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Abstract:  14 

Background: Rolling circle replication (RCR) is a novel technology that has not been 15 

applied to cell-free DNA (cfDNA) testing until recently.  Given the cost and simplicity 16 

advantages of this technology compared to other platforms currently used in cfDNA analysis, 17 

an assessment of RCR in clinical laboratories was performed.  Here, we present the first 18 

validation study from clinical laboratories utilizing RCR technology.   19 

 20 

Methods: 831 samples from spontaneously pregnant women carrying a singleton fetus and 21 

25 synthetic samples were analyzed for the fetal risk of Trisomy 21, Trisomy 18 and Trisomy 22 

13 by three laboratories on three continents.  All women who provided the samples were 23 

followed to birth, where evaluation for fetal aneuploidies was performed using newborn 24 

examinations and any suspected aneuploidies were confirmed with karyotyping.   25 

 26 

Results: The study found rolling circle replication to be a highly viable technology for 27 

clinical assessment of fetal aneuploidies with 100% sensitivity for T21 (95% CI:82.35% - 28 

100.00%); 100.00% sensitivity for T18 (71.51% - 100.00%)  and 100.00% sensitivity for T13 29 

analyses (66.37% - 100.00%).  The specificities were >99% for each trisomies [99.7% 30 

(99.01% - 99.97%) for T21; 99.5% (98.62% - 99.85%) for T18; 99.7% (99.03% - 99.97%) 31 

for T13], along with a first pass no-call rate of 0.93%.   32 

 33 

Conclusions: The study showed that using a rolling circle replication-based cfDNA system 34 

for the evaluation of the common aneuploidies would provide greater accuracy and clinical 35 

utility compared to conventional biochemical screening and comparable results to other 36 

reported cfDNA methodologies. 37 
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 41 

INTRODUCTION 42 

Trisomies are important chromosomal aberrations often associated with varying degrees of 43 

intellectual disabilities, several health and developmental defects, and whose incidence is 44 

correlated with increasing maternal age[1]. Although the average maternal age has increased 45 

globally in the last 50 years, the incidence of trisomy has significantly decreased during that 46 

time frame due to the increased utilization of improved prenatal screening tests[2]. 47 

Historically, these prenatal screening tests consisted of biochemical blood tests and/or 48 

ultrasound scans.  These conventional screening tests are still used globally, but due to their 49 

higher false positive rates and lower detection rates, they have started to be replaced by 50 

newer, more accurate technologies using the placental cell-free DNA (cfDNA) circulating in 51 

the maternal blood. Cell-free nucleic acids, also known as extracellular nucleic acids, are 52 

fragments of DNA or RNA molecules that are released from cells into the body fluids.   53 

Lo et al were the first to report that a portion of the cell-free DNA in maternal blood was 54 

from the fetus and placenta and to comment on how cell-free fetal DNA was suitable for 55 

prenatal examinations[3]. The introduction of cell-free DNA into prenatal clinical practice 56 

first started through the use of next-generation sequencing (NGS) technology for the 57 

assessment of Trisomy 21 (T21), Trisomy 18 (T18) and Trisomy 13 (T13), and was referred 58 

to as Non-Invasive Prenatal Testing (NIPT)[4,5]. Although NIPT has been shown to be 59 

highly accurate, the next generation sequencing techniques that were used has limited the 60 

global accessibility to this test due to its high cost and complexity. It has been noted that a 61 

considerable cost reduction is necessary to make this approach cost effective enough to be 62 
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commonly used[6]. Furthermore, the complexity of the NGS-based technologies adds 63 

additional hurdles to the ability of laboratories to implement this test. Vanadis® NIPT was 64 

developed without using NGS or polymerase chain reaction (PCR), to enable a cost effective 65 

and high performance cfDNA aneuploidy screening. 66 

Vanadis® NIPT is a new technology targeting relevant chromosomes based on a digital 67 

molecular quantification in a 96�well microplate[7,8].  The method converts targeted 68 

chromosomal fragments into digitally quantifiable objects through rolling circle replication 69 

and chromosome-specific labeling. The normalized ratio between the number of chromosome 70 

specific objects are then used to calculate the z-score which is mapped to a post-test risk. 71 

Here, we report on the clinical performance of the Vanadis® NIPT assay in PerkinElmer 72 

