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Abstract

Proximal genetic variants are frequently correlated, implying that the corresponding

effect sizes detected by genome-wide association studies (GWAS) are also not inde-

pendent. Methods already exist to account for this when aggregating effects from a

single GWAS across genes or pathways. Here we present a rigorous yet fast method

for detecting genes with coherent association signals for two traits, facilitating cross-

GWAS analyses. To this end, we devised a new significance test for the covariance of

datapoints not drawn independently but with a known inter-sample covariance struc-

ture. We show that the distribution of its test statistic is a linear combination of χ2

distributions with positive and negative coefficients. The corresponding cumulative

distribution function can be efficiently calculated with Davies’ algorithm at high pre-

cision. We apply this general framework to test for dependence between SNP-wise

effect sizes of two GWAS at the gene level. We extend this test to detect also gene-

wise causal links. We demonstrate the utility of our method by uncovering potential

shared genetic links between the severity of COVID-19 and (1) being prescribed class

M05B medication (drugs affecting bone structure and mineralization), (2) rheumatoid

arthritis, (3) vitamin D (25OHD), and (4) serum calcium concentrations. Our method

detects a potential role played by chemokine receptor genes linked to TH1 versus TH2

immune response, a gene related to integrin beta-1 cell surface expression, and other

genes potentially impacting the severity of COVID-19. Our approach will be useful for

similar analyses involving datapoints with known auto-correlation structures.
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Author summary

Genome-wide association studies (GWAS) deliver effect size estimates of a given trait

for millions of Single Nucleotide Polymorphisms (SNPs). Powerful tools already exist

using these summary statistics to elucidate the global joint genetic contribution to a

pair of traits, such as cross-trait LD-score regression, but these methods cannot reveal

the joint contributions at the level of genes and pathways. Here we present a novel

methodology to co-analyze the association data from a pair of GWAS to identify genes

and pathways that may be relevant to both individual traits. Our test novelty is

that a gene is considered co-relevant if the SNP-wise effects from both GWAS tend

to have the same sign and magnitude in the gene window. This is different from the

commonly used approach asking only for the aggregate signals from two GWAS to

be jointly significant. Our method is feasible due to novel insight into the product-

normal distribution. We apply our new method to test for co-significant genes for

severe COVID-19 and conditions leading to the prescription of common medications.

Of the 23 medication classes we tested for coherent co-significant genes, only one, M05B

(drugs affecting bone structure and mineralization), yielded Bonferroni significant hits.

We then searched for available GWAS data for related conditions and found that

also rheumatoid arthritis, calcium concentration, and vitamin D are traits pointing to

several co-relevant genes in our new coherence analysis. Furthermore, testing for anti-

coherence showed that the medication classes H03A (thyroid preparations), R03A, and

R03BA (drugs for obstructive airway diseases) feature Bonferroni co-significant genes.

Our joint analysis provides new insights into potential COVID-19 disease mechanisms.

1 Introduction

Genome-wide association studies (GWAS) correlate genotypes, most commonly single

nucleotide polymorphisms (SNPs), with a phenotype of interest, both measured in the

same study population. For human studies between 1 and 10 million SNPs are usually

considered, and in most GWAS, each SNP is tested independently for correlation with

the phenotype. By now, thousands of such GWAS have been conducted that iden-

tified a plethora of statistically significant associations of SNPs with complex traits.

For most traits—in particular complex diseases or their risk factors that have been as-

sessed in very large cohorts (100K or more subjects)—hundreds of SNPs usually turn

out to be significant, even after stringent correction for multiple hypotheses testing.
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Individual SNP-wise effect sizes are often very small but add up to sizable narrow-sense

heritability, pointing to a polygenic genetic architecture [1]. Mapping SNP-wise effects

on genes and annotated gene-sets (pathways) [2, 3] can yield valuable insights into the

genetic underpinning and potential pathomechanisms of complex diseases and aid drug

discovery and repurposing.

However, due to Linkage Disequilibrium (LD) (cf., [4]), many SNPs close to each

other are not independent, leading to dependencies between the observed SNPs’ effect

sizes. This is of particular relevance when aggregating SNP-wise effects on genes or

pathways. Gene-wise effects are typically computed by adding up the (squared) effects

of all SNPs within the transcript region of a gene of interest, as well as sizable upstream

and downstream regions that may contain regulatory elements of this gene. Pathway

effects are computed from the gene-wise effects [2]. LD can lead to signal inflation for

significant SNPs in sizable LD blocks since their signals are not independent. Such

SNPs will dominate the joint association signal and lead to gene and pathway scores

reflecting the level of importance for the phenotype inaccurately if no correction is

applied. Techniques and tools have thus been developed to correct for LD in the

aggregation process, such as Pascal [2] and MAGMA [3]. These tools mainly differ in

their mappings of SNP effect sizes on genes, how they account for the LD structure,

and details of the numerical procedure to estimate significance.

Some SNPs are significantly associated with more than one trait. The phenomenon

of a single genetic variant affecting two or more traits is called pleiotropy [5]. In the

case of disease traits, such a shared genetic component hints at the same functional

pathology contributing to several diseases [6]. At the gene level, a gene is usually

considered relevant for two different traits if it carries one or more effect sizes significant

in both traits. However, this may not be a good criterion under all circumstances. For

instance, protein-coding genes often contain several independent LD blocks. Therefore,

two traits may associate with genetic variation in two or more functionally different

blocks of SNPs within the same gene, which may independently be significant. Hence,

even though the two traits share the same significant gene, they may not share the

same genetic mechanism. To call a gene pleitropic, one should therefore move beyond

comparing single variants, and take all SNPs in the gene region into account, corrected

by LD.

Several methods have been proposed to uncover the shared genetic origin of two

traits from GWAS summary statistics: One early method is a test of co-localization
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between GWAS pairs based on Bayesian statistics [7]. This method assumes that at

most one association is present for each trait in the region of interest. However, the

extension to the general case of multiple associations (usually the case) appears to be

non-trivial. A more recent method is cross-trait LD score regression [8], an extension of

single-trait LD score regression (LDSR) [9], which is a method to estimate heritability

and confounding biases from GWAS summary statistics. Like single-trait LDSR, cross-

trait LDSR considers the effect sizes as random variables and uses LD-scores (i.e., the

sum of genetic correlations between a given SNP and all other SNPs) to estimate the

genetic correlation between two traits. Yet, these LDSR estimates typically are at

the whole genome level. While restriction to genomic regions is possible, using it to

obtain estimates at the individual gene level is difficult. The reason is that SNPs in

the same narrow genomic region are often in high LD, so the variables entering the

linear correlation may be highly dependent, something that has to be corrected for.

Similarly, the standard errors and p-values are estimated via resampling (jackknife).

This requires independent SNPs, which is not the case for strong LD. Shi et al. have

introduced another method to estimate local genetic covariance and correlation [10].

However, this method requires the computation of the inverse SNP-SNP correlation

matrix, which often does not have full rank. A regularization scheme can address this

issue, but this introduces additional assumptions and parameters, which may have to

be tuned for best performance. Furthermore, this method relies on decomposing the

genome into independent LD blocks, usually larger than single genes.

Here, we propose the sum over the products between the effects of two traits for

SNPs within a gene region as a simple measure for pleiotropy. For a single SNP, the

test statistic is a simple product that is tested against the product-normal distribu-

tion, corresponding to a multiplicative meta-analysis, rather than an additive one like

Fisher’s. For multiple SNPs, our measure corresponds to the (non-centered) covariance

between two sets of effect sizes. Importantly, we show that under the null hypothesis

the corresponding test distribution can be expressed as a linear combination of χ2 dis-

tributions, with a mixture of positive and negative coefficients. This holds even if the

effect sizes are not independent of each other due to LD, i.e., if there exists a non-trivial

covariance structure between the corresponding SNPs. The corresponding cumulative

distribution function can be efficiently calculated with Davies’ algorithm at high pre-

cision [11, 12]. Thus, our method considers not only isolated significant SNPs, but all

SNPs within the gene region to call a gene co-significant for two traits. Furthermore,
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using the notion of Mendelian randomization, our statistic can be extended to test for

a possible causal relationship between the two traits mediated by the tested gene.

