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ABSTRACT 
Background 

The 10-year Atherosclerotic Cardiovascular Disease (ASCVD) risk score is the standard approach 
to predict risk of incident cardiovascular events and recently, addition of CAD polygenic scores 
(PGSCAD) have been evaluated.  Although age and sex strongly predict the risk of CAD, their 
interaction with genetic risk prediction has not been systematically examined.  
 
Objectives 

This study performed an in-depth evaluation of age and sex effects in genetic CAD risk prediction. 
 
Methods  

The population-based Norwegian HUNT2 cohort of 51,036 individuals was used as the primary 
dataset. Findings were replicated in the UK Biobank (372,410 individuals). Models for 10-year 
CAD risk were fitted using Cox proportional hazards and Harrell’s concordance index, sensitivity, 
and specificity were compared.  
 

Results 

Inclusion of age and sex interactions of PGSCAD to the prediction models increased C-index and 
sensitivity likely countering the observed survival bias in the baseline. The sensitivity for females 
was lower than males in all models including genetic information. The two-step approach 
identified a total of 82.6% of incident CAD cases (74.1% by ASCVD risk score and an additional 
8.5% by the PGSCAD interaction model). 
 
Conclusion 

These findings highlight the importance and complexity of genetic risk in predicting CAD. There 
is a need for modeling age and sex-interactions terms with polygenic scores to optimize detection 
of individuals at high-risk, those who warrant preventive interventions. Sex-specific studies are 
needed to understand and estimate CAD risk with genetic information. 
 
(239/250) 
 

CONDENSED ABSTRACT  

This study used two large population-based longitudinal datasets to evaluate genetic prediction of 
CAD including age and sex interactions. The model fit and sensitivity of the prediction models 
increased when including age and sex interaction of PGSCAD to the prediction models likely 
countering the observed survival bias in the baseline. The sensitivity for females was lower than 
for males in all models including genetic information.  Our results highlight the importance and 
complexity of genetic risk and suggest including age and sex interactions with polygenic scores to 
identify more high-risk individuals for preventive interventions.  
93/100 words  
 

Keywords: risk prediction, polygenic score, coronary artery disease, interactions, survival bias  
 
Abbreviations:  Atherosclerotic cardiovascular disease (ASCVD); Concordance index (Harrell’s 
C-index, referred to as C-index throughout the study); Coronary artery disease (CAD); Hazard 
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ratios (HRs); Pooled Cohort Equation (PCE); polygenic score (PGS); Trøndelag Health Study 
(HUNT); United Kingdom Biobank (UK Biobank)  
 
  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 28, 2021. ; https://doi.org/10.1101/2021.06.23.21259247doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.23.21259247
http://creativecommons.org/licenses/by-nc/4.0/


 5 

INTRODUCTION 

Coronary artery disease (CAD) is a complex disease influenced by risk factors including 

hypertension, hyperlipidemia, diabetes, tobacco use, age, and genetics, which leads to high 

morbidity and mortality(1). The American College of Cardiology / American Heart Association(2) 

recommends the Pooled Cohort Equation (PCE, or the 10-year Atherosclerotic Cardiovascular 

Disease [ASCVD] risk score) to estimate an individual’s risk using several demographic and 

cardiovascular disease risk factors. Other models include Systematic COronary Risk Evaluation 

(SCORE)(3), QRISK(4), Framingham risk score(5), and NORRISK(6). The predictive capacity of 

these models is moderate (C-index is between 0.6-0.8), depending on characteristics of the external 

validation dataset such as age and statin use(7-10).  

There is significant additive value of integrating genome-wide genetic data to enhance risk 

prediction using polygenic scores (PGS) (7-9(10)). Additionally, individuals with a PGS in the 

highest 8% of score distribution have a risk of CAD comparable to having monogenic familial 

hypercholesterolemia (3-fold increased risk) (10). To date, investigators have shown that adding 

PGS(11-17) to standard risk prediction algorithms enhances the power of the model to predict 

CAD, consistent with the estimated contribution of genetic factors responsible for 40-50% of CAD 

risk(18).  

