- 1 Dietary and other risk factors for cardiovascular disease
- 2 analysed with Global Burden of Disease worldwide
- 3 cohorts: lipid hypothesis versus fat-soluble vitamin

4 hypothesis

- 5 David K Cundiff (0000-0002-3206-9665), independent researcher,^{1, 3} Chunyi Wu (0000-0002-
- 6 2186-3433), Research Epidemiologist/Statistician,^{2, 3}
- 7 1 Long Beach, California, USA
- 8 2 Area Specialist Lead in Epidemiology and Statistics, Michigan Medicine, Ann Arbor,
- 9 Michigan, USA
- 10 3 Volunteer collaborators with the Institute of Health Metrics and Evaluation, Seattle,
- 11 Washington, USA
- 12 Correspondence to David K Cundiff <u>davidkcundiff@gmail.com</u>
- 13 Phone: 1-562-438-8805
- 14 Address: 333 Orizaba Ave. Long Beach, CA. 90814
- 15 Word count: abstract 311, Text: 4343

16 **Research in context**

17

18 **Evidence before this study**

19

20 Relating to dietary and other risk factors for early death from cardiovascular diseases worldwide,

- 21 the EAT-Lancet Commission proposed the "Planetary Health Diet" to reduce non-communicable
- 22 diseases and mitigate climate change. The Planetary Health Diet has been controversial and did
- 23 not achieve the goal of leading a worldwide "Great Food Transformation" towards a more plant-
- 24 based diet. The comparative risk assessment (CRA) systematic literature review-based
- 25 methodology used in drafting the Planetary Health Diet has no significant competitors as

26 published methodologies used to parse health effects of worldwide dietary and other risk factors.

27 No consensus exists about an optimal range of diets for optimum human health, including

28 cardiovascular disease prevention/treatment.

29 Added value of this study

30 Cardiovascular disease deaths/100k/year in 15-69-year-old males and females (CVD) worldwide 31 correlated with dietary risk factors had two patterns based on the amounts of kilocalories/day 32 (Kcal/day) of animal foods and added fats. We differentiated the two patterns by defining a "fat-33 soluble vitamin variable" Kcal/day (FSVV=processed meat + red meat + fish + milk + poultry + eggs + (added saturated fatty acids (SFA)+polyunsaturated fatty acids (PUFA)+trans fatty acids 34 35 (TFA)) * 0.46 (all in Kcal/day). Worldwide, all nine risk factors comprising FSVV correlated 36 negatively with CVD, but in high FSVV cohorts (FSVV 2567.27 Kcal/day), all nine risk factors 37 in the FSVV correlated positively with CVD.

38

39 **Implications of all the available evidence**

40 Animal foods and added fats afforded significant protection from CVD worldwide. The data

41 suggested that the fat-soluble vitamins in animal foods and added fat facilitating gut absorption

- 42 may have been partially or entirely responsible for the worldwide protection from CVD.
- 43 However, in high FSVV intake cohorts, SFA in food and in extracted added fats facilitating
- 44 atherosclerosis may have partially or entirely accounted for the positive correlation of FSVV and
- 45 CVD. The findings suggest that a yet not precisely defined moderate amount of animal food and
- 46 added fat intake contributed to lower cardiovascular risk relative to very high or very low
- 47 intakes.
- 48

49 Abstract

- 50 Background: Debate about whether high intake of dietary saturated fatty acids (SFA) causes
- 51 coronary heart disease (the lipid hypothesis) is ongoing.
- 52 Methods: Using worldwide Global Burden of Disease (GBD) data on cardiovascular disease
- 53 deaths/100k/year, ages 15-69 years old in male and female cohorts (CVD) and dietary and other
- 54 CVD risk factors, we formatted and population weighted data from 195 countries. The formatted
- rows of data (n=7846 cohorts) each represented about 1 million people, totaling about 7.8 billion
- 56 people in 2020. We correlated CVD with dietary and other risk factors worldwide and in
- 57 appropriate subsets. Outcome measures included CVD versus dietary and other risk factor
- 58 correlations worldwide and in subsets.
- 59 Findings: After empirical data exploration, we defined a "fat-soluble vitamin variable" Kcal/day