We demonstrate the utility of our methods by a timely co-analysis of GWAS sum-

mary statistics on the severity of COVID-19, being prescribed one of 23 different med-

ication classes, and traits related to osteoporosis, like vitamin D and calcium concen-

trations.

2 Results

2.1 Coherence test

Consider the index I =
∑

i wizi, with wi and zi N independent samples of two random

variables z, w ∼ N (0, 1). The index can also be written as I = N E(wz), with E de-

noting the expectation. Clearly, I is proportional to the standard empirical covariance

of w and z.

For independent pairs of samples, the sampling distribution of I is simply a sum of

independent product-normal distributions. Hence one can infer that for identically cor-

related random variables with correlation coefficient ϱ (cf., Methods, Product-Normal

distribution)

I ∼ 1 + ϱ

2
[χ2

N ]−
1− ϱ

2
[χ2

N ] . (2.1)

In particular, for ϱ = 0, we have that I ∼ V G(N, 1), with V G being the variance-

gamma distribution discussed in more detail in the supplement. One should note that

the difference is in the distributional sense and, therefore, generally non-vanishing. A

null hypothesis of zero correlation (or some other fixed value) can therefore be tested,

as the cumulative distribution function (cdf) for I can be calculated explicitly and effi-

ciently with Davies’ algorithm (cf., Methods, Linear combination of χ2 distributions).

The main advantage of the above significance test is that it is straightforward to

relax the requirement of sample independence. That is, we can view the index I as

a scalar product of random samples of w ∼ N (0,Σw) and z ∼ N (0,Σz), with N
denoting here the multivariate Gaussian distribution and Σw|z covariance matrices.

For Σw = Σz = 1, the corresponding distribution of I is given by (2.1). In the general

case, the inter-dependencies can be corrected via linear decorrelation, cf., Methods

Coherence test decorrelation. The case of interest for this paper is Σ := Σw = Σz. In
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this case, one can show that under the null of w and z being independent

I ∼
∑
i

λi

2
[χ2

1]−
∑
i

λi

2
[χ2

1] , (2.2)

with λi the ith eigenvalue of Σ. Hence, I is distributed according to a linear combi-

nation of χ2
1 distributions with positive and negative coefficients, and therefore the cdf

and tail probability can be calculated with Davies’ algorithm. Note that the above

discussion can be extended to non-standardized variables (for ϱ = 0) via the results

given in supplementary section I.

As discussed in detail in [2], a GWAS (cf., Methods, GWAS) gene enrichment test

can be performed via testing against I with w = z. This effectively tests against

the expected variance of SNPs’ significances in the gene. Here we propose to use

I = wT z with w and z resulting from two different GWAS phenotypes to test for the

co-significance of a gene for two GWAS. A significance test can be performed either

against the right tail of the null distribution (2.2) (coherence) or against the left tail

(anti-coherence). For a single SNP in the gene window, the test reduces to the product-

normal test, whose properties will be discussed in more detail in the following section

2.2.

Note that we do not centralize w and z over the gene SNPs. Hence, we do not test

for covariance but for a non-vanishing second cross-moment. After decorrelation, it is

best to interpret this as testing each joint SNP within the gene independently for a

coherent deviation from the null hypothesis. Therefore we refer to this test as testing

for genetic coherence or simply as cross-scoring. For simplicity, we only consider a fixed

effect size model and assume that the correlation matrix Σ obtained from an external

reference panel is a good approximation for both GWAS populations.

The above coherence test assumes that there is no sample overlap between the

populations of the pair of GWAS considered. However, the presence of sample overlap

can be corrected for, as discussed in supplementary section 4.

2.2 Simulation study

It is useful to discuss the single SNP case in more detail. The distribution (2.2)

simplifies for N = 1 to I ∼ 1
2
[χ2

1] − 1
2
[χ2

1], which corresponds to the uncorrelated

product normal distribution, cf., Methods eq. (4.4). The index I for N = 1 is a

measure of coherence (or anti-coherence) between z and w. The significance thresh-

old curve for a fixed desired p-value, say pI = 10−7, is illustrated in figure 1. The
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Figure 1: Significance threshold curves in the one element case for the product-normal

(dashed) and Fisher’s method (dotted) for various p-values. The diagonal is indicated by a

gray dash-dotted line and corresponds to equal − log10 p-values.

curve corresponding to a given pI is unbounded. For a given w, there is always a

corresponding z such that the resulting product I is significant. This differs from

Fisher’s exact method which combines two p-values pw,z into a combined one (pF ) via

−2 log pF = −2 log pw − 2 log pz ∼ [χ2
4]. Since Fisher’s method combines significance

by addition, the corresponding combined significance curve is bounded. Specifically, in

the extreme case of one of the p-values being equal to one, the significance threshold

is finite and fixed by the other p-value. In contrast, in the case of the product-normal,

the divergence between the p-values is penalized. If one of the p-values is large, say

pw ≃ 1, the other one has to be extremely small to achieve a given combined signifi-

cance value, i.e. pz ≪ pw (cf., figure 1). Therefore, the product-normal-based method

becomes more and more conservative for increasingly diverging p-values. For very sim-

ilar p-values, the method has a lower threshold than Fisher’s, p-values reaching the

same minimum. Therefore, one should see Fisher’s method as additive in the evidence,

while the product-normal-based method is multiplicative.

The importance of correcting for the inter-dependence between w and z elements

in the index I is already visible for N = 2, as discussed in supplement section III.

For higher N , this becomes even more pronounced. For example, consider a correla-

tion matrix Σ of dimension one hundred with off-diagonal elements identically set to

0.2. We draw 1000 pairs of independent samples of N (0,Σ) and calculate I for each

pair. A p-value is then obtained for each index value for the linear combination of χ2
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Figure 2: QQ-plots of observed p-values resulting from the index I for 1000 pairs of samples

of N (0,Σ) against uniform p-values. Top: Off-diagonal elements of Σ set to 0.2. Bottom:

Off-diagonal set to 0.8. The blue curve is obtained using the variance-gamma distribution to

perform the statistical test, while the orange curve is obtained via the weighted χ2 distribu-

tion. The latter corrects for the correlation and therefore is well calibrated.

distributions (2.2) (also referred to as weighted χ2), and for the variance-gamma dis-

tribution. Recall that the latter does not correct for the off-diagonal correlations. We

repeat the experiment with the off-diagonal elements set to 0.8, resulting in a stronger

element-wise correlation. The resulting qq-plots for both cases are shown in figure 2.

We observe that the variance-gamma distribution (2.1) (with ϱ = 0) indeed becomes

unsuitable for increasing element-wise correlation of the data sample elements. Not

correcting for the inter-sample correlation leads to more and more false positives with

increasing correlation strength. In contrast, the weighted χ2 distribution (2.2) yields

stable results in both the weakly and strongly correlated regime, as is evident in figure
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2.

2.3 Ratio test

Consider the normalized index

R =

∑
i wizi∑
j z

2
j

, (2.3)

with w and z as in the previous sections. In particular, being independent random

variables. The cdf for R can be calculated to be given by

FR(r) = Pr(R ≤ r) = Fv̂ẑ(0), (2.4)

with ẑ ∼ N (0,Λ), v̂ ∼ N (0, (1+r2)Λ), Λ the matrix of eigenvalues of Σ, and Fv̂ẑ(0) the

linear combination of χ2
1 cdf evaluated at the origin, see Methods, Ratio test derivation

(Similar results can be obtained for w and z interchanged). Hence, the cdf of the ratio

(2.3) can also be calculated with Davies’ algorithm. A consistency check follows from

the case of one dimension, where R has to be Cauchy distributed. The corresponding

cdf is given by FC = 0.5+arctan(r)/π. Evaluation for various r shows agreement with

values calculated from (4.10) in the one-dimensional case. Note that similar expressions

can be derived for non-standardized wi and zi, albeit in terms of the non-central χ2

distribution, cf., the supplement.