The most predictive components of CAD prediction models are age and sex(2). The 

interplay of these two factors with the other traditional risk factors has been evaluated extensively 

in epidemiologic studies(2-6). However, careful consideration of age and sex interactions has not 

been systematically applied to genetic risk prediction. We used a longitudinal population-based 

dataset of 51,036 samples from Norway and performed Cox proportional hazards models to 

explore whether age and sex impact CAD genetic risk prediction. The objective was to identify 
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whether CAD genetic risk scores’ performance in the prediction of incident CAD depends on 

patient’s age and sex.  

MATERIALS AND METHODS 

Study Cohort  

The Trøndelag Health Study(19) (HUNT) has collected samples during three different time 

periods: HUNT1 (1984-1986), HUNT2 (1995-1997), and HUNT3 (2006-2008). Participation in 

HUNT is based on informed consent, and the study has been approved by the Data Inspectorate 

and the Regional Ethics Committee for Medical Research in Norway (REK: 2014/144). HUNT1 

was excluded because lipid panels were not available for this cohort while HUNT3 was excluded 

given a median follow-up time of less than 10 years. HUNT2 was the primary dataset (N= 80,658) 

for this analysis.  

Individuals with complete baseline information at the time of study enrollment, including 

cohort characteristics (Supplemental Table 1), hospital registry data, and genotype data available 

were included. The definition of CAD can be found from Supplemental Methods. Individuals 

with prevalent CAD at baseline were excluded. The final dataset consisted of 51,036 individuals 

between the ages of 19 to 99 years (median follow-up, 21.2 years). To estimate 10-year risk of 

CAD, the longitudinal data analyses were restricted to the first 10 years of follow-up. All but one 

(non-CAD related death during follow-up, censored in the analyses) of non-cases had a full 10 

years of follow-up. HUNT2 genotyping was performed using Illumina Human CoreExome v1.1 

array with 70,000 additional custom content beads and imputed from a combined imputation panel 

including HRC and 2,202 low-pass HUNT genomes using an approach described previously(20). 

Polygenic Risk Score Calculation 
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The CAD polygenic score (PGSCAD) used here is based on metaGRS weights from Inouye 

et al.(12). MetaGRS shows best performance metrics of the CAD scores in the PGS Catalog from 

where the weights were downloaded (https://www.pgscatalog.org). The PGSCAD was calculated as 

the weighted sum of effect alleles using the reported weights (wm)  

!"#!"#! =%&$"$,&
$

 

where Gm,i is the dosage of effect alleles of individual i for marker m. The resulting raw score 

follows a Gaussian distribution (Supplemental Figure 1A) and was adjusted with the first 10 

genetic principal components (Supplemental Figure 1B). The adjusted score was further inverse-

normal transformed for the analyses to have the hazard ratios (HR) on the standard deviation (SD)-

scale unless stated otherwise. The inverse normal transformation was performed in males and 

females separately for the sex-specific models. The PGSCAD does not include sex chromosome 

variants. 

ASCVD risk score  

 ASCVD risk was calculated using weights provided by American Heart Association 

Taskforce guidelines(21). In models where ASCVD risk was evaluated with the PGSCAD, the 

ASCVD risk was fitted into a Cox Proportional Hazards model as a continuous variable. The 

ASCVD values used in the Cox models range between (0,1) instead of percentages. As previously 

reported(22,23), ASCVD risk tends to overestimate the CAD risk for individuals in the highest 

risk groups.  Individuals with a predicted risk ≥ 7.5% for ASCVD were considered medium to 

high risk. This is also the threshold at which lipid lowering therapy is clinically-indicated in the 

United States (24). Using this threshold, the miscalibration observed in the ASCVD risk for those 

with high risk estimates should not have had a noticeable effect on the reclassification metrics 

(Supplemental Figure 2 A-B). 
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Replication cohort 

The United Kingdom (UK) Biobank dataset was used to replicate our findings. A full 

description of the dataset has been previously described(25). For this study, the dataset was 

restricted to individuals with European ancestry as the PGSCAD weights were from an association 

study of European ancestry only. Individuals with prevalent CAD events and individuals on lipid 

lowering medication were excluded from the analysis. Samples that were used to train the 

metaGRS in the original publication(12) were excluded to avoid possible bias. The final dataset 

had 372,410 individuals, of which 17,569 had an incident CAD event or CAD-related death over 

the 10.9-year follow-up. The CAD definition used in UK Biobank can be found in the 

Supplemental Methods. The UK Biobank cohort descriptive statistics can be found in 

Supplemental Table 2. All statistical models in UK Biobank were adjusted for baseline 

assessment center to account for possible geographical biases and most recent nation of abode to 

account for differences in follow-up time available for hospitals in England, Wales, and Scotland. 