60 (FSVV) as, "FSVV=processed meat + red meat + fish + milk + poultry + eggs + (SFA +

- 61 polyunsaturated fatty acids (PUFA) + trans fatty acids (TFA)) * 0.46 (all in Kcal/day)." Low
- 62 density lipoprotein cholesterol mmol/L correlated strongly positively with FSVV worldwide
- 63 (r=0.780, 95% CI 0.771 to 0.788, p<0001, n=7846 cohorts), so we considered FSVV our marker
- 64 variable to test both the lipid hypothesis and our fat-soluble vitamin hypothesis. LDL-C
- 65 correlated negatively with CVD worldwide (r= -0.279, 95% CI -0.299 to -0.258, p<0.0001 as did
- 66 FSVV versus CVD (r= -0.329, 95% CI -0.349 to -0.309, p < 0.0001). However, FSVV correlated
- 67 positively with CVD in the highest FSVV cohorts (mean male/female FSVV \geq 567.27 Kcal/day:
- 68 r=0.523, 95% CI 0.476 to 0.567, p<0001, n=974 cohorts).
- 69 Interpretation: Since FSVV correlated positively with CVD only in high FSVV cohorts, the
- 70 data supported the lipid hypothesis only in GBD cohorts with high FSVV intake. Since both
- 71 FSVV and LDL-C correlated negatively with CVD worldwide, only the fat-soluble vitamin

- 72 hypothesis was supported worldwide. This GBD cohort data analysis methodology could be used
- to help develop food policy and education strategies for improving public health.
- 74 **Funding**: none

76 Introduction

77	The scientific validity of the Dietary Guidelines for Americans for 2015-2020, including
78	guidelines based on the lipid hypothesis, was challenged by Journalist Nina Teicholz in the
79	BMJ. ¹ The Center for Science in the Public Interest called for the BMJ to retract the article. Peer
80	reviewers the BMJ selected to adjudicate the far-reaching dispute concluded that, "Teicholz's
81	criticisms of the methods used by Dietary Guidelines for Americans Committee are within the
82	realm of scientific debate." ² Currently, no methodology for relating cardiovascular disease
83	events to food intake has been generally accepted as rigorous, replicable, and scientifically valid.
84	
85	This paper will use population weighted, formatted, worldwide global burden of disease (GBD)
86	data from the Institute of Health Metrics and Evaluation (IHME) to assess the impact of diet,
87	metabolic risk factors, tobacco use, air pollution, and other risk factors on cardiovascular disease
88	deaths/100k/year in male and female cohorts 15-69-years-old (CVD).
89	
90	We were open to the possible support of the data for the lipid hypothesis but also for our newly
91	defined, "fat-soluble vitamin hypothesis," which an initial exploration of the GBD data
92	prompted. We defined it as "insufficient dietary intake of fat-soluble vitamin containing
93	animal foods and added fat for gut absorption increases cardiovascular disease risk."
94	We will elaborate in the results and the discussion.
95	
96	
97	

98 Methods

99 As volunteer collaborators with the IHME, we acquired and utilised raw GBD worldwide 100 ecological data (GBD: 195 countries and 365 subnational locations, n=1120 male and female 101 cohorts). Data consisted of the rate of cardiovascular disease early deaths, metabolic risk factors, 102 dietary risk factors and covariates, and other risk factors of male and female cohorts 15-49 years 103 old and 50-69 years old from each year 1990-2017. GBD worldwide citations of over 12,000 104 surveys constituting ecological data inputs for this analysis are available online from IHME.³ 105 The main characteristics of IHME GBD data sources, the protocol for the GBD study, and all 106 risk factor values have been published by IHME GBD data researchers and discussed elsewhere.⁴⁻⁸ These include detailed descriptions of categories of input data, potentially 107 108 important biases, and the methodologies of analysis. We did not clean or pre-process any of the 109 GBD data. GBD cohort risk factor and health outcome data from the IHME had no missing 110 records.