Note that the ratio R = wT z/(zT z) =
∑

i λiw̄iz̄i/(
∑

j λj z̄
2
j ) with w̄i and z̄i i.i.d.

N (0, 1), and λi the ith eigenvalue of Σ, can be interpreted as the weighted least squares

solution in the case of heteroscedasticity for the regression coefficient of the linear

regression between the de-correlated effect sizes of the two GWAS. Therefore, with

the cdf for R derived above, we can test for a significant deviation from the null

expectation of no relation. In general R is not invariant when swapping w and z and

may be used under certain conditions to make inference about the causal direction, cf.,

multi-instrument Mendelian randomization, in particular [13]. Specifically, we consider

the trait related to w as exposure and that of z as the outcome. Then the ratio test tries

to detect genes that are strongly (anti)-coherent between exposure and outcome but at

the same time only exhibit relatively low variance in the outcome, as is clear from the

definition of R. Thus the ratio test effectively normalizes the alignment of the outcome

to the exposure, with respect to the outcome’s own variation. The causal direction

from exposure to outcome is implied if the exposure is confirmed to be associated with

the gene via a significant gene enrichment p-value, pV , obtainable from the usual χ2
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OE

C?

Gene

SNPs

Figure 3: Interpretation of the ratio test. The test detects potential gene-wise causal

relations between a GWAS trait viewed as exposure (E) and a GWAS trait viewed as outcome

(O). The association of the exposure has to be confirmed independently via a standard gene

enrichment test. Potential confounders (C) have to be excluded by other means.

test of [2], and if confounding factors can be excluded. The overall scheme is illustrated

in figure 3.

Similar to the previously introduced coherence test, we assumed above that the

populations of the pair of GWAS considered present no overlap. However, sample

overlap can be corrected for as well, cf., supplementary section 4.

2.4 COVID-19 GWAS application

To demonstrate the usefulness of our methods in the context of actual and topical

GWAS data (cf., Methods, GWAS), we considered the recent meta-GWAS on very

severe respiratory confirmed COVID-19 [14, 15] as the primary phenotype and co-

analyzed it with several other related traits (see also Data availability statement).

Specifically, we used the summary statistics resulting from European subjects, ex-

cluding those from UK Biobank (A2 ALL eur leave ukbb 23andme) in order to avoid

overlap with the secondary trait GWAS. This GWAS shows significant gene enrichment

on chromosomes 3 and 12, as can be inferred via testing for gene enrichment following

[2]. The Manhattan plot for the resulting gene p-values is shown in supplementary

figure 7.

We cross-scored this GWAS against a panel of GWAS on medication within the

UK Biobank [16], which take prescription (self-reported intake) of 23 common types

of medications as traits. Hence, in cross-scoring against the severe COVID-19 GWAS,

we sought to uncover whether there is a shared genetic architecture of predisposition
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for severe COVID and being prescribed specific medications. The description of all

medication class codes used can be found in supplementary table 2. Note that, as

usual, these GWAS have been performed with age as one of the covariates. Therefore,

in our pair-wise analysis age-dependent effects are already regressed out and do not

play a significant role in our analysis.

All calculations were performed with the python package PascalX [17], which in-

corporates the methods detailed in the Methods section (see also Code availability

statement). The association directions were extracted from the signs of the raw ef-

fect sizes (β). As a reference panel, we used the European sub-population of the high

coverage release of the 1K Genome project [52]. Note that we took only SNPs with

matching alleles between the GWAS pairs and the reference panel into account. We

transformed the raw GWAS p-values via joint rank transformation, for the reason dis-

cussed in Methods under SNP normalisation. We tested all genes with at least one

SNP present in both traits, and defined the gene region as the transcription side plus

a window of 50kb on both sides in order to capture as well potential regulatory effects.

We verified at hand of one drug class (M05B) that the choice of gene window does not

lead to an inflation of signal, see figure 9 in the supplement.

The cross-scoring results for the test are shown in figure 4. Cross scoring revealed

joint coherent signals between GWAS effects from the prescription of group M05B

medications (drugs affecting bone structure and mineralization) and that for very severe

COVID-19. We show the Manhattan plot resulting from the null model (2.2) for the

medication group M05B in figure 5 (for the corresponding qq-plot, see supplementary

figure 8). We observe that SNP-wise effects in genes in the well-known COVID-19 peak

locus on chromosome 3 appear to be coherent with those from being prescribed M05B

medication, with Bonferroni significance for the chemokine receptor genes CCR1, CCR3

and the gene LZTFL1 in the region chr3p21 (we Bonferroni corrected for number of

genes and drug classes tested). We tested the orientation of the aggregated associations

of these genes via the D-test, cf., Methods, Direction of association, over the COVID-

19 GWAS and find a positive direction (right tail) with pD ≃ 1.7 × 10−4, 8.6 × 10−3

and 0.03, respectively.

For illustration, we show the spectrum of SNPs considered in the CCR3 region

and their SNP-SNP correlation matrix in figure 6. One can see a large block of SNPs

in high LD, encompassing some of CCR3’s 5’UTR and most of its gene body, all

having positive associations with both severe COVID-19 and M05B drug prescription.
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Figure 4: Resulting p-values for cross-scoring 23 drug classes GWAS against very severe

COVID-19 GWAS for anti-coherence and (top figure) coherence (bottom figure). Each data

point corresponds to a gene. The dotted red line marks a Bonferroni significance threshold

of 1.18 × 10−7 (0.05 divided by the 18453 genes tested and 23 drug classes). Left: Anti-

coherence. Right: Coherence. Note that the drug class M05B shows the most significant

enrichment in coherence with severe COVID-19.
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Figure 5: Manhattan plot for cross scoring very severe confirmed COVID-19 with medication

class M05B for coherence. Data points correspond to genes. The dotted red line marks a

Bonferroni significance threshold of 1.18× 10−7 (0.05 divided by the 18453 genes tested and

23 drug classes). The inlay plot shows a zoom into the relevant locus chr3p21.31.

Furthermore, a somewhat weaker coherence signal can be seen for SNPs in its 3’UTR,

some of which share negative associations. Using our coherence test described above,

we calculate a p-value of p ≃ 8.2× 10−9 for CCR1 and p ≃ 3.3× 10−9 for CCR3. The

SNP spectrum in the LZTFL1 region is shown in supplementary figure 10. The p-value

for the significance of the coherence is p ≃ 2.7× 10−8.

The directions of associations inferred from the D-test and their coherence sug-

gest that genetic predispositions leading to M05B prescription may carry a higher risk

for severe COVID-19. We list the Bonferroni significant pathways for (anti)-coherent

M05B and severe COVID-19 genes detected via a pathway enrichment test (Meth-

ods, Pathway enrichment) in table 1. Note that the enrichment test of pathways is

performed with the (anti)-coherent gene enrichment p-values, and therefore tests for

pathways that are relevant for both traits simultaneously (we Bonferroni corrected for

number of pathways and number of traits we tested for pathway enrichment)

The cross-scoring test also detected the gene HLA-DQA1 to be Bonferroni signifi-

cant under anti-coherence for the drug classes H03A (thyroid preparations), as well as

R03A and R03BA (drugs for obstructive airway diseases). Further, we note that the

drug classes C10AA (HMG CoA reductase inhibitors) and L04 (immunosuppressants)

have gene hits with a p-value < 1 × 10−5. Interestingly, all these drug classes possess

indications in autoimmune diseases and allergies. In particular, of the non-significant

genes we detect the gene FUT1 with p ≃ 2.9×10−7 for C10AA to be closest to Bonfer-

roni significance. The D-test shows that FUT1 is located in the left-tail under C10AA
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Figure 6: Left: SNP p-values after rank transform for the CCR3 gene. The x-axis is

numbered according to the ith SNP in the gene window ordered by increasing position. The

dotted black lines indicate the transcription start and end positions (first and last SNP).

