and Encounters; MDCR: IBM Health MarketScan 

Medicare Supplemental; MDCD: IBM Health MarketScan Multi-state Medicaid; Optum EHR: 

Optum© de-identified Electronic Health Record Dataset. 

Table 3. Discrimination (AUC), coverage, precision, and MSE in unadjusted analyses per vaccine and 

data source of interest before (Uncal) and after calibration (Cal) 

Vaccine 

exposure 

Metric CCAE IBM MDCD IBM MDCR Optum EHR 

 Uncal Cal Uncal Cal Uncal Cal Uncal Cal 

H1N1 

AUC 0.91 0.91 0.76 0.76 N/A N/A 0.95 0.95 

Coverage 0.42 0.90 0.18 0.82 N/A N/A 0 0.81 

Mean 

precision 
148.85 7.34 99.10 3.52 

N/A N/A 
90.18 7.28 

MSE 0.16 0.14 0.60 0.34 N/A N/A 0.78 0.11 

Seasonal 

flu 

AUC 0.94 0.94 0.90 0.91 0.95 0.96 0.93 0.77 

Coverage 0.29 0.95 0.26 0.94 0.51 0.94 0.01 1 

Mean 

precision 
217.94 17.35 179.27 9.12 103.87 28.73 288.58 0 

MSE 0.13 0.07 0.26 0.12 0.09 0.06 0.92 1.86 

HPV 

AUC 0.82 0.79 0.88 0.85 NA NA 0.78 0.76 

Coverage 0.29 0.90 0.47 0.89 NA NA 0.28 0.88 

Mean 

precision 
82.44 6.64 71.99 6.19 NA NA 59.35 5.65 

MSE 0.39 0.22 0.40 0.26 NA NA 0.80 0.25 
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Zoster 

AUC 0.86 0.88 N/A N/A 0.87 0.86 0.84 0.80 

Coverage 0.21 0.98 N/A N/A 0.39 0.95 0.08 1.00 

Mean 

precision 
98.16 7.33 

N/A N/A 
66.08 8.25 102.59 0 

MSE 0.49 0.18 N/A N/A 0.20 0.14 1.32 3.72 

 

Timeliness  

Most observed associations were unstable in the first few months of study, and stabilised around the 

true effect size in the first 2-3 months after campaign initiation for vaccines with rapid uptake like 

H1N1 or seasonal influenza. This stability was, however, not seen until much later, and sometimes not 

seen at all in the 12-month study period for vaccines with slower uptake like HPV or varicella-zoster. 

This is depicted in Figure 3 using data from CCAE as an illustrative example, and for all other databases 

in Supplementary Figures 1 to 3.  

 

 

Figure 3. Observed effect size for negative control outcomes (true effect size = 1) and positive control 

outcomes (true effect size = 1.5, 2 and 4) [left Y axis] and vaccine uptake [right Y axis and shaded 

orange area] over time in months [X axis] based on analyses of CCAE data. 

 

 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.10.21258463doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.10.21258463
http://creativecommons.org/licenses/by/4.0/


DISCUSSION 

Key results 

Our study found that unadjusted background rates comparison had low type 2 error of <10% in all 

analyses but unacceptably high type 1 error, up to 100% in some scenarios. The method is positively 

biased and uncalibrated estimates and p-values cannot be interpreted as intended; while it may be 

encouraging that most positive effects can be identified at a decision threshold of p<0.05, this 

threshold will also yield a substantial proportion of false positive findings. Age-sex adjustment and 

anchoring background rate estimation around a healthcare visit were useful strategies to reduce type 

1 error to around 50%, while maintaining sensitivity. Empirical calibration led to restoration of type 1 

error to nominal but correction for positive bias necessitates increasing type 2 error. In terms of 

timeliness, background rate comparisons were sensitive methods for the early identification of 

potential safety signals. However, most associations were exaggerated and unstable in the first few 

months of vaccination campaign. Vaccines with higher uptake, such as H1N1 or seasonal flu, were 

associated with earlier identification of safety outcomes after launch in the analyses of vaccines with 

rapid uptake like H1N1 or seasonal influenza. 

Previous studies have shown that background incidence rates of AESI vary between age and sex (9). 