Genomics Laboratories.  73 

 74 

MATERIALS AND METHOD 75 

Ethics Statement: 76 

Protocols used for sample collection were approved by the Research Ethics Board of CHU de 77 

Québec (#2016-2989 and #2020-4895).  The study was performed in accordance with the 78 

ethical standards of the institutional and/or national research committees.  79 

Study Population and Clinical Evaluation: 80 

Validation protocols were written based upon templates relevant to the Vanadis system 81 

(Supplemental A and B).  Based on this, a total aggregated set of 831 samples from 82 

spontaneously pregnant women carrying a singleton fetus were analyzed.  The inclusion 83 

criteria for participation in this study were pregnant women between the ages of 18 and 50 84 
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and between 10 and 40 gestational weeks.  The women were not selected based on prior risk 85 

and all consented to participate in the study. All subjects were followed to birth, where 86 

evaluation for fetal aneuploidies was performed using newborn examinations and any 87 

suspected aneuploidies were confirmed with karyotyping. 10 milliliters (mL) of blood were 88 

collected from each woman between February 2019 and July 2019 at maternity clinics in 89 

Kuala Lumpur and Quebec.  Blood samples were processed as described below, and at least 3 90 

mL of plasma was extracted and sent to PerkinElmer Genomics (PKIG) labs located in 91 

Sollentuna, Sweden; Kuala Lumpur, Malaysia; and Pittsburgh, USA.  92 

Ten samples from confirmed T21 positive pregnancies and three samples from confirmed 93 

T18 positive pregnancies and one sample from a confirmed T13 pregnancy were used. Other 94 

trisomy positive control samples (nine of T21, eight of T18 and eight of T13) were purchased 95 

from SeraCare Life Sciences, Inc. (USA) (Seraseq Trisomy 21 aneuploidy reference material- 96 

0720-0019, Trisomy 13 aneuploidy reference material- 0720-0017, Trisomy 18 aneuploidy 97 

reference material- 0720-0018).   98 

 99 

Sample collection and preparation: 100 

Blood samples were collected into Cell-FreeTM DNA BCT tubes (Streck, Omaha, USA) 101 

from each pregnant woman. After arrival in the lab by courier, study samples were barcoded 102 

with unique subject codes and patient identification numbers and anonymized. 103 

Samples were processed in the PKIG lab in Kuala Lumpur and the CHU de Québec-104 

Université Laval lab in Quebec by using a double centrifugation protocol[8].  All plasma was 105 

separated within 5 days of blood draw and stored in new plasma storage tubes. The plasma 106 

tubes were barcoded with unique subject codes and patient identification numbers were 107 

anonymized. The plasma tubes were stored at −80°C until processing at a PKIG Laboratory.  108 
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 109 

Test method: 110 

Samples were analyzed using the Vanadis® system following existing manuals and 111 

instructions for use.  The Vanadis® NIPT assay uses a series of enzymatic steps to generate 112 

labelled rolling circle replication products (RCPs) from chromosomal cfDNA targets, as 113 

previously described[7]. Automated extraction of cfDNA from plasma was performed using 114 

the Vanadis Extract® platform, followed by continued processing on the Vanadis Core® 115 

platform to generate labelled RCPs, which were then imaged and counted using the Vanadis 116 

View® instrument. The performance metrics to be evaluated were based on the Z-score 117 

results were calculated with LifecycleTM software version 7.2 and exported to an Excel file. 118 

 119 

Data Analysis and Sample Classification: 120 

Automated data analysis and quality assessment were performed, and chromosomal ratio 121 

calculations were calculated for all approved samples. The results were classified into low or 122 

high risk with a Z�score approach based on each normalized chromosomal ratio and the 123 

sample�specific standard deviation. The Z-score cut-off values were 3.5 for chromosome 21 124 

and 3.15 for chromosomes 18 and 13. The samples that failed the quality assessment were 125 

rejected and classified as ‘no�call’. The fetal sex was classified from the number of detected 126 

