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Abstract  16 

SARS-CoV-2, the coronavirus causing COVID-19, has infected and killed several millions of 17 
people worldwide. Since the first COVID-19 outbreak in December 2019, SARS-CoV-2 has 18 
evolved with a few genetic variants associated with higher infectivity. We aimed to identify 19 
polymorphic loci in SARS-CoV-2 that can be used to define and monitor the viral 20 
epidemiology and population genetics in different geographical regions. Between December 21 
2019 and September 2020, we sampled 5,959 SARS-CoV-2 genomes. More than 80% of the 22 
genomes sampled in Africa, Asia, Europe, North America, Oceania and South America were 23 
reportedly isolated from clinical infections in older patients, ≥ 20 years. We used the first 24 
indexed genome (NC_045512.2) as a reference and constructed multilocus genotypes (MLGs) 25 
for each sampled genome based on amino acids detected at 74 polymorphic loci located in 26 
ORF1ab, ORF3a, ORF8, matrix (M), nucleocapsid (N) and spike (S) genes. Eight of the 74 27 
loci were informative in estimating the risk of carrying infections with mutant alleles among 28 
different age groups, gender and geographical regions. Four mutant alleles - ORF1ab L4715, S 29 
G614, and N K203 and R204 reached 90% prevalence globally, coinciding with peaks in 30 
transmission but not COVID-19 severity, from March to August 2020. During this period, the 31 
MLG genetic diversity was moderate in Asia, Oceania and North America; in contrast to 32 
Africa, Europe and South America, where lower genetic diversity and absence of linkage 33 
disequilibrium indicated clonal SARS-CoV-2 transmission. Despite close relatedness to Asian 34 
MLGs, MLGs in the global population were genetically differentiated by geographic region, 35 
suggesting structure in SARS-CoV-2 populations. Our findings demonstrate the utility of the 36 
74 loci as a genetic tool to study and monitor SARS-CoV-2 transmission dynamics and 37 
evolution, which can inform future control interventions.      38 
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Introduction  39 

Knowledge of the epidemiology and transmission dynamics of SARS-CoV-2, the causative 40 
agent of the COVID-19 pandemic, is seminal to public health control efforts. SARS-CoV-2 41 
has more than 110 million confirmed cases – which resulted in 2.5 million deaths – as of March 42 
2021. Since the first outbreaks in China in December 2019, SARS-CoV-2 transmission 43 
hotspots have shifted spatio-temporally from Asia to Europe, followed by North America and 44 
South America [1, 2]. Testing and isolation of infected individuals have been integral, as public 45 
health interventions, to control the virus' spread. Global reports have shown significant 46 
differences in the prevalence, distribution and demographics of COVID-19 cases; however, 47 
little is known about how these epidemiological differences relate to infection dynamics.  48 
 49 
SARS-CoV-2 is a beta-coronavirus with a positive single-stranded RNA genome of ~30 kb. It 50 
shares 80% of its genome with SARS-CoV, which caused the 2003-2004 SARS outbreak [3]. 51 
A prominent structural feature is the spike glycoprotein (S), which facilitates cell entry and is 52 
a target of host immune responses. Other structural proteins include the nucleocapsid (N), 53 
envelope (E) and matrix/membrane (M) proteins, which are involved in viral assembly and 54 
priming of host immune responses [4]. Nearly half of the genome comprises an opening reading 55 
frame 1ab (orf1ab), which encodes 16 non-structural proteins (NSP 1-16) that constitute the 56 
replicase machinery. Notable NSPs include NSP1 (suppresses host immune responses), NSP5 57 
(encodes viral 3C-like protease) and NSP12 (encodes the RNA-dependent RNA polymerase, 58 
i.e., RdRP). Other ORFs, including ORF3a (induces apoptosis in host cells), ORF6, ORF7a, 59 
ORF8 (ORF8 mediates immune suppression and evasion) and ORF10 encode accessory 60 
proteins that are involved in viral replication and host immune dysregulation [4].  61 
 62 
Since first being identified, the virus has evolved, with numerous genetic variants being 63 
associated with higher infectivity. The geographical distribution and probable risk factors (e.g., 64 
demographics and clinical factors) for infection with mutant genotypes remain unknown. 65 
Comparative genomic analysis of SARS-CoV-2 infections collected globally suggests that the 66 
virus is adapting to its human host. A few genetic variants harbouring E484K, N501Y and 67 
D614G mutations in the S protein have been associated with higher infectivity than the wild-68 
type variant, Wuhan NC_045512.2 [5, 6]. Variants with these mutations rose to predominance 69 
in many parts of the United Kingdom and South Africa [7, 8]. Other mutations, including 70 
orf1ab P4715L, Orf3a G251V and orf8 L84S, have been associated with higher infectivity and 71 
viral density, respectively [9]. Whether these and other unreported mutations are linked, under 72 
selection and can be used to source-track infections within and between different geographical 73 
regions has not been investigated.  74 
 75 
More polymorphic and informative loci, representative of the global SARS-CoV-2 genetic 76 
diversity, are needed to accurately differentiate closely related variants and interrogate the virus 77 
population genetics in different geographical regions [9, 10]. Comparison of SARS-CoV-2 78 
whole genomes identified phylogenetic clusters, defined by Single Nucleotide Polymorphisms 79 
(SNPs) in < 10 codons/loci, that differentiated European and Asian infections [11, 12]; 80 
however, these loci lacked the needed resolution to differentiate variants circulating globally. 81 
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Multilocus genotyping using amino acid changes in SARS-CoV-2 can reduce the complexity 82 
in the genomic data and provide informative and virologically relevant data that can provide 83 
insights into the transmission dynamics and evolution of variants causing COVID-19. This 84 
approach on multiple polymorphic loci can estimate and monitor the genetic diversity of 85 
SARS-CoV-2 populations spatiotemporally and in response to control interventions.   86 
 87 