For example, the incidence of Bell’s palsy in adults aged over 65 years is 4 times that in paediatric 

population in the UK; whereas the risk of optic neuritis is higher in females than males with the same 

age group in Sweden. Therefore, it is crucial that age and sex are adjusted for when using background 

incidence rates for comparison. Nonetheless, Li et al (12) found considerable heterogeneity in 

incidence rates of AESI within age-sex stratified subgroups. This suggests that residual patient-level 

differences in characteristics such as comorbidities and medication use remained. Background rates 

comparison assumes that the background incidence in the overall population is similar to the 

vaccinated population. This assumption may not be valid because of confounding by indication, where 

the vaccinated population has more chronic conditions than the unvaccinated population. Conversely, 

the healthy vaccinee effect could occur, where on average healthier patients are more likely to adhere 

to annual influenza vaccination (18).    

 

Research in context 

Post-marketing surveillance is required to ensure the safety of vaccines, so that the public do not avoid 

getting life-saving vaccinations because of concerns that vaccine risks are not monitored, and that any 

potential risks do not outweigh the vaccine’s benefits. The goal of these surveillance systems is to 

detect safety signals in a timely manner without raising excessive false alarms. There is an implicit 

trade-off between sensitivity (type 2 error) and specificity (type 1 error). Claims extending from a false 

positive result that is suggestive of an adverse event of a vaccine, fueled by sensationalism and 

unbalanced reporting in the media, could have devastating consequences on public health. A classic 

example of harm is the link between the MMR vaccine and autism. Although the fraudulent report by 

Wakefield has been retracted and many subsequent studies found no association, its lasting effects 

can be seen in falling MMR vaccination rates below the recommend levels from the World Health 

Organization (19). Expert consensus alleged that this was a contributing factor in measles being 

declared endemic in the United Kingdom in 2008 (20) and sporadic outbreaks in the United States in 

recent years (21).  On the other hand, missing safety signals could put patients at risk as well as 

dampen public confidence in vaccination. Transparency is needed when communicating vaccination 

results to the public. However, it is a tricky balance to put both the benefits and harms of vaccination 
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in context. The urgency to act quickly on the basis of incomplete real-world data could lead to 

confusion about vaccination safety. Negative perceptions about vaccination can be deeply entrenched 

and difficult to address. A starting point could be to include relevant background rates to provide 

comparison to other scenarios. As reported in our study, age and sex-adjusted rates are crucial to 

minimise false positive safety signals. Another form of communication could be using infographics to 

weigh harms versus benefits, illustrating the differential risks in various age groups as was shown by 

researchers from the University of Cambridge who contrasted the prevention of ICU admissions due 

to COVID-19 against the risk of blood clots due to the vaccine in specific age groups (22).    

 

Strengths and limitations 

The strength of this study lies in the implementation of a harmonised protocol across multiple 

databases, which allows us to compare the findings across different healthcare systems. The use of a 

common data model allows the experiment to be replicated in future databases while maintaining 

patient privacy as patient-level data will not be shared outside of each institution. Use of real negative 

and synthetic positive control outcomes provides an independent estimate of residual bias in the 

study design and data source. The fully specified study protocol was published before analysis began 

and dissemination of the results did not depend on estimated effects, thus avoiding publication bias. 

All codes used to define the cohort, exposures, and outcomes as well as analytical code are made open 

source to enhance transparency and reproducibility.     

In secondary use of health data, misclassification of treatment and outcomes as well as missing 

information due to patient care outside the respective health system are unavoidable. A strength of 

our study design is that it can help understand the bias inherent to the secondary use of health data. 

 

Future research and recommendations 

When using background rate comparison for post-vaccine safety surveillance, age-sex adjustment in 

combination with anchoring time-at-risk around an outpatient visit resulted in somewhat reduced 

type 1 error, without much impact on type 2 error. Residual bias, nonetheless, remained using this 

design, with very high levels of type 1 error observed in most analyses. Calibration is useful for 

reducing Type 1 error but at the expense of decreasing precision and consequently increasing type II 

error. Future studies using cohort and SCCS self-controlled cased series methods with empirical 

calibration will be evaluated.   
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Table 1: Database description 

Data source Short name Description 

Optum® de-

identified Electronic 

Health Record 

Dataset (Optum 

EHR) 

OPTUM_EHR_US Optum® de-identified Electronic Health Record Dataset 

is derived from dozens of healthcare provider 

organizations in the United States (that include more 

than 700 hospitals and 7,000 Clinics treating more than 

103 million patients) receiving care in the United States. 