Statistical Methods 

We used three main model types: linear models, Cox Proportional Hazards models for the 

combined data, and Cox Proportional Hazards models stratified by sex. The linear models were 

used to examine the non-time-dependent correlation structures between the variables of interest at 

baseline, whereas the Cox Proportional Hazards models were applied to examine the time-

dependent predictiveness of the variables over the 10-year follow-up. Supplemental Table 3 

summarizes the Cox models, including the models with combined data (models C1-C4) and the 

models stratified by sex (models S1-S3).  

To compare the different models to each other and their possible utility in clinical practice, 

we used the concordance index (Harrell’s C-index, referred to as C-index throughout the study), 
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sensitivity, and specificity. C-index is a model fit statistic for survival models that is a 

generalization of the receiver operating characteristic curve that also handles censored data. In 

practice, the higher the C-index, the better the estimated risk is in concordance with the observed 

risk (i.e., individuals with high predicted risk are incident cases, and those with low risk are non-

cases). However, sensitivity and specificity are dependent on the assigned risk threshold (7.5% in 

our study). Sensitivity is the proportion of cases assigned into the high-risk category while 

specificity is the proportion of non-cases in the low-risk category. 

All statistical analyses were performed in R version 3.6.3 (https://cran.r-project.org) with 

downloadable libraries survival (https://CRAN.R-project.org/package=survival) and 

PredictABEL (https://CRAN.R-project.org/package=PredictABEL). All HUNT2 participants 

were ascertained between 1995-1997, and therefore, it was not necessary to account for the 

possible baseline time-period effects. As such, the Cox Proportional Hazards models were fit with 

follow-up time as the time-scale using R function coxph(). 

 

RESULTS 

CAD Polygenic Score and Correlations with Age and Sex  

 We initially tested whether the genome-wide polygenic score for CAD estimated using 

metaGRS weights(12) (hereafter called the PGSCAD) was associated with sex or age in HUNT2 

before examining how to optimally account for age and sex in CAD risk-stratification model.  In 

principle, one would expect PGSs for various diseases to show equivalent distributions among 

males and females, provided age, sex, and ancestry are corrected in the underlying summary 

statistics, and sex-chromosomes are excluded from the evaluation.  However, the relationship 
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between the PGS, sex, and age could be impacted by ascertainment bias, undetected population 

stratification, or survival bias by genotype.   

 By considering baseline data only, we observed significant associations between 

enrollment age and PGSCAD  and between sex and PGSCAD (Supplemental Table 4A-B). These 

results suggest that there is non-random selection in the cohort related to PGSCAD, possibly 

ascertainment bias or survival effects. Based on the results from these two models, males at 

baseline had an average 0.06 SD-units lower PGSCAD than females, and the PGSCAD was 0.003 

SD-units lower per year of age. The association of age with PGSCAD was significant for both males 

and females (Supplemental Table 4C-D), although the effect for males was marginally higher 

(PGSCAD 0.0032 SD-units lower per year for males, 0.0025 for females) (Figure 1A). However, 

upon adding the interaction term to the linear regression model, age*sex term was not significant 

(P-value = 0.212). The sex-PGSCAD association was partly age dependent as the effect of sex on 

PGSCAD becomes non-significant (P-value = 0.404) when the interaction term is added 

(Supplemental Table 4E). The age and sex associations were confirmed by testing the models in 

the UK Biobank. In UK Biobank the interaction term age*sex on the PGSCAD was statistically 

significant (P-value = 1.0e-8; Supplemental Table 5A-C, Supplemental Figure 3A). The trends 

were reduced when including the prevalent cases (together with the baseline statin users in the UK 

Biobank) in the baseline analysis in both datasets, (N=1,455 in HUNT2, N=84,292 in UK Biobank; 

Figure 1B, Supplemental Table 6A-B, Supplemental Figure 3B). The slight gradual decrease 

in mean PGSCAD by age, particularly in men, could be due to lower survival of older males with 

high PGSCAD, who are probably absent from the cohort at baseline (and some of whom were 

excluded from analyses due to prevalent or earlier-onset CAD).  
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CAD Polygenic Score and Age and Sex Interaction Models  