Up bars correspond to M05B and down bars to severe COVID-19. Green indicates positive

and violet negative association with the trait. Right: SNP-SNP correlation matrix inferred

from the 1KG reference panel. The color scale is shown on the right with dark red (+1)

corresponding to perfect SNP-SNP correlation and dark blue (−1) to perfect anti-correlation

over the reference population.
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trait tail enriched pathways # genes p-value

C10AA R -

L -

H03A R -

L KEGG graft versus host disease 21 1.1 × 10−8

KEGG autoimmune thyroid disease 25 3.4 × 10−8

GOCC MHC protein complex 9 3.4 × 10−8

KEGG allograft rejection 22 4.1 × 10−8

GOBP interferon gamma mediated signaling pathway 72 5.8 × 10−8

GOMF MHC class II receptor activity 3 6.5 × 10−8

GOCC lumenal side of endoplasmic reticulum membrane 16 7.7 × 10−8

Durante adult olfactory neuroephithelium B cells 30 1.0 × 10−7

HP hemoptysis 54 2.9 × 10−7

GOCC MHC class II protein complex 3 3.0 × 10−7

GOCC lumenal side of membrane 23 3.0 × 10−7

GOMF peptide antigen binding 14 3.7 × 10−7

HP abnormal pulmopnary thoracic image finding 66 4.9 × 10−7

GOBP response to interferon gamma 148 8.2 × 10−7

GOBP regulation of leukocyte proliferation 214 8.6 × 10−7

KEGG type I diabetes mellitus 27 1.5 × 10−6

L04 R Farmer breast cancer cluster 8 3 1.2 × 10−6

L GOBP interferon gamma mediated signaling pathway 72 1.5 × 10−9

GOMF peptide antigen binding 14 1.3 × 10−7

Reactome interferon gamma signaling 67 2.0 × 10−7

GOBP response to interferon gamma 148 4.8 × 10−7

M05B R Roeth tert targets dn 8 7.3 × 10−8

L -

R03A R -

L GOBP antigen processing and presentation of endogenous peptide antigen 14 1.5 × 10−7

GOBP antigen processing and presentation of endogenous antigen 17 3.4 × 10−7

R03BA R -

L KEGG graft versus host disease 21 6.4 × 10−9

Module 143 9 1.4 × 10−7

GOCC MHC protein complex 9 3.8 × 10−7

Module 293 7 5.3 × 10−7

WP cytokines and inflammatory response 22 6.5 × 10−7

KEGG allograft rejection 22 7.6 × 10−7

GOMF MHC class II receptor activity 3 1.4 × 10−6

GOBP antigen processing and presentation of endogenous peptide antigen 14 1.5 × 10−7

GOBP antigen processing and presentation of endogenous antigen 17 2.3 × 10−7

Gaurnier PSDM4 targets 44 1.1 × 10−6

KEGG type I diabetes mellitus 27 1.6 × 10−6

Table 1: Bonferroni significant pathways for cross-scored severe COVID-19 genes. We only

tested the six listed traits for pathway enrichment as these traits possess significant or close

to significant genes under the coherence test. The coherent case corresponds to the right (R)

tail, the anti-coherent case to the left (L) tail. The number of genes in the pathway is given in

the fourth column. We tested against the 32284 gene sets of MSigDB 7.4. We list Bonferroni

significant (p < 0.05/32284/6 ≃ 2.6× 10−7) pathways and close to significant pathways.
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(pD ≃ 9.8 × 10−4), and therefore this gene’s variations may be a possible risk factor

for severe COVID-19. It is known that FUT1 is involved in creating a precursor of

the H antigen, itself a precursor to each of the ABO blood group antigens. It has

been hypothesized before in the literature that the ABO blood system correlates to

COVID-19 severity [18].

We also find the observed leading TRIM genes for L04 of interest. For illustration

of the anti-coherence case, the SNP spectrum for TRIM26 (p ≃ 1.1× 10−6) under L04

is shown in supplement figure 12. The pathway enrichment test in the anti-coherent

case shows that L04 cross-scored severe COVID-19 has Bonferroni significant enrich-

ment in interferon gamma-related pathways, see table 1. Note that TRIM proteins

are expressed in response to interferons [19], and therefore the detected pathways are

consistent with the enrichment of TRIM genes.

2.5 Osteoporosis related GWAS

The main application of M05B medications is the treatment of osteoporosis. In order

to investigate this potential link further, we cross-scored the COVID-19 GWAS against

a selection of GWAS with phenotypes related to osteoporosis, namely, bone mineral

density (BMD) estimated from quantitative heel ultrasounds and fractures [20], estro-

gen levels in men (estradiol and estrone) [21], calcium concentration [22], vitamin D

(25OHD) concentration [23] and rheumatoid arthritis (RA) [24]. The inferred gene

enrichments for coherence and anti-coherence with the COVID-19 GWAS are shown

in figure 7. We found Bonferroni significant enrichment for RA and enrichment with

gene p-values < 10−5 for calcium and vitamin D (we Bonferroni corrected for number

of genes and traits tested). The Manhattan plot for the Bonferroni significant trait

is shown in figure 8 (for the qq-plot, see supplementary figure 11). Note that ≈ 47%

of the SNP alleles between the RA and COVID-19 GWAS were not matching and

that we discarded all non-matching SNPs for the analysis. A list of the most signifi-

cant detected genes under the test is given in table 2. The table also contains a brief

description of the potential relation of the respective gene to COVID-19, if known.

For RA, several TRIM genes are Bonferroni significant. TRIM proteins are associ-

ated with innate immunity, and are in particular involved in pathogen recognition and

host defense [19, 25]. This is consistent with the (weaker) TRIM signals we detected

for the immunosuppressants L04, which are indicated in the treatment of RA. The

D-test shows that the leading TRIM genes are in the right tail under the RA GWAS,
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Figure 7: Resulting p-values for cross-scoring several GWAS related to osteoporosis against

the severe COVID-19 GWAS. The top figure shows the anti-coherent case and the bottom

figure the coherent case. The red dotted line marks the Bonferroni significance threshold

of 3.9 × 10−7 (0.05 divided by the 18453 genes tested and 7 traits). We observe Bonferroni

significant enrichment for RA plus enrichments in vitamin D and calcium with p-values

< 10−5.
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gene trait D p-value COVID-19 context description

TRIM26 RA − 1.4 × 10−7 TRIM proteins are associated with innate immunity and are in particular involved in

pathogen recognition and host defense [19, 25].

TRIM10 2.5 × 10−7

TRIM15 2.8 × 10−7

TRIM40 4.6 × 10−7

TSPAN31 1.5 × 10−7 Has been observed before to be regulated in Vero E6 cells over-expressing the SARS-

CoV S2 subunit [54].

AGAP2 1.8 × 10−7 Modulates the transforming growth factor beta-1 (TGF-β1), the principal mediator

of the fibrotic response in liver, lung, and kidney [55].

CDK4 3.3 × 10−7 Cyclin-dependent kinases (CDKs) have been proposed as a new treatment option for

COVID-19 [56].

OS9 5.4 × 10−7 Codes for a protein that binds to the hypoxia-inducible factor 1 (HIF-1), a key reg-

ulator of the hypoxic response [57, 58]. Regulation of HIF-1 interpolates between

regeneration and scaring of injured tissue [59]. We know that severe COVID-19 may

lead to lung tissue fibrosis [60, 61].