The medical record data includes clinical information, 

inclusive of prescriptions as prescribed and 

administered, lab results, vital signs, body 

measurements, diagnoses, procedures, and information 

derived from clinical Notes using Natural Language 

Processing (NLP). 

IBM MarketScan 

Medicare 

Supplemental and 

Coordination of 

Benefits Database 

(MDCR) 

MDCR_US IBM MarketScan Medicare Supplemental and 

Coordination of Benefits Database (MDCR) 

representshealth services of retirees in the United States 

with primary or Medicare supplemental coveragethrough 

privately insured fee-for-service, point-of-service, or 

capitated health plans. These datainclude adjudicated 

health insurance claims (e.g. inpatient, outpatient, and 

outpatient pharmacy).Additionally, it captures laboratory 

tests for a subset of the covered lives. 

IBM MarketScan 

Multi-State 

Medicaid Database 

(MDCD) 

MDCD_US IBM MarketScan Multi-State Medicaid Database 

(MDCD) contains adjudicated US health insur-ance 

claims for Medicaid enrollees from multiple states and 

includes hospital discharge diagnoses,outpatient 

diagnoses and procedures, and outpatient pharmacy 

claims as well as ethnicity andMedicare eligibility. 

Members maintain their same identifier even if they 

leave the system for a briefperiod; however the dataset 

lacks lab data. 
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IBM MarketScan 

Commercial Claims 

and Encounters 

Database (CCAE) 

CCAE_US IBM MarketScan Commercial Claims and Encounters 

Database (CCAE) is a US employer-based private-payer 

administrative claims database. The data include 

adjudicated health insurance claims (e.g. inpatient, 

outpatient, and outpatient pharmacy) as well as 

enrollment data from large employers and health plans 

who provide private healthcare coverage to employees, 

their spouses, and dependents. Additionally, it captures 

laboratory tests for a subset of the covered lives. This 

administrative claims database includes a variety of fee-

for-service, preferred provider organizations, and 

capitated health plans. 

 

2. Exposure Cohort Definitions 

2.1 H1N1 Vaccines 

2.1.1 Cohort Entry Events 

People enter the cohort when observing any of the following: 

1. drug exposures of ‘H1N1 vaccine,’ starting between September 1, 2009 and May 31, 2010. 

Limit cohort entry events to the earliest event per person. 

2.1.2 Cohort Exit 

The cohort end date will be offset from index event’s start date plus 0 days. 

2.1.3 Cohort Eras 

Entry events will be combined into cohort eras if they are within 0 days of each other. 

2.1.4 H1N1 vaccine 

Concept 
ID Concept Name Code Vocabulary Excluded Descendants Mapped 

40213187 Novel influenza-
H1N1-09, all 
formulations 

128 CVX NO YES NO 

40166607 influenza A-
California-7-2009-
(H1N1)v-like virus 
vaccine 0.03 
MG/ML Injectable 
Suspension 

864704 RxNorm NO YES NO 

40166130 0.25 ML influenza 
A-California-7-2009-

864781 RxNorm NO YES NO 
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(H1N1)v-like virus 
vaccine 0.03 
MG/ML Prefilled 
Syringe 

40166144 0.5 ML influenza A-
California-7-2009-
(H1N1)v-like virus 
vaccine 0.03 
MG/ML Prefilled 
Syringe 

864797 RxNorm NO YES NO 

42902936 influenza A-
California-7-2009-
(H1N1)v-like virus 
vaccine 0.03 
MG/ML Prefilled 
Syringe 

1360049 RxNorm NO YES NO 

40240135 influenza A-
California-7-2009-
(H1N1)v-like virus 
vaccine 0.09 
MG/ML 

1111367 RxNorm NO YES NO 

40225009 influenza A-
California-7-2009-
(H1N1)v-like virus 
vaccine 0.12 
MG/ML 

1005949 RxNorm NO YES NO 

40166608 influenza A-
California-7-2009-
(H1N1)v-like virus 
vaccine 158000000 
UNT/ML 