RCPs from chromosome Y relative to the number of RCPs from the measured autosomal 127 

chromosomes using an adaptive binary classifier[7,8].  Measured fetal fraction, which is 128 

often thought to be a useful quality control metric, was not gathered as recent studies have 129 

shown that it can be significantly incorrect[9]. 130 

 131 

RESULTS  132 
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A total of 856 samples (Figure 1) were included in the study, 831 of them were taken from 133 

singleton pregnancies with spontaneous fertilization and 25 were reference material provided 134 

by SeraCare Life Sciences, Inc. (USA). There were eight first pass no call results that were 135 

excluded from calculations (first pass no call rate: 0.93%). The average median maternal age 136 

in the study group was 32 (min:20 years, max: 46 years). The median gestational age was 12 137 

weeks 5 days (min:10 weeks, max: 34 weeks).  138 

The results from the test (Table 1) showed 100% sensitivity for T21 [95% Confidence 139 

Interval (CI):82.35% - 100.00%]; 100.00% sensitivity for T18 (95% CI:71.51% - 100.00%)  140 

and 100.00% sensitivity for T13 analyses (95% CI:66.37% - 100.00%).  The specificities 141 

were >99% for each trisomies [99.7% (95% CI: 99.01% - 99.97%) for T21; 99.5% (95% 142 

CI:98.62% - 99.85%) for T18; 99.7% (95% CI:99.03% - 99.97%) for T13].  143 

No false negative results were detected (FNR: 0%) with low levels of false positive rates 144 

(FPR: 0.24% for T21, 0.47% for T18 and 0.24% for T13).   145 

For fetal gender assessment, accuracy was 98.80% (Table 2).  Of note, a recent blinded study 146 

at an independent site using improved Y chromosome detection modifications in reagents and 147 

analysis software showed 100% concordance for fetal sex determination between Vanadis 148 

and NGS methods (n= 251 samples; unpublished observations).   149 

 150 

DISCUSSION 151 

Vanadis® NIPT is an efficient and cost-effective option for prenatal screening. The test can 152 

be offered to pregnant women starting from the 10th week of gestation and can be integrated 153 

as a first tier choice as prenatal screening analysis as it is more cost-effective than the NGS-154 
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based NIPT[10] and has a higher sensitivity and specificity compared to the conventional 155 

biochemical screening[11].  156 

This study shows high sensitivity and specificity of Vanadis NIPT analysis. In this sample 157 

set, all aneuploidy cases were detected accurately, thus resulting in a sensitivity of 100% for 158 

trisomy 21, trisomy 18, and trisomy 13 and a ≥99.5% specificity. Specificity would likely be 159 

even higher if a second tube of blood was available for the samples with borderline Z-scores.  160 

Furthermore, if a second sample was available for these patients, then the low first pass no 161 

call rate of 0.93% would likely be reduced to a final no call rate of around 0.1%, based upon 162 

a previous study showing a 87.5% reduction of no calls when a second sample is run on the 163 

Vanadis® system[12].  164 

Studies have shown that the sensitivity and specificity of NIPT are better than the 165 

conventional screening methods [13-21] which has lead professional societies (such as the 166 

American College of Obstetricians and Gynecologists and the Society for Maternal-Fetal 167 

Medicine) to state “Cell-free DNA is the most sensitive and specific screening test for the 168 

common fetal aneuploidies”[11].  NIPT technologies that involve next generation sequencing 169 

have shown that 98 - 100% of common aneuploidies can be detected at a combined false 170 

positive rate of 0.44 - 0.91% [22]), while conventional biochemical screening can range from 171 

50 - 95%, with a false positive rate of 5%, depending upon which screening strategy was 172 

used[23].  By providing higher detection rates and lower false positive and negative rates 173 

compared to conventional screening, NIPT technologies are more clinically effective and lead 174 

to fewer invasive procedures[24].   175 

As this study shows, the Vanadis® system provided results comparable to those of the more 176 

common NIPT technologies (Table 3).  Both groups show similar sensitivities and 177 

specificities, which are greater than those for the conventional biochemical screening, thus 178 
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emphasizing their clinical utility.  Although similar in performance, there is a difference 179 

when it comes to the technological complexity and cost-effectiveness.  By removing the need 180 

for PCR and NGS, the installation, hands-on time, bioinformatics and run costs are 181 

automatically significantly lower with the Vanadis system. As has been reported, there is 182 

additionally a cost-savings for medical systems using this technology over sequencing from a 183 

follow-up point of view due to the lower no call rate[10]. 184 

Irrespective of the technology or methodology, there are some limitations to NIPT analysis 185 