This study evaluated the epidemiology and population genetics of 5,959 SARS-CoV-2 88 
genomes sampled globally to identify risk factors associated with infection with mutant 89 
variants and gain insights into how the viral population had evolved geographically eight 90 
months into the pandemic. Briefly, we identified 74 polymorphic loci, of which eight loci 91 
located in orf1ab, orf3a, orf8, N and S genes, were considered informative in explaining the 92 
risk of infection with mutant variants among different demographics and COVID-19 disease 93 
phenotypes. Multilocus genotyping at the 74 loci allowed us to genetically differentiate closely 94 
related variants circulating globally and gain insights into the viral population genetics in 95 
different geographical regions. 96 

 97 
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Material and Methods  98 

Data curation and study variables. The current study sought to investigate the epidemiology 99 
and population genetics of SARS-CoV-2 genetic variants causing the COVID-19 pandemic. It 100 
was conducted retrospectively by analyzing SARS-CoV-2 whole genomes of ~30 kb. These 101 
genomes were isolated from human infections - asymptomatic and symptomatic. From 102 
December 2019 to September 2020, a total of  5,959 complete genomes with their associated 103 
clinical and patient data were retrieved from the Global Initiative on Sharing Avian Influenza 104 
Data (GISAID) database [13]. The demographic data included age (grouped into four 105 
categories: 0 – 19, 20 – 39, 40 – 59 and ≥ 60 years), gender and the geographical region 106 
(continent) where the infection was diagnosed. The associated metadata included clinical 107 
outcomes - asymptomatic (no symptoms) or symptomatic (mild or severe/critical). Other 108 
metadata included specimen type - upper respiratory tract (URT) or lower respiratory tract 109 
(LRT) and the technology/chemistry used to sequence the viral genome.  110 

Sequence alignments and selection of polymorphic loci. The genomes were aligned to the 111 
Wuhan reference strain (NC_045512.2) using minimap version 2.17, and the SNPs, including 112 
the corresponding amino acid changes, were called using the Geneious Prime SNP caller [14, 113 
15]. Amino acids identical to the reference strain at the investigated loci were considered wild-114 
type; else, they were considered mutants. Only polymorphic (≥ 2 alleles, i.e. amino acids, 115 
including the wild-type) loci with a minor allele frequency (MAF) of 0.01 were retained and 116 
analyzed in this study. These criteria were implemented to ensure unbiased construction of 117 
haplotypes (within a gene) and multilocus genotypes, i.e. MLGs (across ≥ two genes) [16]. An 118 
allele was designated by the amino acid followed by the codon (referred hereafter as locus) 119 
number. E.g. S D614 and  S G614 indicate glutamine (wild-type allele) and glycine (mutant allele) 120 
at locus/codon 614 of the S protein.  121 