111

Food risk factors came from surveys that IHME utilised as gram/day (g/d) consumed on average.
GBD dietary covariate data originally came from Food and Agriculture Organization surveys of
animal and plant food commodities available per capita in countries worldwide (potatoes, corn,
rice, sweet potatoes, poultry, and eggs)—as opposed to consumed on average.⁹

116

Supplementary Table 1 lists the relevant GBD dietary and other risk factors, covariates, and other available variables with definitions of those risk factor exposures.⁷ Once IHME staff time constraints due to COVID-19 data collection and modeling are over, the updated GBD 2020 data

120 with all the variables as the GBD 2017 data that we used for this analysis may be obtained by

121 volunteer researchers collaborating with IHME.¹⁰

122

123 Study design and population

124 For cardiovascular disease early deaths and all risk factors, we averaged the values for ages 15-

125 49 years old together with 50-69 years old for each male and female cohort for each year.

126 Finally, for each male and female cohort, data from all 28 years (1990-2017) of the means of the

127 rate of CVD and risk factor exposures were averaged using the computer software program R.

128

129 To weigh the data according to population, internet searches (mostly Wikipedia) yielded the

130 most recent population estimates for countries and subnational states, provinces, and regions.

131 The 1120 GBD cohorts available were population weighted by a software program in R,

resulting in an analysis dataset with 7846 population weighted cohorts representing about 7.8

133 billion people in 2020. Each male or female cohort in the population-weighted analysis dataset

represented approximately 1 million people (range: < 100,000 to 1.5 million). World population

135 data from the World Bank or the Organization for Economic Co-operation and

136 Development could not be used because they did not include all 195 countries or any subnational137 data.

107 0

138

Supplementary Table 2 details how omega-3 fatty acid g/d was converted to fish g/d using data on the omega-3 fatty acid content of frequently eaten fish from the National Institutes of Health Office of Dietary Supplements (USA).¹¹ As shown in Supplementary Table 3, we converted all of the animal and plant food data, including alcohol and sugary beverage consumption, from g/d

143	to kilocalories/day (Kcal/day). For the g/d to Kcal/day conversions, we used the Nutritionix track
144	app, ¹² which tracks types and quantities of foods consumed. Saturated fatty acids (SFA: 0-1
145	portion of the entire diet Kcal/day) was not available with GBD 2017 data, so GBD SFA risk
146	factor data from GBD 2016 was used. Polyunsaturated fatty acid (PUFA) and trans fatty acid
147	(TFA) GBD risk factor data from 2017 (0-1 portion of the entire diet Kcal/day) were also
148	utilised, but monounsaturated fat data were not available. These fatty acid data expressed as 0-1
149	portion of the entire diet were converted to Kcal/day by multiplying by the total Kcal/day
150	available (a covariate from the Food and Agriculture Organization ⁹) per capita for each cohort.
151	
152	Outcome variable and covariates
153	CVD, the principal outcome variable of this analysis, was a combination variable consisting of
154	the deaths/100k/year of male and female cohorts from (1) ischemic heart disease, (2) stroke, (3)
155	hypertensive heart disease, (4) rheumatic heart disease, (5) non-rheumatic valvular disease, (6)
156	subarachnoid haematoma, (7) myocarditis, (8) alcoholic cardiomyopathy, (9) endocarditis, aortic
157	aneurysm, and (10) atrial fibrillation. Given the multiple dietary and other influences on the
158	causation of CVD, we did not attempt to differentiate between dietary risk factors and covariates.
159	
160	Statistical methods

161 To determine the strengths of the risk factor correlations with CVD of population weighted

162 worldwide cohorts (n=7846 cohorts) or subgroups of cohorts (e.g., highest and lowest CVD

163 cohorts, etc.), we utilised Pearson correlation coefficients: r, 95% confidence intervals (CIs), and
164 *p* values.