We tested PGSCAD performance while explicitly modeling age, sex, and a comprehensive 

set of interaction terms to counter the survival bias observed at baseline. We used an additive 

PGSCAD model (model C1, Supplemental Table 8) as the comparison model to test the effect of 

added interaction effects to the model performance (Supplemental Table 9). To fully capture any 

potential interactions, we examined a model including all interaction terms of age, sex, and 

PGSCAD to test for the possible age-dependent (Age*PGSCAD term) and sex-dependent 

(Sex*PGSCAD term) behavior of the PGSCAD, and age-effects of the PGSCAD predictive 

performance that may differ between males and females (Age*Sex*PGSCAD term) (model C2).  

The sensitivity (78.4%) increased in the full interaction model (model C2, Supplemental 

Table 10) compared to the model with additive genetic effects only (model C1) (sensitivity 77.0%, 

Table 1) whereas the C-index did not show significant increase (model C2 C-index 0.839 [0.833; 

0.845], model C1 C-index 0.838 [0.832; 0.844]). Similarly in the UK Biobank, the C-index did 

not the same and sensitivity increased after adding the interaction terms while specificity 

decreased. The sensitivity and specificity values between the two cohorts are different likely due 

to the well-known bias towards healthier individuals in the UK Biobank dataset (consistent with 

later analyses where the 7.5% risk threshold to classifies a smaller proportion of individuals into 

the high-risk group). However, the proportional gain in the sensitivity was consistent between the 

two cohorts (1.8% increase in HUNT2 and 1.2% in UK Biobank). Figure 2 illustrates the effect 

of the Age*Sex*PGSCAD term in the HUNT2 dataset. The hazard ratios (HRs) for the PGSCAD on 

CAD 10-year risk with a model fit separately for males and females were not significantly 

different. However, we observed significant differences in model performance between the age 

groups when stratifying the dataset into three age-bins, demonstrating an age interaction. When 
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further stratifying both males and females separately into age bins (approximating the 

Age*Sex*PGSCAD interaction term in model C2), we observed small differences in the HRs 

between males and females in the same age bins. Simultaneously, we added an age*sex interaction 

term to ensure the model was valid by including all lower-level effects. The positive beta of this 

term indicates that irrespective of the PGSCAD, age increases the CAD risk more substantially for 

females compared to males, which could reflect the effect of menopause increasing the CAD risk 

in females(26).  

CAD Polygenic Score with ASCVD risk score   

Joint Modeling  

We expect that genetic risk will most likely be used in conjunction with or in addition to 

already existing risk estimates. With this in mind, we modeled the ASCVD risk score with the 

PGSCAD. Our model with additive effects only (model C3, Supplemental Table 11) had a higher 

C-index (0.842 [0.836; 0.848]) and slightly lower sensitivity than model C1 (76.8%), which 

suggests that including the ASCVD risk score (i.e., clinical score) on top of the PGSCAD does not 

increase the number of identified cases, but rather affects the specificity, which increases from 

76.8% (in model C1) to 77.4% (in model C3 which in includes ASCVD risk), and is observable 

by an increase in C-index. This finding could be caused by reduced transferability of PCE into 

Norwegian population. However, to evaluate the impact of the genetic interaction terms in a model 

with the clinical risk included, we tested the improvement in the model metrics by including the 

ASCVD risk score into the full PGSCAD interaction model (model C4, Table 2). This model had 

the highest C-index (0.845 [0.839; 0.851]) and sensitivity (79.6%) of the combined prediction 

models. Moreover, when comparing the model with PGSCAD and ASCVD predictors but without 

the interaction terms (model C3) to the same model but with full genetic interaction terms (model 
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C4) the sensitivity increased from 76.8% to 79.7% while specificity decreased from 77.4% to 

76.0%.  