Population genetics. Genetic diversity indices – the number of haplotypes or MLGs, eMLGs 122 
(normalized MLG based on smallest sample) and expected heterozygosity (He) were estimated 123 
using poppr V2.8.5 [16]. The eMLG was then plotted using the R package Vegan  [17], as a 124 
rarefaction curve to estimate the depth/richness in sampling. The evenness (E5) statistic was 125 
used to evaluate whether the haplotypes or eMLGs found within the population were evenly 126 
distributed. Its score ranges from 0 (presence of predominant haplotypes or MLGs) to 1 127 
(haplotypes or MLGs are evenly distributed). The He is a measure of genetic diversity, scoring 128 
from 0 (no genetic diversity, i.e., genomes carry the same haplotype or MLG) to 1 (complete 129 
diversity, i.e., genomes carry unique haplotypes or MLGs).  130 
 131 
To determine linkage disequilibrium (LD), i.e., non-random association of alleles at two or 132 
more loci, the standardized index of association (�̅�d) was estimated using poppr. The presence 133 
of genomes with identical MLGs, i.e. clones within a population, can overestimate the LD [18]. 134 
To account for this, the LD was clone-corrected using the dataset consisting of unique MLGs. 135 
To determine whether the LD was ‘structured’ between specific gene pairs, a pairwise LD was 136 
performed as described elsewhere [19].  The �̅�d score ranges from 0 to 1, with 0 indicating no 137 
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LD and 1 indicating complete LD. The statistical significance of the score was supported by a 138 
P-value < 0.05.  139 
 140 
Genetic differentiation (Nei’s GST) among MLG populations within and between continents 141 
was estimated using mmod [20]. The GST score ranges from 0 (no genetic differentiation, i.e., 142 
populations are similar or have identical MLGs) to 1 (i.e., complete genetic differentiation, i.e., 143 
populations are dissimilar or have unique MLGs); values ranging from 0 to 0.09, 0.1 to 0.19 144 
and ≥ 0.2 indicate little, moderate and great genetic differentiation, respectively [21]. We then 145 
performed a Discriminant Analysis of Principal Components (DAPC) – a multivariate 146 
method for identifying genetic clusters of closely related MLGs [22]. Briefly, the global MLG 147 
dataset was trained on a K-means algorithm, implemented in adegenet [22] to identify the 148 
optimum number of genetic clusters within the global population. The DAPC was then 149 
performed on the genetic clusters retained during a PCA by maximizing the genetic variance 150 
between populations while minimizing the variance within populations [23]. The DAPC 151 
assigned population membership probability to each MLG, which was plotted using ggplot2 152 
[24]. To visualize the genetic relationships and clonal complexes among the MLGs, the 153 
goeBURST FULL MST algorithm implemented in Phyloviz V2 was used to construct networks 154 
of minimum-spanning trees [25].  155 
 156 
Statistical analysis. Statistical analysis was performed in R v3.5.2 [26] and STATA v16 [27]. 157 
Proportions were compared using the chi-square or Fisher’s exact test. Multiple testing was 158 
adjusted using the Holm-Bonferroni method. Logistic regression was performed to determine 159 
the association between the study variables and the odds of harbouring a mutant allele. Age, 160 
geographical region, and gender were considered possible confounders and adjusted for in the 161 
final model. The adjusted odds ratio (OR) was considered statistically significant for all 162 
analysis where the P-value was < 0.05.  163 

 164 

  165 
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Results and discussion 166 

Demographics of the study population. The majority of the SARS-CoV-2 whole genomes 167 
we sampled (N=5,959) from GISAID between December 2019 and September 2020 were 168 
reportedly from Asia (26.5%), Europe (19.9%) and Oceania (27.6%), with ≤ 10% each being 169 
from Africa, North America and South America (Table 1). Despite significant differences (P-170 
value ≤ 0.005) in the proportion of genomes sampled for the study variables,  > 35.0% of the 171 
genomes sampled in Africa and Oceania were reportedly from the 20 -39 years age group. In 172 
contrast, the majority of genomes (> 31.0%) from the rest of the world were reportedly from 173 
the 40 – 59 years age group (Table 1, S1 and S2). These data are consistent with the age 174 
disparities in COVID-19 cases [28, 29]. Except in Africa, where a significantly higher 175 
proportion of genomes were isolated from females (56.2%, P-value = 0.002), most were 176 
reportedly isolated from males. 177 