165

- 166 To identify confounding in the univariate correlations, we used partial correlations, holding
- 167 constant the suspected confounder variables.
- 168
- 169 Sensitivity analyses
- 170 We performed subset analyses on the 1000 cohorts with the lowest and highest levels of CVD.
- 171
- 172 We used SAS and SAS OnDemand for Academics software 9.4 (SAS Institute, Cary, NC) for the
- 173 data analysis.
- 174

175 **Results**

176 Table 1 shows the 44 dietary, metabolic, and other worldwide risk factors potentially 177 contributing to CVD (n=7846 cohorts). See Supplementary Table 1 for definitions of the risk 178 factor and covariate variables. In Table 1, low density lipoprotein cholesterol mmol/L (LDL-C) 179 negatively correlated with CVD worldwide (r=-0.279, 95% CI -0.299 to -0.258, p<0001,), 180 meaning the higher the LDL-C the lower the CVD. Figure 1 gives the worldwide plot of LDL-C 181 versus CVD, showing widely scattered data points with a negative slope of the least square 182 regression line. 183 184 Table 1 shows that CVD negatively correlated with all the animal foods and all the fatty acids 185 (processed meats, red meats, fish, milk, poultry, eggs, SFA, PUFA, and TFA). Based on these 186 unexpected finding, we formulated our "fat-soluble vitamin hypothesis"—insufficient dietary 187 intake of fat-soluble vitamin containing animal foods and added fat for gut 188 absorption increases cardiovascular disease risk. To test this hypothesis, we summed the 189 Kcal/day of animal foods and added fats to produce a fat-soluble vitamins variable (Kcal/day) 190 (FSVV =processed meats Kcal/day + red meats Kcal/day + fish Kcal/day + milk Kcal/day +

191 poultry Kcal/day + eggs Kcal/day + added SFA Kcal/day + added TFA

192 Kcal/day). In determining the portion of SFA, PUFA, and TFA added in addition to the fatty

acids in the animal and plant foods, an adjustment factor (fatty acids * 0.46), adapted from the

194 website "Our World in Data," differentiated the fatty acids in individual foods (54% of the total)

195 from the added fatty acids in oils, butter, lard, etc. (46% of the total).¹³ This adjustment

196 prevented double counting fatty acids (Kcal/day) and allowed a more accurate determination of

197 FSVV.

198

199	FSVV (with abundant SFA in animal foods and added extracted fat) correlated strongly with
200	LDL-C worldwide (r=0.780, 95% CI 0.771 to 0.788, p<0001, n=7846 cohorts). Consequently,
201	we considered that FSVV could serve as our marker for the lipid hypothesis as well as the fat-
202	soluble vitamin hypothesis.
203	
204	Table 2 shows a subgroup of 500 pairs of male and female cohorts with the lowest CVD values,
205	totaling 1000 total cohorts (an arbitrary number). Notably, the mean FSVV in this low CVD
206	subset (FSVV=531.38 Kcal/day) was much higher than the mean FSVV worldwide
207	(FSVV=285.36 Kcal/day, Table 1) or the highest CVD subset mean FSVV (FSVV=235.66
208	Kcal/day, n=1000 cohorts, Table 2).
209	
210	To test the lipid hypothesis with FSVV as the marker variable, we calculated the median FSVV
211	of the low CVD 1000 cohorts (median FSVV=567.27 Kcal/day) and formed a subset of the
212	highest FSVV cohorts (FSVV≥567.27 Kcal/day, n=974 cohorts, Table 3). In Table 3, we see a
213	much higher mean FSVV (FSVV≥692.58 Kcal/day) than in Table 2 and a strong positive
214	correlation of FSVV with CVD (r=0.523, 95% CI 0.476 to 0.567, p<0001, n=974 cohorts). In
215	contrast, LDL-C and CVD were negatively correlated in this high FSVV subset (r=-0.254, 95%
216	CI -0.194 to -0.312, p<0001, n=974 cohorts). Figure 2 graphs the contrast between worldwide
217	FSVV negatively correlating with CVD versus FSVV positively correlating with CVD in the
218	highest FSVV cohorts (FSVV≥567.27 Kcal/day).
219	