Two-step Approach  

We also tested a scenario where the PGSCAD could be added as an independent risk 

estimation tool to identify additional cases that were not already identified by their ASCVD risk 

score. This two-step case identification procedure is based on two sequential and independent risk 

estimates. After identifying high-risk individuals by the ASCVD risk score, we applied the 

PGSCAD risk model to the remaining individuals, including interaction terms (effects coming from 

the model C2 for the full population with full population variable distributions). This staged 

approach, where ASCVD is first applied and PGSCAD with genetic interaction terms is then 

applied, newly classified 3,235 individuals as high-risk (8.3% of the remaining dataset or 27.2% 

of the total dataset) totaling to 82.6% of the cases identified with the two-step approach.  Among 

those newly classified, we observed 253 additional future cases during the 10-year follow-up 

(32.9% of the cases missed by the ASCVD score; Figure 3). If we used model C1 (the model 

without interaction terms) in the second step instead of the model C2 with the interactions, we 

would identify 81.5% of the total cases instead of 82.6%, highlighting the importance of interaction 

modeling also when using the sequential approach. The 253 additional incident cases identified 

using model C2 had a mean ASCVD risk of 4.73% ranging from 1.09% to 7.49%, suggesting the 

PGSCAD provides information orthogonal to the ASCVD. We identified the same number of cases 

when applying the PGSCAD model first (model C2) and then the ASCVD risk score (individuals 

that have either high PGSCAD model C2 risk or high ASCVD risk). However, using the ASCVD 

first and then applying the genetic model may be more cost efficient as the number of samples 
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needed to be genotyped is lower (only those with low ASCVD risk), and follows the current 

standard clinical practice for the first stage.   

 

Sex-Specific Models and Sex-Specificity of Model Metrics 

The currently applied clinical risk scores are typically applied to males and females 

separately instead of using sex-interaction models. To test the applicability of our PGSCAD 

interaction models in the similar manner, we tested the performance of models allowing for age-

dependence of the PGSCAD separately in males and females.  First, we evaluated the PGSCAD model 

without interactions (model S1, Supplemental Tables 12A-B). The C-indexes observed were 

0.850 [0.840; 0.860] for females and 0.816 [0.808; 0.824] for males, and the magnitude of the HR 

for the PGSCAD was similar for both sexes (HR females = 1.41 [1.33; 1.49], HR males = 1.43 [1.37; 

1.50]).  

The inclusion of the PGSCAD*Age interaction into the models (Supplemental Tables 13A-

B) did not notably change the C-indexes, even though the interaction term was significant for both 

sexes (P-value in females = 1.85e-6, in males = 8.91e-4). However, the sensitivity increased for 

both sexes in HUNT2 (Table 3A-B). In UK Biobank the sensitivity only increased for males 

(Supplementary Tables 14A-B). Finally, both C-index and sensitivity increased for both males 

and females when adding the ASCVD risk score to the model (model S3, Supplemental Tables 

15A-B). Lastly, we performed the two-step process described earlier for males and females 

separately by including i). the conventional ASCVD risk and ii) PGSCAD with age-interaction term. 

Using the two-step approach, we correctly re-classified an additional 194 and 59 future cases for 

males and females, respectively (38.3% and 22.4% of the cases missed by the ASCVD risk 

assessment). We observed increased sensitivity by the two-step approach also in the UK Biobank. 
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The corresponding numbers without the interaction terms in the second step were 183 future cases 

for males and 51 for females (36.1% and 19.4% of the cases missed by the ASCVD risk score). 

 

Sex-Specific Model Metrics and the Effect of the Risk Threshold 

 We saw lower sensitivity and higher specificity for females compared to males in all sex 

stratified models that included genetic information. These two metrics are dependent on the risk-

threshold. Therefore, we tested how changing the threshold would affect the risk classification. 

The sensitivity and specificity for males and females for varied risk-thresholds are presented in 

Supplemental Figures 4-7. For all of the stratified models, the percentages of individuals in the 

high-risk group were higher for males than for females at any given risk threshold. This finding 

was expected given that females have a lower overall prevalence of CAD. The proportion of 

individuals in the high-risk group based on ASCVD risk was close between the two sexes 

(Supplemental Figure 7). This is most likely due to the underestimation of the ASCVD risk seen 

for males when applying the ASCVD risk calculation to our test dataset (Supplemental Figure 

8). Supplemental Figure 9 shows the risk calibration for the model S3 as comparison. 

However, lower sensitivity was observed for females for models that include the PGSCAD. 

To achieve the same sensitivity observed for males at the 7.5% risk threshold (81.4%), we would 

need to lower the risk threshold in females to 5.0% (Supplemental Figures 4,5 and 6). In all three 

models (S1-3), the specificity in females with the 5.0% risk threshold was better than the 

specificity in males with the 7.5% risk threshold. 