TYK2 8.1 × 10−7 Component of type I and type III interferon signaling pathways. The gene has been

implicated before to be involved in the genetic mechanisms for critical illness due to

COVID-19 [62].

OAS3 vitamin D 1.8 × 10−6 The OAS family are essential proteins involved in the innate immune response to viral

infection [63]. Vitamin D can increase the expression of the OAS genes [64]. Under

the D-test we have pD ≃ 7.2 × 10−5 for the COVID-19 GWAS.

OAS2 2.2 × 10−6

OAS1 3.0 × 10−6

FYCO1 5.3 × 10−6 Plays a role in microtubule plus end-directed transport of autophagic vesicles [65].

SARS-CoV-2 inhibits autophagy activity [66]. A regulatory role of vitamin D on

autophagy at different steps, including induction, nucleation, and degradation, has

been suggested [67].

LZTFL1 7.9 × 10−6 Modulates T-cell activation and enhances IL-5 production [68]. Mouse models suggest

that expression of IL-5 alters bone metabolism [69].

CXCR6 8.1 × 10−6 This gene is expressed by subsets of TH1 cells, but not by TH2 cells, and may be

important in the trafficking of effector T cells that mediate type-1 inflammation [70].

The vitamin D analog TX527 promotes the surface expression of CXCR6 on T-cells

and inhibiting effector T cell reactivity while inducing regulatory T cell characteristics,

promoting migration to sites of inflammation [71].

HGFAC calcium 4.0 × 10−7 Plays a role in converting hepatocyte growth factor (HGF) to its active form. Binding

of HGF causes the up-regulation of CXCR3. CXCR3 is preferentially expressed on

TH1 cells, while CCR3 is expressed by TH2 cells [72]. CXCR3 binds the chemokine

receptor CCR3 and prevents an activation of TH2-lymphocytes, biasing an immune

response towards TH1 inflammation [73]. CXCR3 is able to increase intracellular

Ca2+ levels [74]. The D-test for calcium shows that the gene is located in the right

tail (pD ≃ 5.9 × 10−4).

DOK7 1.5 × 10−6 Activates MuSK, which is involved in concentrating AChR in the muscle membrane at

the neuromuscular junction. The latter protein is critical for signaling between nerve

and muscle cells, a necessity for movement, and is influenced by intracellular calcium

[75]. Muscle weakness is a symptom of some severe COVID-19 patients [76]. The

D-test for calcium shows that the gene is located in the right tail (pD ≃ 3.5× 10−5).

AGAP2 vitamin D + 2.6 × 10−6

OS9 3.8 × 10−6

TSPAN31 4.4 × 10−6

Table 2: Table of genes detected via the coherence test for COVID-19 against RA, vitamin

D, and calcium (with p < 6.0× 10−6). The column D indicates the direction of the test with

+ for coherent and − for anti-coherent.
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Figure 8: Manhattan plot for cross-scoring severe confirmed COVID-19 with rheumatoid

arthritis for anti-coherence. Data points correspond to genes. The dotted red line marks a

Bonferroni significance threshold of 3.9× 10−7 (0.05 divided by the 18453 genes tested and 7

traits). The labels denote the leading gene hit for the corresponding peak.

with pD < 10−6. Therefore, the anti-coherence suggests a protective effect of variants

related to a predisposition for RA.

For the calcium anti-coherent case, the top gene HGFAC with p ≃ 4.0 × 10−7 is

only slightly below the Bonferroni significance threshold. This gene sits in the right

tail (pD ≃ 8.9 × 10−4) under the D-test (4.8) applied to the calcium GWAS. There-

fore, the aggregated variants in this gene imply that a predisposition for high calcium

concentration may implicate a reduced risk for severe COVID-19, i.e., a protective

effect.

Let us also briefly discuss an application of the ratio-based causality test. We

ratio tested the COVID-19 GWAS against M05B, RA, vitamin D, and calcium in the

coherent and anti-coherent case, using eq. (2.4). The resulting gene hits of interest

are summarized in table 3, with a brief description of the potential COVID-19 context

of the gene hits. Unless not indicated otherwise in the table, confounding between

calcium and vitamin D could be excluded. The Manhattan plot resulting from the

ratio test for Vitamin D as exposure and COVID-19 as outcome is shown in figure

9 (the corresponding qq-plot is shown in supplementary figure 13). We found that

Vitamin D carries two interesting hits suggesting causal pathways from Vitamin D

concentration to the severity of COVID-19, namely, the genes KLC1 and ZFYVE21.

The observed pR-values suggest a causal flow from a genetic predisposition for vitamin

D concentration to the severity of COVID-19, mediated via these genes.

In the anti-coherent case, the gene HOXC4 is detected for M05B. Modulo potential
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gene E O D pR-value COVID-19 context description

KLC1 vitamin D COVID + 7.1 × 10−7 Kinesin-1 uncoats viral DNA and features in the COVID-19 virus-host

protein interactions, belonging to the functional group of viral trafficking

[77].

XRCC3 2.7 × 10−6

ZFYVE21 3.2 × 10−6 Regulates microtubule-induced PTK2/FAK1 dephosphorylation, which is

important for integrin beta-1/ITGB1 cell surface expression. Integrins in

host cells may play the role of alternative receptors to ACE2 for SARS-

CoV-2 [42, 43].

RNF217 calcium 1.9 × 10−6 Member of the E3 ubiquitin-protein ligase family. A potential COVID-

19 therapeutic pathway based on E3 ubiquitin ligases has been recently

proposed in [78].

DDP9 COVID calcium − 5.8 × 10−7 Has been implicated before to be involved in the genetic mechanisms for

critical illness due to COVID-19 [62].

HOXC4 M05B COVID 2.7 × 10−6 Related to an enhanced antibody response under the regulation of estro-

gens. Has been discussed before in the COVID-19 context in [79]. Poten-

tial confounding role of vitamin D (pV ≃ 0.06).

PPP2R3A calcium 9.6 × 10−6 Interacts with CDC6 [80], which is up-regulated at the early stages of

human coronavirus 229E infection [81]. Potential confounding role of vi-

tamin D (pV ≃ 0.03).

Table 3: Table of genes of significance (p < 10−6) detected via ratio tests against COVID-

19. The column E lists the exposure, O the outcome, and D the test direction, with + for

coherent and − for anti-coherent. We confirmed that all listed genes are pV significant under

the exposure, but not the outcome.

Figure 9: Manhattan plot for ratio scoring Vitamin D concentration against severe COVID-

19 in the coherent case, with ratio denominator given by COVID-19. The Bonferroni signif-

icance threshold of p = 3.4 × 10−7 is indicated by the red dotted line (0.05 divided by the

18453 genes and 2 times 4 traits tested).
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E O D enriched pathway # genes p-value

RA COVID - GOCC MHC protein complex 9 3.6 × 10−8

GOMF peptide antigen binding 14 2.5 × 10−8

KEGG allograft rejection 22 8.1 × 10−7

KEGG graft vs. host disease 21 3.0 × 10−7

Module 143 9 2.5 × 10−7

Module 293 7 7.5 × 10−7

Table 4: Bonferroni significant pathways for the ratio test. We tested against the 32284 gene

sets of MSigDB 7.4. We list Bonferroni significant pathways (p < 0.05/32284/7 ≃ 2.2×10−7)

and pathways close to significance.

confounders, a causal relation from a predisposition to take M05B to the severity

of COVID-19 via HOXC4 is suggested. Interestingly, we also find an inverse causal

relation, namely, a predisposition for severe COVID-19 implying a predisposition for

calcium concentration, mediated by the gene DPP9. For a brief discussion of the

potential role played by these genes in the COVID-19 context, we refer to table 3.