Table 1. Demographics of the study population 178 
       Global Africa Asia Europe N.America Oceania S.America 

Factor Category  5959 601 1579 1188 597 1646 348 

Age 
group# 

(years)  

0 – 19 323 (5.4) 68 (11.3) 123 (7.8) 43 (3.6) 20 (3.6) 58 (3.5) 11 (3.2) 
20 – 39  2054 (34.5) 276 (45.9) 559 (35.4) 273 (22.9) 196 (32.8) 634 (38.5) 116 (33.3) 
40 – 59  1996 (33.5) 185 (30.8) 561 (35.5) 389 (32.7) 217 (36.4) 515 (31.3) 129 (37.1) 

60+ 1586 (26.6) 72 (11.9) 336 (21.3) 483 (40.7) 164 (27.5) 439 (26.7) 92 (26.4) 

Gender# 
Females 2664 (44.7) 338 (56.2) 581 (36.8) 581 (48.9) 250 (41.9) 754 (45.8) 160 (45.9) 
Males 3295 (55.3) 263 (43.8) 998 (63.2) 607 (51.1) 347 (58.1) 892 (54.2) 188 (54.0) 

Clinical# 
Severity 

Asymptomatic 60 (1.5) 0 (0.0) 41 (2.7) 18 (1.9) 0 (0.0) 0 (0.0) 1 (0.4) 
Mild 557 (14.1) 15 (2.5) 134 (8.8) 64 (6.7) 282 (47.2) 2 (12.5) 60 (24.9) 

Severe 3321 
(84.33) 586 (97.5) 1356(88.6) 870 (91.4) 315 (52.8) 14 (87.5) 180 (74.7) 

Missing data* 2021 0 48  236 0  1630  107  
# denotes number of genomes and the percentage, N (%). * denotes the number of genomes 179 
with missing clinical data and this was not included in the percentage calculations. N. America 180 
(North America) and S. America (South America).  181 
 182 

The majority of the SARS-CoV-2 genomes were reportedly isolated from throat swabs 183 
and were sequenced using Illumina. Half of the genomes we analyzed had the associated 184 
data on the specimen type collected for diagnosis or isolating the virus genome. URT 185 
specimens constituted 92.0%. Of these, throat swabs were the majority (65.1%) (Figure S2). 186 
This was observed for all the study variables (Figure S3-S5) except in South America, where 187 
more than 60.3% of the genomes were isolated from nose swabs (Figure S4). Globally, more 188 
than 68.0% of the genomes we sampled were reportedly sequenced using Illumina except in 189 
Asia and South America, where a higher proportion of genomes were reportedly sequenced 190 
using Ion Torrent (39.53%) and Nanopore (43.10%), respectively (Figure S6).  191 
 192 

Seventy-four polymorphic loci were selected for multilocus genotyping of SARS-CoV-2 193 
genomes. The majority of mutations in SARS-CoV-2 variants have been considered neutral, 194 
i.e. associated with demographic processes [30, 31]. A few others, considered homoplasic 195 
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(recur independently) and adaptive (associated with viral transmissibility and/or 196 
pathogenicity), have been detected in clinical infections circulating worldwide [9, 31, 32]. 197 
Based on these reports and our filtering criteria of a MAF ≥ 0.01, 74 polymorphic loci (≥ 2 198 
alleles) were used to construct the MLGs (Figure S7). These loci are located within ORF1ab – 199 
NSP1, NSP2, NSP3, NSP4, NSP5, NSP8, NSP12, NSP13 and NSP14, two accessory proteins 200 
- ORF3a and ORF8, and three structural proteins - M, N and S (Table S3). The moderate genetic 201 
differentiation (Gst = ~0.10) observed for these loci demonstrate their utility as markers for 202 
differentiating SARS-CoV-2 variants (Table S4). The orf1ab gene was the most polymorphic 203 
loci (Table S3-S4), indicating a mutational hotspot in SARS-CoV-2 [33]. However, its low He, 204 
≤ 0.44, compared to the moderate-to-high He, ≥ 0.5, in the orf3a, S and N genes is consistent 205 
with previous reports using nucleotide data [34]. Furthermore, our data also suggest that most 206 
mutations in the orf1ab were not under strong selection compared to those in the accessory and 207 
structural genes [30, 31, 35]. Indeed, B cell epitopes on the N and S proteins were shown to be 208 
highly diversified, allowing the virus to evade host immune responses [36].  209 