which help to explain discrepancies between the test results and the fetal status.  For example, 186 

since the cell-free fetal DNA is mainly produced by the placenta rather than fetus, false 187 

positive results can arise due to placental mosaicism[25-27] or the presence of a vanishing 188 

twin[28,29]. Additionally, false positive results or no call results may appear as a result of 189 

maternal cancer[30] or maternal chromosome anomalies[31].  Other limitations of the assay 190 

could arise from complex chromosomal abnormalities[26,32,33]. 191 

This study illustrates the high accuracy and clinical utility of Vanadis® NIPT compared to 192 

traditional prenatal screening methods for common aneuploidy. As an equally accurate and 193 

reliable NIPT test, Vanadis® NIPT can help eliminate the barrier to widespread usage of 194 

prenatal cfDNA for the global pregnancy population by being a technology that is 195 

significantly less complex to run and more cost effective.   196 

 197 
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Table one: Test performance Vanadis® NIPT – Aneuploidy (Sweden+Malaysia+USA) 314 

Trisomy 21 Trisomy 18 Trisomy 13 

Total subjects 408+214+234=856 408+214+234=856 408+214+234=856 

No calls: 8 (no call rate: 0.93%, with unrepeated samples) 

Without no calls: 848 848 848 

True positives † 7(5)+4(0)+8(4)=19 7(6)+2(0)+2(2)=11 6(6)+1(0)+2(2)=9 

False positives 2+0+0=2 4+0+0=4 1+0+1=2 

True negatives 827 833 837 

False negatives 0 0 0 

Sensitivity (95% CI) 
100.00%  (82.35% to 

100.00%) 
100.00% (71.51% to 

100.00%) 
100.00%  (66.37% to 

100.00%) 

Specificity (95% CI) 
99.76% (99.13% to 

99.97%) 
99.52% (98.78% to 

99.87%) 
99.76% (99.14% to 

99.97%) 

†25 out of 39 are SeraCare samples; SeraCare samples are within parentheses  315 
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Table two: Test performance Vanadis® NIPT – Sex classification 317 

Sweden Malaysia USA 

391 214 234 

 Females Males  Females Males  Females Males 

Total 
subjects 

166 225 
Total 
subjects 

94 120 
Total 
subjects 

101 133 

No calls 6 No calls 2 No calls 0 

Total 
subjects 
(w/o no 
calls) 

164 221 

Total 
subjects 
(w/o no 
calls) 

92 120 

Total 
subjects 
(w/o no 
calls) 

101 133 

Correct 
classification 

162 220 
Correct 
classification 

92 120 
Correct 
classification 

98 129 

Incorrect 
classification 

2 1 
Incorrect 
classification 

0 0 
Incorrect 
classification 

3 4 

 Females Males TOTAL 
Performance 

Criteria 
Females Males TOTAL 

Total 
subjects 

361 478 839 Accuracy 98.79% 98.79% 98.79% 

No calls 
excluded: 

357 474 831     

Correct 
classification 

352 469 821     

Incorrect 
classification 

5 5 10     
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Table three: Comparison of Next-Generation Sequencing NIPT vs Vanadis® NIPT 319 

 
NGS NIPT5,15,22,34-36 Vanadis8,* 

No call results 0.7 - 6.6% 0.1-0.9% 

Sensitivity (21) 98.6 – >99.9% >99.9% 

Sensitivity (18) 90 - >99.9% 89 - >99.9% 

Sensitivity (13) 91.7 - >99.9% >99.9% 

Specificity (21) 99.5 - 99.9% 99.8 - >99.9% 

Specificity (18) 99.7 - >99.9% 99.5% 

Specificity (13) 99.0 - 99.8% 99.8 - >99.9% 

*Including this study 320 
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Characteristics of Study Subjects: 322 

Characteristic Values 

Euploid subjects 817 

T21 samples 19 (10 pregnant samples, 9 reference materials) 

T18 samples 11 (3 pregnant sample, 8 reference materials) 

T13 samples 9 (1 pregnant sample, 8 reference materials) 

Maternal age, median (min-max) 32 (20years-46years) 

Gestational age, median (min-max) 12weeks 5days (10weeks-34weeks) 

First pass no calls 8 

Figure 1 323 
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