 

DISCUSSION 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 28, 2021. ; https://doi.org/10.1101/2021.06.23.21259247doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.23.21259247
http://creativecommons.org/licenses/by-nc/4.0/


 16 

This study evaluated several statistical approaches in two population-based datasets to fine-

tune the prediction of individuals at risk for 10-year CAD events by accounting for different rates 

and age distributions of cardiovascular disease in males and females. We found that the C-index 

and sensitivity of the 10-year prediction of CAD improved by including sex and age interactions 

when modeling PGSCAD compared to a model without interaction effects in both datasets. Inclusion 

of the interaction terms most likely corrects for the survival bias observed and the implications of 

these results highlight the importance of modeling age and sex interactions in predicting CAD 

events with genetic information.  

In our baseline correlation checks, we observed significant associations between the 

genetic score and both age and sex, and replicated these findings in the UK Biobank. The observed 

associations suggest non-random selection related to genetics in the study cohorts, and we contend 

that the age association is derived from the survival bias of individuals with lower genetic risk of 

CAD. The sex association is most likely derived from the earlier onset of CAD in males, which 

enhances the survival bias of those with lower genetic risk in males. We expect these biases to be 

present in all cross-sectional studies where the age ranges over the expected age-of-onset of the 

studied disease. Moreover, the same biases are most likely also present in populations where risk 

estimates are applied to identify high-risk individuals. 

We evaluated the potential incorporation of genetic information into identifying at-risk 

individuals by applying joint modeling or by applying two risk estimates (clinical and genetic) in 

a sequential manner. Both of these approaches showed increased number of cases identified when 

the age and sex dependent behavior of the genetic risk was taken into account. Additionally, with 

genome-wide genotyping being translated into clinical settings, CAD risk prediction may be 

enhanced by the sequential two-step approach we evaluate here: i.) first apply the existing clinical 
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score (i.e., PCE/ASCVD risk score) and ii.) from those identified with a low ASCVD risk, apply 

a second model incorporating age, sex, and genetic information with age and sex interactions to 

identify additional high-risk individuals (Figure 4). Using our two-step approach with a set risk 

threshold of 7.5%, we identified a total of 82.6% of incident CAD diagnoses (74.1% by ASCVD 

risk estimation and an additional 8.5% by the PGSCAD interaction model). The newly identified 

future cases in the second step suggests that incorporating genetic information including age and 

sex interaction modeling captures cases that do not yet show clinical signs of atherosclerosis or 

hypertension (which are the biggest clinical contributors to the ASCVD risk after age and sex). 

The implications of these results could be two-fold i.) clinicians maintain the ability to identify 

high-risk individuals using the ASCVD risk tool, and ii.) clinicians with access to genetic 

information on patients are then able to more accurately discern which additional individuals may 

benefit from timely prevention strategies (Central Illustration). Implementation of this approach 

will require a large study with diverse populations to tests risk factors including genetic 

information to ascertain population level effects that can be applied to a single patient in clinical 

practice.  

For both cohorts, the sensitivity for females was consistently lower than for males. In the 

HUNT2 dataset, we found that similar sensitivity to predict female cases could be achieved by 

lowering the risk threshold for preventive therapies from 7.5% to 5.0%. Additionally, this would 

not result in a higher proportion of females recommended for treatment relative to males. We 

suggest that the risk threshold used in the genetic screening should be independently evaluated in 

males and females before applying genetic information in an equal manner in the clinical setting. 

For example, in our dataset, if we changed the risk threshold from 7.5% to 5.0% in females when 

applying the two-step sequential approach, we would increase the identification of cases from 
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81.9% to 86.2%% without increasing the proportional amount of females suggested for treatment 

(25.3%) relative to males recommended for treatment (36.0%). 