 210 
The spatiotemporal selection of variants carrying mutant alleles - ORF1ab L4715, S G614, 211 
and N K203 and R204 was associated with spikes in COVID-19 cases. Of the 149 mutant 212 
alleles detected among the 74 loci (Figure S8-S10 and Table S4), eight alleles (Figure 1) were 213 
considered putatively adaptive, having been previously associated with infectivity, 214 
pathogenesis and host immune dysregulation [4]. The first four - ORF1ab L4715 (located in 215 
NSP12/RdRP), S G614, and N K203 and R204 rose sharply in frequency from < 6% in February 216 
to > 90% in August. This rise was associated with significant peaks in global COVID-19 cases 217 
between March and September (Figure 1) [37]. The remaining four alleles, including ORF1ab 218 
I265 (NSP1), ORF1ab F3606 (NSP5), ORF8 S84 and ORF3a H57, were detected ‘transiently’ at a 219 
lower frequency, ranging from 4 to 35% (Figure 1 and Figure S8-S10). In contrast, most of the 220 
remaining 141 alleles circulated at a lower frequency, < 25%, and were not detected throughout 221 
the study period and in all continents (Figure S8-S10 and Table S4). These alleles, particularly 222 
those in the ORF1ab, have been considered neutral [31]. It is worth noting that the N501Y 223 
mutation in the S protein, associated with higher infectivity among UK and South African 224 
variants [5, 6], was carried by 0.8% of the genomes we sampled from Australia, Oceania. These 225 
genomes were reportedly isolated in June, suggesting that the S Y501 allele emerged earlier than 226 
previously reported [38]. 227 
 228 
 229 
The risk of harbouring a mutant allele varied with age, gender, geographical region and 230 
COVID-19 phenotype. A critical gap in the surveillance of SARS-CoV-2 infections and 231 
understanding COVID-19 clinical severity is the lack of data on the relationship between 232 
SARS-CoV-2 variants causing clinical infections and the clinical and demographic factors of 233 
infected individuals. To investigate this, we estimated the risk of harbouring a wild-type versus 234 
mutant allele at eight informative loci among our study variables. These informative loci – 235 
ORF1ab (265, 3606 and 4715), ORF3a 57, ORF8 84, N (203 and 204) and S 614 had alleles 236 
that were evenly distributed (E.5 score ≥ 0.6) in the global population and recurred throughout 237 
the study period (Figure 1 and Table S3). 238 
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 239 
Briefly, the risk of harbouring a mutant allele was associated with age, gender and COVID-19 240 
phenotype in all the six continents (Figure 2). Compared to patients below 20 years, patients 241 
aged 20+ years had a higher risk of harbouring mutant alleles at four loci - N 203 and 204 242 
(Asian males), ORF3a 57 (Europe) and ORF8 84 (North America) (Figure 2). This risk among 243 
the 20+ years cohort was maintained at the S 614 locus for patients in Oceania but not in North 244 
America. Host immune responses to the accessory and structural proteins have been implicated 245 
as drivers of SARS-CoV-2 evolution, with immune responses of older patients associated with 246 
infections carrying mutant alleles [39]. Interestingly, compared to asymptomatic cases, severe 247 
cases in Africa, Asia and North America were more likely to harbour the S D614 allele (Figure 248 
2). Although the S G614 has been associated with enhanced viral transmission, our data indicates 249 
that it was not associated with severe COVID-19 as reported elsewhere [40].  250 
 251 

The majority of SARS-CoV-2 MLGs within each continent were detected except in Asia 252 
and Oceania. A major hurdle to tracking the spread and understanding the evolution of SARS-253 
CoV-2 is the complexity and close relatedness of infecting genomes within and between 254 
different geographical regions. Therefore, we utilized the 74 polymorphic loci to differentiate 255 
the 5,959 genomes by constructing MLGs. We then used the MLG data to measure the richness 256 
in our sampling and to interrogate the population genetics of SARS-CoV-2 at the global and 257 
continental levels.  258 