We also tested all cases against pathway enrichment (see Methods, Pathway en-

richment). We only detected Bonferroni significant pathways for RA, see table 4. Note

that while we did not detect genes of significance at the gene level under the ratio test

for RA, the non-significant genes combine to Bonferroni significant pathways for the

trait (we Bonferroni corrected for number of pathways and number of traits pathway

enrichment has been tested for). We observed the detected pathways already in table 1

to be co-enriched for immune system-related drug classes and severe COVID-19. The

ratio test implies that these pathways may play a causal role.

2.6 Multiplicative meta-analysis

We investigated how the gene-wise coherence test based on the product-normal statis-

tic compares to results from the more simple procedure of first computing gene-wise

significance for each trait (via the usual χ2-test, cf., [2]), and then testing the corre-

sponding combined scores via the product-normal as if there was only a single genetic

element affecting both traits (cf., fig. 1 for an illustration of the corresponding com-

bined product normal p-values). However, in doing so, we loose the information on the

direction of coherence. As before, we used jointly qq-normalized GWAS p-values to

avoid the risk of unintended uplift and only kept SNPs with consistent alleles between

the GWAS pairs.

In general, we expect such a simple meta-analysis approach to generate both more

false positives and false negatives. It is clear that ignoring the coherence of the con-
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tributing SNP-wise effects in the gene window can create false positives. However,

false negatives may also occur: In our proposed novel coherence test, introduced in the

Results section, several independent weak signals may combine into a stronger signal

if the directions of associations are consistent over the gene window. Such signals are

invisible in the simple approach.

Figure 10 shows scatter plots for gene-wise log-transformed p-values for some of the

GWAS we discussed above, namely, the severe COVID-19 GWAS against the M05B

medication class and rheumatoid arthritis GWAS. Significance thresholds for the (sim-

ple) product-normal are also indicated. We note that the boundaries of the scattered

p-value distributions appear to follow product-normal significance curves, justifying

our choice to take the single-element product-normal to define significance thresholds

for the combined χ2 statistic.

The left plot of figure 10 shows the co-analysis of COVID-19 and M05B GWAS

signals. We observe that CCR1 and CCR3 are also Bonferroni significant under the

simple meta-analysis test, however not LZTFL1. Also, while CCR9 and CXCR6 cross

the p < 10−6 threshold under the coherence test, not so under the simple single-

element product-normal test. This confirms that the coherence test can improve the

signal strength and may lead to fewer false negatives. The right plot of figure 10

shows severe COVID-19 against RA. While, again, all Bonferroni significant genes are

also Bonferroni significant under the single-element test, we observe several additional

genes which appear to be Bonferroni significant under the simple test. For instance, it

appears that the single element test cannot completely resolve the TRIM gene cluster

and hence may lead to false positives.

3 Discussion

The work presented here relies on the novel mathematical finding that the null distri-

bution of the normal product of two effect size vectors with the same known covariance

structure can be expressed as a weighted χ2 difference distribution (cf., eq. (2.2)).

Moreover, we showed that the ratio between this product and the square of one of the

vectors—which allows for testing causal relationships—also relates to this distribution.

In both cases the corresponding cdf and tail probabilities can be computed efficiently

with Davies’ algorithm.

This insight applies to GWAS because it enables testing for coherent SNP-wise ef-
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Figure 10: GWAS gene scores, obtained separately for two GWAS using joint qq-

normalization and standard χ2 based enrichment test, plotted against each other. Each

point corresponds to a gene. The gray dotted line marks the diagonal corresponding to equal

− log10 p-values. The orange and red dashed curves mark the simple gene-wise product-

normal threshold curves for significance of p < 10−6 and Bonferroni significance, respectively.

The color of a gene (orange and red) indicates the full SNP-wise cross scored p-value (

p < 10−6 and Bonferroni significant, respectively).
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fects within a gene window for two different traits. Importantly, our test is different

from an additive test looking merely for co-significance. Indeed, testing whether the

signs of the effects sizes tend to be identical (or opposite) within the window has po-

tentially more power to identify genes that modulate both traits. Furthermore, our

test is statistically rigorous, properly accounting for the SNPs’ correlation structure

(i.e., LD), while still being able to be computed rapidly and accurately without any

approximations. We have to assume the existence of an underlying joint normal dis-

tribution, and the possibility of jointly inferring the SNPs dependency pattern from a

reference population.

We also introduced a simplified version of the coherence test, which essentially can

be understood as a novel kind of product-normal based multiplicative meta-analysis of

χ2 based gene scores. On a few specific examples, we observed that such a simpler test

for co-significance may be sufficient for detecting highly significant genes. Nevertheless,

we also observed that our gene-wise coherence statistic often provides added sensitivity

and specificity, particularly in cases driven by several marginally significant genes.

We applied our method to identify genes with a role both in severe COVID-19 and

medical conditions leading to the prescription of any of 23 medication classes. Our anal-

ysis revealed a strong signal of coherence between COVID-19 and M05B medications,

with chemokine receptor genes CCR1, CCR3 and LZTFL1 as lead hits. The chemokine

receptor of type 1 (CCR1) regulates bone mineralization and immune/inflammatory

response. Mouse studies suggest that this gene plays a role in protection from inflam-

matory responses and host defense [26, 27]. The chemokine receptor CCR3 is important

for regulating eosinophils, leukocytes involved in many inflammatory pathologies [28].

In particular, mouse models suggest a complex role of CCR3 in allergic diseases [29].

Due to their critical role in recruiting effector immune cells to the location of inflam-

mation, chemokines are suspected to be a direct cause of acute respiratory disease

syndrome, which is a major cause of death in severe COVID-19 (cf., [30]). Hence, it

appears plausible that the genes singled out by our new coherence test indeed play a

role in both traits.

We also observed that genetic variants in genes related to both the adaptive (HLA)

and innate immune system (TRIM genes) that are more frequent in subjects treated

with medications indicated for specific autoimmune disorders tend to reduce the risk

of severe COVID-19. Indeed, it is well known that autoimmune disorders are more

common in females [31] who also have a smaller risk of severe COVID-19 compared
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to men [32]. While it is reasonable to expect that subjects with an increased risk for

autoimmune disorders will tend to fight off infections more efficiently, the added value

of our analysis is to pinpoint specific genes that are potentially involved in mediating

this effect and which may hint toward a protective pathway or therapeutic targets

against severe COVID-19.

We then searched for coherence signals between COVID-19 and additional GWAS

traits known to be related to diseases treated with M05B drugs. This analysis suggests

that RA, vitamin D, and calcium concentration are traits of co-relevance for severe

COVID-19. The RA trait provided further strong evidence for the relevance of TRIM

genes of the innate immune system for a protective pathway, while vitamin D and cal-

cium concentration traits implicated genes related to the differentiation between type-1

and type-2 immune responses. A possible explanation of the latter could be that many

patients being prescribed class M05B medication suffer from osteoporosis. Vitamin D

stimulates calcium absorption and is, therefore, often prescribed to these patients to

increase their bone mineral density [33]. Data clearly support the function of vitamin

D in bone growth and maintenance. However, evidence for a role of vitamin D in acute

respiratory tract infections [34]—often observed for patients with severe COVID-19—

is less clear cut: Vitamin D is thought to reduce the risk of infection, mainly due to

factors involving physical barriers, natural cellular immunity and adaptive immunity

[35]. Furthermore, low plasma vitamin D levels have been associated with the risk of

infection [36]. However, direct conclusive evidence for its proposed protective function

specific to severe COVID-19 is still lacking [37], even though possible links between the

severity of COVID-19 and vitamin D are actively discussed in the current literature

(see, for instance, [38, 39, 40] and references therein).