Our study has important limitations. First, the datasets used in this study, HUNT2 and UK 

Biobank, are sampled from different populations than the datasets in which the ASCVD score was 

originally created (different ancestry, country of residence, younger, and healthier). Moreover, the  

ASCVD score was developed to evaluate the risk of developing CAD or stroke. In our study, we 

used the ASCVD score to predict CAD event or death during the 10-year follow-up time. This 

approach may have caused the miscalibration observed in the HUNT2 study, which limits our 

ability to perform unbiased one-to-one comparisons between the performance of these scoring 

methods. However, the trends and conclusions reported herein do not rely on the exact ASCVD 

risk, but rather, compare the change in the metrics when modeling genetics with and without age 

and sex interaction terms. Second, the participants in this study are of European ancestry, and 

therefore, the results may not be generalizable to populations with other ancestries (27). Additional 

studies are needed to determine the importance of interaction effects in the genetic prediction of 

other traits and in diverse populations with different rates of clinical risk factors such as 

hypertension and high LDL cholesterol. Third, we tested the performance of the interaction models 

against only one clinical score, albeit the one recommended by the American Heart Association(2). 

Lastly, our models were based on only a single PGS, although the performance of several different 

genome-wide PGSs (i.e. those derived from statistical methods such as metaGRS, LDpred or PRS-

CS) have shown to be nearly equivalent in CAD prediction(28). 

 

Conclusion  
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All populations screened for CAD risk are subject to survival bias that shows as a depletion 

of high PGS individuals. Therefore, we suggest using age and sex interactions with the PGS in 

disease prediction. To predict future CAD events, the best performing models we identified utilize 

both clinical and genetic information including interactions -- whether applied as a single model 

or in a sequential two-step process. Moreover, CAD prediction studies with genetic information 

should focus on the sex-specific behavior of the predictors and prediction models to account for 

sex-specific genetic effects and differences in the incidence of CAD events between males and 

females. 
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Perspective 

Competency in Patient Care:  

Our results highlight the importance and complexity of the genetic risk in the predicting 

CAD events and suggest including age and sex interactions in prediction models to identify more 

high-risk individuals for early prevention, in addition to existing clinical tools. Application of 

polygenic risk scores to guide early preventive therapy needs to be considered in the context that 

risk estimation differs based on the age and sex of the patient. 

 

Translational Outlook  

Our findings present a path forward for future studies to comprehensively evaluate the age 

and sex-specific impact of risk-predicting genetic information. Fine-tuning the risk threshold for 

males and females separately is required to provide optimized risk information to patients and 

guide clinical decision-making focused on prevention.   

 

Data availability 

UK Biobank is freely available for research purposes (https://www.ukbiobank.ac.uk). HUNT2 
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Figure 1. Raw PGSCAD by age and sex in the cohort baseline. Illustration of the selection bias 

in the cohort baseline using lowess curves for PGSCAD by age for males and females separately. 

The plot has been zoomed in relative to the y-axis to better show the trends. Panel A shows the 

trends in the analysis dataset used in the Cox models (prevalent cases excluded) and panel B when 

prevalent cases are included. 
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Figure 2. Age dependence of the sex-effect. This figure shows the hazard ratios for PGSCAD in 

models fitted in 11 different subsets. Subsets were separated by sex (males, females), by age (<45-

year-old, between 45 and 70, and more than 70-year-old) and finally stratified by both. All models 

have been adjusted for within-bin age and age2-effects and additionally the 3 age-bin models for 

sex.  
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Figure 3. Illustration of the two-step approach combining ASCVD risk and the genetic risk 

model. This figure shows how combining the ASCVD and the genetic risk model with interactions 

in two consecutive steps allows for identification of additional cases. 
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Figure 4. Demonstration of the different risk models implementing clinical and genetic risk 

with interactions in a hypothetical population of 500,000 people. The CAD prevalence used in 

the demonstration is based on the current CAD prevalence in the US. 
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Central Illustration 
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Using the two step approach we were able to identify a total of 82.6% of

incident CAD cases; 74.1% by ASCVD risk score and an additional 8.5% by the

PGSCAD interaction model. These results highlight the importance of combined

utilization of both traditional and genetic risk estimation as well as the

implementation of the age and sex dependent behavior of the genetic risk.
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Table 1. Diagnostic metrics for additive PGSCAD model (model C1) and PGSCAD model with all interactions (model C2) in 
HUNT2 and UK Biobank.  