The MLGs were moderately distributed, as indicated by the E.5 score ranging from 0.41 for 259 
Europe to 0.60 for South America. Asia and Oceania had the highest number of observed (≥ 260 
181) and expected (≥ 77) unique MLGs (Table S5). South America had the lowest number, 40 261 
(Table 3 and S6). The plateauing of the rarefaction curve for Africa, Europe and the Americas 262 
indicated that no new MLGs were detected with further sampling in these populations (Figure 263 
3A). In contrast, the steep rise in Asia and Oceania's curve suggested that we had under-264 
sampled and therefore did not capture most of the MLGs within these populations. As indicated 265 
by the positive correlation (r = 0.94, P-value = 0.017) between sample size and MLG 266 
abundance, deep sampling is critical for detecting most SARS-CoV-2 variants causing 267 
COVID-19 in affected communities. However, detecting most variants may be challenging in 268 
situations where logistics for COVID-19 testing are inadequate. Indeed, < 2% of the genomes 269 
we sampled were reportedly isolated from patients with asymptomatic infections. Considering 270 
that asymptomatic infections constitute ~80% of all COVID-19 cases and refuel and sustain 271 
the virus's transmission worldwide [41], they must be included during surveillance.  272 

Linkage structures in SARS-CoV-2 populations vary among geographical regions. We 273 
investigated the possibility that specific alleles could be linked and contribute to SARS-CoV-274 
2 fitness, including transmissibility and pathogenicity. We first quantified the genetic diversity 275 
of SARS-CoV-2 populations in the different geographical regions. The multilocus genetic 276 
diversity was lowest in South America (He = 0.15) and highest in Asia, North America and 277 
Oceania (He ≥ 0.26) (Table 2). Our data is consistent with previous reports indicating that 278 
SARS-CoV-2 phylogenies in the latter two regions depicted the diversity that existed 279 
worldwide as of July 2020 [37, 42, 43]. There was significant genome-wide LD (non-random 280 
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association among alleles) both at the global and continental levels (�̅�d ≥ 0.034, P-value < 281 
0.001) (Table 2). However, the decay of this LD (�̅�d ≤ 0.007, P-value ≥ 0.166) in Africa, Europe 282 
and South America after repeating the analysis with the unique MLGs was indicative of clonal 283 
SARS-CoV-2 transmission in these geographical regions. Indeed, multiple outbreaks in Europe 284 
and South America were due to local transmissions and were largely associated with clusters 285 
of closely related infections [43, 44].  286 

Interestingly, we observed that the genome-wide LD was driven by specific gene pairs, i.e., 287 
‘structure’. We detected the strongest LD signal (�̅�d ≥ 0.3, P-value < 0.001) between NSP12 288 
and S, NSP1 and ORF3a, NSP4 and ORF8, and NSP4 and N (Figure 3B and Figure S12), 289 
consistent with previous reports using nucleotide data [39]. While the former three LD 290 
structures either decayed or were maintained at the continental level, the NSP12 and S LD 291 
structures were consistently prominent in all the geographical regions (Figure S11). A probable 292 
driver of the NSP12-S LD structure could be the strong co-selection of the orf1ab L4715 and S 293 
G614 alleles, which putatively enhance viral replication and infectivity, respectively [45]. Our 294 
findings imply that the evolutionary pressures shaping the virus vary in different geographical 295 
regions -  with public health interventions, demographic factors, and host immune responses 296 
being the most likely key drivers [39, 46, 47]. Nonetheless, it is worth noting that these LD 297 
structures may change as the virus continues to evolve, underscoring the need for continuous 298 
genomic surveillance. 299 

Table 2: Genetic diversity estimates for SAR-COV-2 populations circulating globally. 300 

Continent N MLGs eMLGs (SE) E.5 He �̅�d (P-value) �̅�d-cc (P-value) 

Africa 601 74 56.4 (3.1) 0.57 0.19 0.034 (0.001) 0.007 (0.230) 

Asia 1579 185 78.1(5.2) 0.48 0.26 0.080 (0.001) 0.022 (0.001) 

Europe 1188 97 53.2 (3.8) 0.41 0.18 0.082 (0.001) 0.009 (0.166) 

N.America 597 69 48.6 (3.3) 0.47 0.30 0.219 (0.001) 0.065 (0.001) 

Oceania 1646 181 77.5 (5.0) 0.45 0.30 0.082 (0.001) 0.020 (0.001) 

S.America 348 40 40.0 (0.0) 0.60 0.15 0.080 (0.001) 0.007 (0.278) 
Total 5959 472 95.3 (5.8) 0.34 0.26 0.079 (0.001) 0.019 (0.001) 