Interestingly, a similar mechanism of action via an influence on balancing between

type-1 (inflammatory) or type-2 (anti-inflammatory) immune response, as for vitamin

D concentration, can be associated with the top hit of our coherence analysis between

COVID-19 and serum calcium levels, the Bonferroni significant gene HGFAC, cf., table

2. In general, we know that viruses also appropriate or interrupt Ca2+ signaling path-

ways and dependent processes, cf., [41]. In particular HGFAC up-regulates CXCR3,

which binds the chemokine receptor CCR3 and biases the immune response towards

TH1 inflammation. Note that vitamin D strongly increases the rate of calcium absorp-

tion, which may lead to suspect a confounding effect. However, we detect different

coherent genes for the traits, suggesting that both calcium and vitamin D concentra-

25

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2022. ; https://doi.org/10.1101/2021.05.16.21257289doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.16.21257289
http://creativecommons.org/licenses/by-nc-nd/4.0/


tions may independently influence the severity of COVID-19.

In addition, using the ratio test to perform a causal analysis, we detected a po-

tential causal link from a genetic predisposition for vitamin D deficiency to the sever-

ity of COVID-19, mediated by the ZFYVE21 gene. Note that ZFYVE21 regulates

microtubule-induced PTK2/FAK1 dephosphorylation, which is important for integrin

beta-1/ITGB1 cell surface expression and thereby potentially impacts disease outcome

by influencing alternative receptors to ACE2 for host cell entry, cf., [42, 43].

A recent work using standard GWAS methods could not detect genetic evidence

linking vitamin D to the severity of COVID-19 [44]. The discrepancy to our observed

effects, which are only marginally below the Bonferroni threshold (cf., figure 9), is likely

explained by the fact that our approach tested all genes individually, while in [44] the

analysis was restricted to the set of SNPs proximal to known vitamin D pathway genes.

A novel aspect of our method is its capacity to identify candidate genes mediating

the causal effects, but we cannot exclude potential confounders in this causal analysis.

Our localized gene-centered approach was able to single out several plausible candidates

for causal genes, which had already been discussed elsewhere in the COVID-19 context,

and call for further investigations. This illustrates the power of the methods developed

in this work as a discovery engine. Therefore, we believe that they will be useful

for other studies trying to identify genetic players mediating pleiotropic effects. An

expected increase in the power of severe COVID GWAS and other relevant traits is

likely to further refine the picture starting to emerge in our analysis.

In this work, we chose genes as a natural level of granularity to search for coherent

effects, while our pathway analyses merely aggregate such gene-wise significance in

coherence. Future work could extend the concept of coherence to entire pathways.

Specifically, one can ask whether such groups of genes all tend to exhibit effects of

the same sign. In fact, in our pathway analysis, we already implemented this for gene

pairs whose SNPs are in strong LD and should therefore be analyzed jointly (so-called

meta-genes, as introduced in the original Pascal approach [2]). It did not escape us

that for multiple genes, one can compute the product normal of the signed aggregate

gene effects introduced in (4.8). Future work may investigate whether such pathway

coherence could provide an efficient means to study pleiotropy at this intermediate

level and may have more power than gene-level and whole-genome coherence analysis.

Similarly, our ratio-score in (2.3) could be extended to the pathway level, allowing

Mendelian randomization at this level.
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A limitation of our approach is that common genetic effects on different traits can-

not be disentangled from potential other joint residual contributions. However, such

contributions are likely to be negligible when using GWAS data from different pop-

ulations. Nevertheless, even when co-analyzing data from GWAS with overlapping

populations, it is possible to correct for the bias introduced by the phenotypic correla-

tion (see Supplement for derivations and testing results).

Throughout this study, we assumed that the effects of sample size differences could

be compensated by qq-normalization. Potentially, our method could profit from better

ways to deal with GWAS pairs whose traits exhibit very different effect size distribu-

tions or sample sizes.

Finally, we can envisage other more general applications of the methods discussed in

this paper. For instance, our approach could be used to correct for the auto-correlation

structures in estimating the significance of correlations between time series. The tech-

nical results presented in this paper may therefore be of interest to other domains.

4 Methods

4.1 Linear combination of χ2 distributions

We denote the χ2-distribution with n degrees of freedom as [χ2
n]. It is well known that

the sum of N independent χ2
ni

distributed random variables vi is also χ2 distributed,

i.e., ∑
i

vi ∼
[
χ2∑

i ni

]
.

However, no closed analytic expression is known for the distribution Ξ of a general

linear combination ∑
i

aivi ∼
∑
i

ai[χ
2
ni
] = [Ξ] , (4.1)

where ai are real coefficients. Nevertheless, various numerical algorithms exist to com-

pute the cdf of Ξ, denoted as FΞ, up to a desired precision. Perhaps most well known

are Ruben’s algorithm [45, 46, 47] and Davies’ algorithm [11, 12]. The latter is the

most relevant for this work, as it allows for negative ai.

With FΞ at hand, for a given real x a right tail probability p (p-value) can be

calculated as

p = 1− FΞ(x) . (4.2)
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4.2 Product-Normal distribution

The product-normal distribution, the distribution of the product of two normal-

distributed random variables w and z, plays a central role in this work. The moment

generating function for joint normal samples with correlation ϱ reads [48]

Mw,z(ν) =
1√

(1− (1 + ϱ)ν)(1 + (1− ϱ)ν)
.

Our key observation is that the above moment generating function factorizes into

moment generating functions of the gamma distribution, MΓ(ν|α, β) = 1
(1−βν)α

, i.e.,

Mw,z(ν) = Mζ(ν|1/2, 1 + ϱ)M−ξ(ν|1/2, 1− ϱ) .

Therefore,

zw ∼ [Γ(1/2, 1 + ϱ)]− [Γ(1/2, 1− ϱ)] . (4.3)

For general parameters of the two gamma distributions, the corresponding difference

distribution is known as the bilateral gamma distribution [49]. (Note that the subtrac-

tion in equation (4.3) is in the distributional sense, so, even for ϱ = 0, the corresponding

distribution does not vanish.)

Due to the well known relation between the gamma and χ2 distributions, one can

also express the product-normal distribution in terms of the χ2 distribution introduced

in the previous section. In detail,

zw ∼ 1 + ϱ

2
[χ2

1]−
1− ϱ

2
[χ2

1] . (4.4)

The cdf of the product-normal can therefore be efficiently calculated using Davies’ al-

gorithm, as the distribution (4.4) is simply a linear combination of χ2
1 distributions.

A similar relation can be derived for the product distribution of non-standardized

Gaussian variables, albeit in terms of the non-central χ2 distribution, cf., supplemen-

tary section I. Note that the relation (4.3) allows for a simple analytic derivation of a

closed-form solution for the product-normal pdf, but not for the cdf. For completeness,

details can be found in the supplement, section II.

4.3 Coherence test decorrelation

We make use of the eigenvalue decompositions UwΣwU
T
w = Λw and UzΣzU

T
z = Λz, with

Λ. the diagonal matrix of eigenvalues of Σ., to decorrelate the elements of each set.
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The index I can then be written as

I = wT z = wTUT
wUwU

T
z Uzz = ŵTUwU

T
z ẑ = ŵTKẑ ,

with ŵ ∼ N (0,Λw), ẑ ∼ N (0,Λz) and K := UwU
T
z . In components, I reads

I =
∑
i,j

Kij ŵiẑj .

For Σw = Σz =: Σ the matrix K is the identity matrix, and the result given in equation

(2.2) follows.

4.4 GWAS

As explained in the introduction, a prime example of very strong inter-element corre-

lations are SNPs in LD. Recall that the univariate least squares estimates of the effect

sizes β in genome-wide association studies (GWAS) reads

βi =
1

n
xT
i y , (4.5)

with xi the ith column of the genotype matrix X of dimension (n, p) and y the phe-

notype vector of dimension n. Both x and y are mean-centered and standardized. n

is the number of samples and p the number of SNPs. The central limit theorem and

standardization ensures that for n sufficiently large zi :=
√
nβi ∼ N (0, 1).