864812 RxNorm NO YES NO 

45776785 influenza A-
California-7-2009-
(H1N1)v-like virus 
vaccine 50000000 
MG/ML 

1543758 RxNorm NO YES NO 

40166609 influenza A-
California-7-2009-
(H1N1)v-like virus 
vaccine Injectable 
Suspension 

864703 RxNorm NO YES NO 
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40166611 influenza A-
California-7-2009-
(H1N1)v-like virus 
vaccine Prefilled 
Syringe 

864780 RxNorm NO YES NO 

 

2.2 Seasonal Flu Vaccines (All) 

2.2.1 Cohort Entry Events 

People enter the cohort when observing any of the following: 

1. drug exposures of ‘Seasonal flu vaccine,’ starting between September 1, 2017 and May 31, 
2018. 

Limit cohort entry events to the earliest event per person. 

2.2.2 Cohort Exit 

The cohort end date will be offset from index event’s start date plus 0 days. 

2.2.3 Cohort Eras 

Entry events will be combined into cohort eras if they are within 0 days of each other. 

2.2.4 Seasonal flu vaccine 

Concept 
ID Concept Name Code 

Vocabular
y 

Exclude
d 

Descendan
ts 

Mappe
d 

4021314
5 

influenza, injectable, 
quadrivalent, 
contains 
preservative 

158 CVX NO YES NO 

4290344
2 

influenza B virus 1312376 RxNorm NO YES NO 

4021315
0 

influenza, live, 
intranasal, 
quadrivalent 

149 CVX NO YES NO 

4021315
9 

influenza virus 
vaccine, whole virus 

16 CVX NO YES NO 

4022502
8 

influenza virus 
vaccine, inactivated 
A-Victoria-210-2009 
X-187 (H3N2) (A-

1005931 RxNorm NO YES NO 
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Perth-16-2009) 
strain 

4021315
6 

influenza virus 
vaccine, split virus 
(incl. purified surface 
antigen)-retired 
CODE 

15 CVX NO YES NO 

4021315
1 

Seasonal, trivalent, 
recombinant, 
injectable influenza 
vaccine, preservative 
free 

155 CVX NO YES NO 

4021332
7 

influenza nasal, 
unspecified 
formulation 

151 CVX NO YES NO 

4021314
8 

influenza, 
intradermal, 
quadrivalent, 
preservative free, 
injectable 

166 CVX NO YES NO 

4021315
8 

influenza virus 
vaccine, unspecified 
formulation 

88 CVX NO YES NO 

3687871
3 

Influenza Virus 
Fragmented, 
Inactivated, Strain B 
/ Phuket / 
3073/2013 

OMOP9895
77 

RxNorm 
Extension 

NO YES NO 

4287396
1 

influenza B virus 
vaccine, B-
Wisconsin-1-2010-
like virus 

1303855 RxNorm NO YES NO 

4022503
8 

influenza virus 
vaccine, live 
attenuated, A-Perth-
16-2009 (H3N2) 
strain 

1005911 RxNorm NO YES NO 

4021314
6 

Influenza, injectable, 
quadrivalent, 
preservative free 

150 CVX NO YES NO 
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4021314
3 

Influenza, injectable, 
Madin Darby Canine 
Kidney, preservative 
free, quadrivalent 

171 CVX NO YES NO 

3687902
5 

Influenza Virus 
Surface Antigens, 
strain A / 
Switzerland / 
9715293/2013 H3N2 
- Analogue Strain 
Nib-88 

OMOP9916
45 

RxNorm 
Extension 

NO YES NO 

4021315
7 

Seasonal trivalent 
influenza vaccine, 
adjuvanted, 
preservative free 

168 CVX NO YES NO 

4577607
6 

influenza A virus 
vaccine, A-Texas-50-
2012 (H3N2)-like 
virus 

1541617 RxNorm NO YES NO 

4021314
9 

influenza virus 
vaccine, live, 
attenuated, for 
intranasal use 

111 CVX NO YES NO 

4021314
7 

Influenza, 
injectable,quadrivale
nt, preservative free, 
pediatric 

161 CVX NO YES NO 

4021315
2 

Seasonal, 
quadrivalent, 
recombinant, 
injectable influenza 
vaccine, preservative 
free 