Dataset Risk model 

Incident 
cases with 

risk 
⋝7.5% 

Incident 
cases with 

risk 
<7.5% 

Non-cases 
with risk 
⋝7.5% 

Non-cases 
with risk 
<7.5% 

Specificity/ 
Selectivity 

Sensitivity/ 
Recall 

C-index  
[95% 

confidence 
interval] 

HUNT2 
PGSCAD additive 

model (model C1) 
2290 684 11133 36929 76.8% 77.0% 

0.838  
[0.832; 0.844] 

HUNT2 
PGSCAD with all 

interactions 
(model C2) 

2332 642 11539 36523 76.0% 78.4% 
0.839  

[0.833; 0.845] 

UK 
Biobank 

PGSCAD additive 
model (model C1) 

8688 8881 52201 233948 84.6% 66.4% 
0.743 

[0.739; 0.746] 

UK 
Biobank 

PGSCAD with all 
interactions 
(model C2) 

8996 8573 54913 231236 83.9% 67.2% 
0.743 

[0.740; 0.747] 

PGSCAD=Coronary artery disease polygenic score 
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Table 2. Model statistics for PGSCAD model with all interactions and ASCVD (model C4) 

Variable/term 
(units) 

Effect SE HR P-value 

Age2 (year2) -2.8e-3 1.5e-4 0.997 9.4e-83 

Sex (female=0, male=1) 3.24 0.255 25.47 7.1e-37 

Age (year) 0.417 0.018 1.517 3.25e-119 

PGSCAD (SD-unit) 1.21 0.182 3.369 2.3e-11 

ASCVD (risk/100) 3.01 0.199 20.33 1.2e-51 

Sex*Age (year for males compared to females) -0.041 3.8e-3 0.960 7.3e-28 

Sex*PGSCAD (SD-units for males compared to 
females) -0.436 0.221 0.647 0.048 

Age*PGSCAD (SD-units per year) -0.013 2.6e-3 0.987 6.9e-7 

Sex*Age*PGSCAD (SD-units per year for males 
compared to females) 

6.2e-3 3.2e-3 1.006 0.052 

SE=Standard error of the effect, HR=Hazard ratio, PGSCAD=Coronary artery disease polygenic score, SD=Standard deviation, 

ASCVD=Atherosclerotic cardiovascular disease risk score 
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Table 3A-B. Diagnostic metrics for sex-stratified models and ASCVD risk score 

A. Females 
Risk model  

Incident cases 
with risk 
⋝7.5% 

Incident cases 
with risk 
<7.5% 

Non-cases 
with risk 
⋝7.5% 

Non-cases 
with risk 
<7.5% 

Specificity/ 
Selectivity 

Sensitivity/ 
Recall 

C-index 
[95% confidence 

interval 

ASCVD 865 263 5171 21256 80.4% 76.7% 
NA* 

Additive PGSCAD model (model S1) 807 321 4658 21769 82.4% 71.5% 
0.850 

[0.840; 0.860] 

PGSCAD with age-interaction (model S2) 823 305 4792 21635 81.9% 73.0% 
0.851 

[0.843; 0.859] 

PGSCAD with age-interaction and 
ASCVD (model S3) 833 295 4707 21720 82.2% 73.8% 

0.859 
[0.851; 0.867] 

2 step: ASCVD then PGSCAD with age-
interaction ** 924 204 6032 20395 77.2% 81.9% 

NA* 

B. Males 
Risk model  

Incident cases 
with risk 
⋝7.5% 

Incident cases 
with risk 
<7.5% 

Non-cases 
with risk 
⋝7.5% 

Non-cases 
with risk 
<7.5% 

Specificity/ 
Selectivity 

Sensitivity/ 
Recall 

C-index 
[95% confidence 

interval 

ASCVD 1339 507 4808 16827 77.8% 72.5% 
NA* 

Additive PGSCAD model (model S1) 1504 342 6727 14908 68.9% 81.5% 
0.816 

[0.808; 0.824] 

PGSCAD with age-interaction (model S2) 1510 336 6745 14890 68.8% 81.8% 
0.816 

[0.808; 0.824] 

PGSCAD with age-interaction and 
ASCVD (model S3) 1537 309 6828 14807 68.4% 83.3% 

0.822 
[0.814; 0.830] 

2 step: ASCVD then PGSCAD with age-
interaction ** 1533 313 6928 14707 68.0% 83.0% 

NA* 

* C-index not available as the risk score is not based on a fitted model 
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**This is not a model but a sequential identification of high risk individuals using first ASCVD risk score ASCVD risk. 
ASCVD=Atherosclerotic cardiovascular disease risk score, PGSCAD=Coronary artery disease polygenic score 
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