As a multi-variate model, we have

y = Xα+ ϵ ,

with α the vector of p true effect sizes and ϵ the n-dimensional vector of residuals with

components assumed to be ϵi ∼ N (0, 1) and independent. Substituting the multi-

variate model into (4.5), yields

βi =
1

n
xT
i (Xα + ϵ) .

As a fixed effect size model, under the null assumption that α = 0 (no effects), we

infer that

zi =
1√
n
xT
i ϵ .

We can stack an arbitrary collection of such zi to a vector z via stacking the xi to a

matrix x, such that

z =
1√
n
xT ϵ ∼ N (0,Σ) , (4.6)
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with Σ := 1
n
xTx. Note that we made use of the affine transformation property of the

multi-variate normal distribution.

It is important to be aware that z is only a component-wise univariate estimation,

and hence the null model (4.6) is for a collection of SNPs with effect sizes estimated

via independent regressions.

We can also take the effects to be random variables themselves. Let us assume that

independently αi ∼ N (0, h2/p), with h referred to as heritability. We then have that

zi =
1√
n

(
xT
i Xα+ xT

i ϵ
)
,

such that

z ∼ N (0, h2L) +N (0,Σ) = N (0, h2L+ Σ) , (4.7)

with L := 1
np
xTXXTx, and where we assumed that α and ϵ are independent. Two

remarks are in order. As X runs over all SNPs, the calculation of L usually requires an

approximation, for instance, via a cutoff. Furthermore, the null model (4.7) requires

an estimate of the heritability. Such an estimate can be obtained for via LD score

regression [9].

4.5 Direction of association

The direction of effect of the aggregated gene SNPs can be estimated via the index

D :=
∑
i

zi . (4.8)

In detail, making use of the Cholesky decomposition Σ = CCT and the affine transform

property of the multi-variate Gaussian, we have that as null

D ∼ N (0, |C|2F ) , (4.9)

with |.|F the Frobenius norm. Testing for deviations from D in the right or left tail

indicates the direction of the aggregated effect size. Note that the (anti)-coherence

test between pairs of GWAS introduced above is, alone, not sufficient to determine the

direction for a GWAS pair but requires, in addition, testing at least one GWAS via

(4.8) to determine the base direction of the aggregated gene effect. Furthermore, at

least one GWAS needs to carry a sufficiently oriented signal in the gene such that (4.8)

can succeed. We will also refer to testing for deviations from (4.9) as D-test. (Note

that we regularize Σ via thresholding eigenvalues smaller than 10−8 for the D-test.)
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4.6 Ratio test derivation

Clearly, for Σw = Σz = Σ we have that

Pr(R ≤ r) = Pr(ŵẑ ≤ rẑ2) = Pr((ŵ − rẑ)ẑ ≤ 0) .

We define v̂ = ŵ − rẑ such that v̂ ∼ N (0, (1 + r2)Λ). Note that the component-wise

correlation coefficient ϱ between v̂ and ẑ reads

ϱ = − r√
1 + r2

.

Hence, from eq. (4.4) and the supplementary section I, we deduce that

v̂ẑ ∼
∑
i

λi

√
1 + r2(1 + ϱ)

2
[χ2

1]

−
∑
i

λi

√
1 + r2(1− ϱ)

2
[χ2

1] .

(4.10)

We conclude that (2.4) holds.

4.7 Pathway enrichment

The gene scores resulting from the above coherence or ratio test can be utilized instead

of the usual gene scores to perform a gene set (pathway) enrichment test. A pathway

is thereby tested for enrichment in coherent or causal genes for a GWAS trait pair.

We follow the pathway scoring methodology of [2]. Genes of a pathway close to each

other are fused to so-called meta-genes, and coherence or ratio test-based gene scores

are re-computed for the fused genes. The purpose of the fusion is to correct for depen-

dencies between the gene scores due to LD. The resulting gene scores (p-values) are

qq-normalized and inverse transformed to χ2
1 distributed random variables. This is fol-

lowed by testing against the χ2
n distribution, with n the total number of (meta)-genes

in the pathway. In this work, we tested for pathway enrichment against MSigDB 7.4

[50, 51].

4.8 SNP normalisation

As discussed in the Results section, the product normal combines evidence for coherent

association in a multiplicative manner. A potential challenge to the proposed method

arises when one of the two GWAS has associations with very low p-values. Such highly
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significant associations are common for GWAS with very large sample sizes. Without

moderating these p-values, such associations may appear nominally co-significant as

soon as the other GWAS provides a mild significance level. We propose two possible

strategies to mitigate this.

One strategy is introducing a hard cutoff for very small SNP-wise p-values. The

precise cutoff depends on the desired co-significance to achieve, and the amount of

possible uplift of large p-values one finds acceptable. The dynamic is clear from figure

1. If we target a co-significance of p = 10−8 and accept to consider SNPs with a p-value

of 0.05 or less in one GWAS to be sufficiently significant, we have to cut off p-values

around 10−16. While such a cutoff ensures that no SNPs with p-values above 0.05 in

one GWAS can become co-significant due to very high significance (i.e., p-value below

10−16) in the other GWAS, applying such a hard cutoff point hampers distinguishing

differences in co-significance.

An alternative strategy is to transform all p-values, rather than only the most

significant ones. For example, the so-called qq-normalisation, re-assigns uniformly

distributed p-values according to the rank r, i.e. p = (r + 1)/(N + 1), where N is

the number of p-values. (This approach implies the strongest p-value moderation and

therefore is very conservative.) The product-normal statistic in (2.2) is then computed

with w and z according to the inverse χ2 cdf of the respective p-values. Since for GWAS

usually N ≃ 106, the most significant transformed p-value is ∼ 10−6. According to

figure 1 the other p-value has then to be smaller than 10−3 − 10−4 to achieve (genome-

wide) co-significance.

Since the qq-normalisation allows for combining two GWAS with significantly dif-

ferent signal strengths without the need to introduce an adhoc cutoff, it is our approach

of choice and will be used in this work. We also prefer to apply this transformation for

the ratio test in order to compensate for different signal strengths between the GWAS.

Data availability

Gene annotation can be downloaded from Ensemble BioMart

https://www.ensembl.org/ (we used release 104). 1K Genome project reference panel

can be obtained from https://www.internationalgenome.org/ (we used the 30x high

coverage GRCh38 release of [52]). The MSigDB v7.4 database used for pathway en-

richment tests can be downloaded at https://www.gsea-msigdb.org/gsea/msigdb/.
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The used GWAS summary statistics are published by the authors of the cited orig-

inal studies on the following websites.

BMDs: [20]

http://www.gefos.org/?q=content/data-release-2018

Calcium: [22]

https://gwas.mrcieu.ac.uk/datasets/ukb-d-30680 irnt/

COVID-19: [15]

https://www.covid19hg.org/results/r5/

(A2 ALL eur leave ukbb 23andme, release 7. Jan. 2021)

Drug classes: [16]

https://cnsgenomics.com/content/data

Estradiol and Estrone: [21]

https://www.gefos.org/?q=content/estrogen-gwas-2018

RA: [24]

https://plaza.umin.ac.jp/ yokada/datasource/software.htm

Vitamin D: [23]

https://www.ebi.ac.uk/gwas/efotraits/EFO 0004631

Code availability

The used methods have been implemented in the python package PascalX (version

0.0.2), available on GitHub (https://github.com/BergmannLab/PascalX) and Zenodo

[17]. Default settings and the European subpopulation of the 1K Genome Project

[53] as reference panel to estimate the SNP-SNP correlations Σ were used. We only

considered protein coding genes and SNPs within a gene window extending 50kb beyond

the transcription start and end position. For the coherence and ratio test we only

considered SNPs with matching alleles between GWAS pairs.

Author contributions

The study has been conceived and designed jointly by both authors. D.K. implemented

the methods in code and performed all data analysis. Both authors participated in

writing the manuscript and approved the final manuscript prior to submission.
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