220	Table 4 shows FSVV's component risk factors (processed meat, red meat, fish, milk, poultry,
221	eggs, and added (SFA+PUFA+TFA)) for the 34 countries in Table 2 in descending order by
222	CVD. Table 5 gives all the CVD risk factors for seven representative countries out of the 34
223	countries in Table 4 (CVD ≤ 293.97, n=1000 cohorts).
224	
225	The average alcohol intake was 81.0 Kcal/day worldwide. Alcohol Kcal/day correlated
226	negatively with CVD worldwide (r=-0.061, 95% CI -0.083 to -0.039, p<0001, Table 1).
227	However, in high FSVV cohorts (FSVV≥567.27 Kcal/day), mean alcohol=155.02 Kcal/day),
228	alcohol positively correlated with CVD (r=0.475, 95% CI 0.425 to 0.522, p<0001, n=974
229	cohorts, Table 3).
230	
231	Vitamin A deficiency incidence/100k in children \leq 5 years old, the only fat-soluble vitamin in
232	the GBD database, correlated positively with CVD worldwide (r=0.210, 95% CI 0.189 to 0.231,
233	p<0001, Table 1).
234	
235	Dietary fiber was not significantly correlated with CVD worldwide (r=0.019, 95% CI -0.003 to
236	0.041, p=0.09, Table 1). Once dietary fiber was adjusted for FSVV, alcohol, sugary beverages,
237	and potatoes by partial correlation analysis; dietary fiber correlated negatively with CVD (r=-
238	0.052, 95% CI -0.074 to -0.030, p<0.0001).
239	
240	Physical activity positively correlated with CVD worldwide (r=0.160, 95% CI 0.139 to 0.182,
241	p<0.0001, Table 1). However, confounding factors existed:
242	

1.	countries with higher FSVV levels also had less physical activity (FSVV versus physical
	activity worldwide: r=-0.366, 95% CI: -0.385 to -0.347, p< 0.0001),
2.	females had less physical activity than males (mean physical activity males=5061
	METs/week, mean physical activity females=4356 METs/week), along with less CVD
	(mean CVD males=656.2, mean CVD females=428.6), and
3.	males smoked tobacco more than females (mean smoking (0-1) males=0.339 or 33.9%,
	mean smoking (0-1) females=0.070 or 7%), and males had more physical activity (as #2
	above).
Once r	physical activity was adjusted for FSVV, smoking, and sex by partial correlation analysis,
-	elated negatively with CVD (r=-0.127, 95% CI -0.149 to -0.104, p<0.0001).
In coh	orts mostly in developed countries, with FSVV \geq 567.27 Kcal/day, discontinuing breast
feeding	g correlated positively with CVD (r=0.268, 95% CI 0.208 to 0.325, p<0.0001, Table 3).
Second	lhand smoking negatively correlated with CVD worldwide (r=-0.225, 95% CI -0.246 to -
0.204,	p<0.0001, Table 1). After adjusting secondhand smoking for (1) smoking, (2) sublingual
tobacc	o use, (3) household smoke, (4) ambient air pollution, and (5) sex by partial correlation
analysi	is; secondhand smoke correlated positively with CVD (r=0.048, 95% CI 0.025 to 0.070,
p<0.00	001).
The m	etabolic risk factors, BMI, FPG, and LDL-C, all correlated negatively with CVD
worldv	vide (BMI r=-0.240, 95% CI -0.261 to -0.219, p<0.0001, FPG r=-0.178, 95% CI -0.200 to
	2. 3. Once p it correct In cohe feeding Second 0.204, tobacc analysi p<0.00