The number of observed MLGs was normalized by the smallest sample size to obtained the 301 
expected MLGs (eMLGs) with the standard error (SE). The standardized index of association 302 
(�̅�d) was clone-corrected (�̅�d-cc) using the unique MLGs dataset. N. America (North America) 303 
and S. America (South America).   304 

 305 

SARS-CoV-2 MLGs in Asia and Oceania were representative of the global MLG 306 
population. The minimum spanning tree (Figure 4A) was drawn to visualize the network 307 
relationships among the 472 unique MLGs. Here, at least 11 major clusters, including eight 308 
global clusters (GC1 to 8), were identified. Nearly all clusters comprised a considerable number 309 
of Asian MLGs (Figure 4A), indicative of admixture populations, as shown in Figure 4B. The 310 
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majority of MLGs in each continent were predicted to have 20-50% geographical assignment 311 
to Asia and Oceania (Figure 4B). This data suggests that the majority of SARS-CoV-2 variants 312 
in the world are of Asian descent. It also supports contact tracing data that showed that most 313 
SARS-CoV-2 cases during the early (March to May) stages of the pandemic were linked to 314 
imported cases from Asia [48]. However, a few MLGs were unique to each continent, as 315 
indicated by the 40-60% within-continent membership assignments. Prominent among 316 
continental clusters were the AC1 and OC1 clusters, detected in Asia and Oceania, respectively 317 
(Figure 4A). The ~60% membership assignment of African MLGs to Europe (Figure 4B) 318 
suggested that most African infections were more likely to have been imported from Europe, 319 
contradicting previous reports of an American source based solely on travel data [49, 50]. This 320 
underscores the need to build strong surveillance systems utilizing both travel and genomic 321 
data.  322 
 323 

SARS-CoV-2 MLGs were genetically differentiated within and between continents. We 324 
detected many mutant alleles restricted to each continent (Table S6), suggesting geographical 325 
structuring in SARS-CoV-2 populations. Asia had the highest number of unique (?) alleles, 19 326 
in total, including ORF1ab D1812, P676, G2586 and I6297, being detected in 7.4, 4.5, 3.1 and 2.8%, 327 
respectively of genomes sampled. Among the 16 private alleles detected in Oceania, ORF1ab 328 
S271 (4.4%) was predominant. Europe had 12 private alleles with S G320 (10.7%) being 329 
predominant, while ORF3a S251 (5.4%) was predominant among eight private alleles detected 330 
in North America. Nine private alleles, including ORF1ab H4080 (15.6%) and N L187 (8.5%), 331 
were detected in Africa. Only two private alleles – ORF3a A165 (0.6%) and ORF8 A62 (0.6%) 332 
were detected in South America.  333 

Further support for the geographical structuring in the global SARS-CoV-2 populations was 334 
obtained from the DAPC analysis in which we identified four main genetic clusters (Figure 335 
4C). One cluster consisted of a subset of MLGs from each continent, consistent with the 336 
previously described admixture populations in Figure 4B. In contrast, the other three clusters 337 
consisted of MLGs, predominantly from Africa, Asia and North America (Figure 4C). A minor 338 
proportion of MLGs from Oceania showed clinal differentiation into North America (Figure 339 
4B and C), which likely represent closely related SARS-CoV-2 variants that spread between 340 
the two regions [51]. A minor proportion of European and South American MLGs showed 341 
clinal differentiation into the African cluster (Figure 4C). The Gst estimates also supported 342 
evidence of geographical structuring. There was moderate-to-high genetic differentiation (Gst 343 
≥ 0.204) among the continents except between Oceania, separately with Asia and Europe, and 344 
between Europe and South America, where there was little genetic differentiation (Gst ≤ 0.079) 345 
(Figure 4D).  346 

Spatial connectivity, including cross-border migrations and international travel, is a major 347 
conduit for spreading the virus (i.e., resulting in gene flow) among countries. Hence, we 348 
expected to see little genetic differentiation among ‘regional blocks’ within a continent. This 349 
hypothesis was valid for Europe, where there was little to moderate genetic differentiation (Gst 350 
≤ 0.181) among regional blocks except between Eastern and Northern Europe (Gst = 0.248) 351 
(Figure S12). Interestingly, we detected moderate-to-high genetic differentiation (Gst ≥ 0.111) 352 
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among regional blocks in Africa and Asia (Figure S12). This may be a reflection of the fast 353 
and strict travel bans that were put into effect early during the spread of the virus in both 354 
regions. 355 