185 CVX NO YES NO 

4290344
1 

influenza A virus 1312375 RxNorm NO YES NO 

4021314
1 

influenza, high dose 
seasonal, 
preservative-free 

135 CVX NO YES NO 

4021315
3 

Influenza, seasonal, 
injectable 

141 CVX NO YES NO 
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4021314
4 

Influenza, injectable, 
Madin Darby Canine 
Kidney, quadrivalent 
with preservative 

186 CVX NO YES NO 

4021314
2 

Influenza, injectable, 
Madin Darby Canine 
Kidney, preservative 
free 

153 CVX NO YES NO 

4021315
5 

seasonal influenza, 
intradermal, 
preservative free 

144 CVX NO YES NO 

4016482
8 

influenza B virus 
vaccine 
B/Brisbane/60/2008 
antigen 

857921 RxNorm NO YES NO 

 

2.3 HPV Vaccines 

2.3.1 Cohort Entry Events 

People enter the cohort when observing any of the following: 

1. drug exposures of ‘Gardasil 9,’ starting between January 1, 2018 and December 31, 2018. 

2.3.2 Cohort Exit 

The cohort end date will be offset from index event’s start date plus 0 days. 

2.3.3 Cohort Eras 

Entry events will be combined into cohort eras if they are within 0 days of each other. 

2.3.4 Gardasil 9 

Concept 
ID Concept Name Code Vocabulary Excluded Descendants Mapped 

36248866 Gardasil 9 
Injectable Product 

1597098 RxNorm NO YES NO 

45892513 L1 protein, human 
papillomavirus type 
11 vaccine / L1 
protein, human 
papillomavirus type 
16 vaccine / L1 
protein, human 

1597102 RxNorm NO YES NO 
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papillomavirus type 
18 vaccine / L1 
protein, human 
papillomavirus type 
31 vaccine / L1 
protein, human 
papillomavirus type 
33 vaccine / 

45892514 0.5 ML L1 protein, 
human 
papillomavirus type 
11 vaccine 0.08 
MG/ML / L1 
protein, human 
papillomavirus type 
16 vaccine 0.12 
MG/ML / L1 
protein, human 
papillomavirus type 
18 vaccine 0.08 
MG/ML / L1 
protein, human 
papillomavirus type 
31 vaccine 0.04 
MG/ML / 

1597103 RxNorm NO YES NO 

45892510 0.5 ML L1 protein, 
human 
papillomavirus type 
11 vaccine 0.08 
MG/ML / L1 
protein, human 
papillomavirus type 
16 vaccine 0.12 
MG/ML / L1 
protein, human 
papillomavirus type 
18 vaccine 0.08 
MG/ML / L1 
protein, human 
papillomavirus type 
31 vaccine 0.04 
MG/ML / 

1597099 RxNorm NO YES NO 
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40213322 Human 
Papillomavirus 9-
valent vaccine 

165 CVX NO YES NO 

 

2.4 Zoster Vaccines 

2.4.1 Cohort Entry Events 

People enter the cohort when observing any of the following: 

1. drug exposures of ‘Shingrix,’ starting between January 1, 2018 and December 31, 2018. 

2.4.2 Cohort Exit 

The cohort end date will be offset from index event’s start date plus 0 days. 

2.4.3 Cohort Eras 

Entry events will be combined into cohort eras if they are within 0 days of each other. 

2.4.4 Shingrix 

Concept 
ID 

Concept 
Name Code Vocabulary Excluded Descendants Mapped 

792784 varicella 
zoster virus 
glycoprotein 
E Injection 
Shingrix 

1986828 RxNorm NO YES NO 

792783 varicella 
zoster virus 
glycoprotein 
E, 
recombinant 
0.1 MG/ML 
Shingrix 

1986827 RxNorm NO YES NO 

792788 varicella 
zoster virus 
glycoprotein 
E, 
recombinant 
0.1 MG/ML 
Injection 
Shingrix 

1986832 RxNorm NO YES NO 
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36421491 Varicella-
Zoster Virus 
Vaccine Live 
(Oka-Merck) 
strain 
Injectable 
Solution 
Shingrix 

OMOP4763774 RxNorm 
Extension 

NO YES NO 

792785 Shingrix 
Injectable 
Product 

1986829 RxNorm NO YES NO 

706103 zoster 
vaccine 
recombinant 

187 CVX NO YES NO 

 

 

Table 3: Negative control outcomes. 