 356 

Conclusion. The disproportionate distribution of SARS-CoV-2 genomes among the young and 357 
older age groups in this study was representative of the age distribution of COVID-19 cases 358 
reported globally. Throat swabs were the preferred specimen for COVID-19 diagnosis, but the 359 
invasive nature involved in sampling may limit its utility for surveillance. In building a robust 360 
and efficient surveillance system, access to affordable sequencing and rapid analysis of 361 
complex genomic data will be seminal to inform control efforts. The utility of the 74 362 
polymorphic loci as markers for studying the epidemiology and population genetics of SARS-363 
CoV-2 infections represents significant progress in developing molecular tools for SARS-CoV-364 
2 Surveillance. In particular, the eight informatic loci revealed contrasting epidemiology and 365 
transmission dynamics of the virus among different demographics, geographical regions and 366 
COVID-19 phenotypes. The selection of alleles at these loci and the maintenance of key LD 367 
structures in the infecting genomes indicate that the virus is evolving and adapting resulting in 368 
enhanced transmissibility to humans. An effect of this evolution was the structuring we 369 
observed in the viral population, which allowed us to differentiate closely related variants 370 
between different geographical regions genetically. Future studies can include additional loci 371 
to increase the differentiation among variants within the same geographical region.  372 

 373 

Limitations. The data presented in this study needs further investigations to draw definite 374 
conclusions on the association between age, gender and geographical region and the SARS-375 
CoV-2 variant causing COVID-19. Nearly all the genomes we sampled did not have metadata 376 
on where the patient got infected besides the country where the infection was diagnosed and/or 377 
genome isolated. Thus, it was difficult to infer a source of infection based solely on the MLG 378 
data.  379 
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Figure legends 1 
 2 
 3 

 4 
Figure 1. Spatiotemporal prevalence of eight SARS-CoV-2 mutant alleles and COVID-19 new 5 
cases. The prevalence data for the alleles and newly confirmed cases (WHO report 2020) are 6 
reported for December 2019 to September 2020. Four mutant alleles - ORF1ab L4715, S G614, 7 
and N K203 and R204 were associated with spikes in COVID-19 cases.  8 
 9 
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 10 
Figure 2. Eight informatic loci in SARS-CoV-2 associated with carriage of mutant alleles 11 
among different age groups, gender, geographical regions and COVID-19 clinical phenotype. 12 
The adjusted odds ratio (OR) with the P-value are shown with orange, blue and grey matrices 13 
indicating OR > 1 and P-value < 0.05, OR < 1 and P-value < 0.05 and 1< OR > 1 and P-value 14 
> 0.05, respectively. The OR was not estimated for study variables with < 5 samples.   15 
 16 
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Figure 3. Richness in MLG sampling and the standardized index of association (�̅�d) among 18 
genes in the global SAR-CoV-2 population sampled from December 2019 to September 2020. 19 
A. Rarefaction curve of the MLGs sampled in each geographical region. The plateau in the 20 
curves indicated no new MLGs were detected with further sampling in Africa, Europe, the 21 
American SARS-CoV-2 populations. B. Pairwise LD estimates among genes in the 5,959 22 
genomes sampled globally. The �̅�d ranges from 0 (no LD) to 1 (complete LD). The values in 23 
the coloured heatmap indicate the P-value associated with the pairwise �̅�d estimates. The 24 
strongest LD signal (�̅�d ≥ 0.3, P-value < 0.001) was detected between NSP12 and S, NSP1 and 25 
ORF3a, NSP4 and ORF8, and NSP4 and N.  26 
 27 
 28 
 29 

 30 
Figure 4. Genetic relatedness and differentiation among SAR-CoV-2 MLGs from different 31 
geographical regions. A. Relatedness among the 472 unique MLGs in the global population. 32 
Eleven clusters including eight global clusters (GC1-8) and three continental clusters – Asia 33 
(AC1-2) and Oceania (OC1) were detected. Nearly all clusters contained a considerable 34 
number of Asian MLGs. B. Population membership assignment of each MLG. Admixture 35 
populations were prominent in all geographical regions. C. DAPC analysis identified one 36 
global cluster (MLGs from all regions, central axis of PCA plot) and three continental clusters 37 
– Africa, Asia and North America. D. Moderate to high genetic differentiation (Nei’s Gst) was 38 
observed among MLGs from different continents.   39 
 40 
 41 
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