Outcome Id Outcome Name 

438945 Accidental poisoning by benzodiazepine-based tranquilizer 

434455 Acquired claw toes 

316211 Acquired spondylolisthesis 

201612 Alcoholic liver damage 

438730 Alkalosis 

441258 Anemia in neoplastic disease 

432513 Animal bite wound 

4171556 Ankle ulcer 

4098292 Antiphospholipid syndrome 

77650 Aseptic necrosis of bone 

4239873 Benign neoplasm of ciliary body 

23731 Benign neoplasm of larynx 

199764 Benign neoplasm of ovary 

195500 Benign neoplasm of uterus 

4145627 Biliary calculus 

4108471 Burn of digit of hand 

75121 Burn of lower leg 

4284982 Calculus of bile duct without obstruction 
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434327 Cannabis abuse 

78497 Cellulitis and abscess of toe 

4001454 Cervical spine ankylosis 

4068241 Chronic instability of knee 

195596 Chronic pancreatitis 

4206338 Chronic salpingitis 

4058397 Claustrophobia 

74816 Contusion of toe 

73302 Curvature of spine 

4151134 Cyst of pancreas 

77638 Displacement of intervertebral disc without myelopathy 

195864 Diverticulum of bladder 

201346 Edema of penis 

200461 Endometriosis of uterus 

377877 Esotropia 

193530 Follicular cyst of ovary 

4094822 Foreign body in respiratory tract 

443421 Gallbladder and bile duct calculi 

4299408 Gouty tophus 

135215 Hashimoto thyroiditis 

442190 Hemorrhage of colon 

43020475 High risk heterosexual behavior 

194149 Hirschsprung’s disease 

443204 Human ehrlichiosis 

4226238 Hyperosmolar coma due to diabetes mellitus 

4032787 Hyperosmolarity 

197032 Hyperplasia of prostate 

140362 Hypoparathyroidism 

435371 Hypothermia 

138690 Infestation by Pediculus 

4152376 Intentional self poisoning 

192953 Intestinal adhesions with obstruction 

196347 Intestinal parasitism 

137977 Jaundice 

317510 Leukemia 
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765053 Lump in right breast 

378165 Nystagmus 

434085 Obstruction of duodenum 

4147016 Open wound of buttock 

4129404 Open wound of upper arm 

438120 Opioid dependence 

75924 Osteodystrophy 

432594 Osteomalacia 

30365 Panhypopituitarism 

4108371 Peripheral gangrene 

440367 Plasmacytosis 

439233 Poisoning by antidiabetic agent 

442149 Poisoning by bee sting 

4314086 Poisoning due to sting of ant 

4147660 Postural kyphosis 

434319 Premature ejaculation 

199754 Primary malignant neoplasm of pancreas 

4311499 Primary malignant neoplasm of respiratory tract 

436635 Primary malignant neoplasm of sigmoid colon 

196044 Primary malignant neoplasm of stomach 

433716 Primary malignant neoplasm of testis 

133424 Primary malignant neoplasm of thyroid gland 

194997 Prostatitis 

80286 Prosthetic joint loosening 

443274 Psychostimulant dependence 

314962 Raynaud’s disease 

37018294 Residual osteitis 

4288241 Salmonella enterica subspecies arizonae infection 

45757269 Sclerosing mesenteritis 

74722 Secondary localized osteoarthrosis of pelvic region 

200348 Secondary malignant neoplasm of large intestine 

43020446 Sedative withdrawal 

74194 Sprain of spinal ligament 

4194207 Tailor’s bunion 

193521 Tropical sprue 
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40482801 Type II diabetes mellitus uncontrolled 

74719 Ulcer of foot 

196625 Viral hepatitis A without hepatic coma 

197494 Viral hepatitis C 

4284533 Vitamin D-dependent rickets 
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Supplementary Figures: Observed effect size for negative control outcomes (true effect size = 1) 
and positive control outcomes (true effect size = 1.5, 2 and 4) [left Y axis] and vaccine uptake 
[right Y axis and shaded orange area] over time in months [X axis]. 

Figure S1: IBM MDCD (unadjusted) 

 

Figure S2: IBM MDCR (unadjusted) 
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Figure S3: Optum EHR (unadjusted) 
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