- 266 -0.157, p<0.0001, and LDL-C r=-0.279, 95% CI -0.299 to -0.258, p<0.0001, respectively, Table
- 1). Once they were adjusted for FSVV, alcohol, sugary beverages, and potatoes by partial
- correlation analysis; they all correlated positively with CVD (BMI r=0.028, 95% CI 0.006 to
- 269 0.050, p=0.0144, FPG r=0.076, 95% CI 0.054 to 0.098, p<0.0001, LDL-C r=0.170, 95% CI
- 0.148 to 0.191, p<0.0001, respectively). In the cohorts with FSVV≥567.27 Kcal/day, BMI and
- 271 FPG positively correlated with CVD (BMI r=0.484, 95% CI 0.434 to 0.530, p<0.0001 and FPG
- 272 r=0.091, 95% CI 0.028 to 0.153, p=0.0046, respectively).

274 **Discussion**

275 Since this GBD data-based worldwide risk factor—health outcome analysis methodology has no 276 precedent, there is no medical literature of previous such studies. The best comparator for this 277 CVD versus risk factor analysis with IHME GBD data would be the comparative risk assessment 278 (CRA) systematic literature review-based methodology used in drafting the "Planetary Health 279 Diet." Proposed by the EAT-Lancet Commission, the Planetary Health Diet was meant to spark a 280 global transformation in human diets to improve health and mitigate climate change. The EAT-281 Lancet Commission authors said, "Transformation to healthy diets by 2050 will require 282 substantial dietary shifts, including a greater than 50% reduction in global consumption of 283 unhealthy foods such as red meat and sugar, and a greater than 100% increase in the consumption of healthy foods such as nuts, fruits, vegetables and legumes."¹⁴ Reducing diet-284 285 caused non-communicable diseases (e.g., obesity, type 2 diabetes, CVD, cancers, etc.) was a 286 major goal. WHO data show that about 44% of worldwide non-communicable disease deaths were CVD related,¹⁵ so these CVD analysis findings from GBD data can be fairly contrasted 287 288 with the Planetary Health Diet proposal from CRA systematic literature review and expert 289 opinion methodology.

290

When introduced by the EAT-Lancet Commission, the Planetary Health Diet sparked controversy. Dr. Francisco Zagmutt and colleagues disputed the rigor of the analytics, "A truly effective global solution to the problem of human nutrition and environmental impact must be replicable, transparent, and supported with correct quantification of its impact. Unfortunately, the report did not meet these criteria."¹⁶ The World Health Organization (WHO) withdrew

296	sponsorsh	nip over the exclusivity of one dietary approach for the entire planet and the negative
297	impact of	reducing cattle and pig ranching in developing countries. ¹⁷
298		
299	The meth	odologies and findings of this GBD data-based analysis of diet and other risk factors
300	related to	global CVD were markedly different than those of the EAT-Lancet Commission. Some
301	of the con	nsequential differences were as follows:
302		
303	1. Th	ne Planetary Health Diet recommendations were based on systematic literature reviews
304	pr	imarily from researchers and participants in developed countries, largely missing at
305	lea	ast 70% of the world's population. This IHME GBD data-based population weighted
306	an	alysis proportionally included people in developing countries.
307	2. To	Dr. Zagmutt's point about the lack of rigor of the Planetary Health Diet analytics, this
308	IH	IME GBD data analysis used a single population weighted analysis dataset, spanning
309	28	3 years, making it replicable (with 2020 GBD data), transparent, and supported with
310	rea	asonable quantification of the impact of global human nutrition on CVD.
311	3. Tł	ne overall amounts of animal foods (Kcal/day) recommended by the Planetary Health
312	Di	iet (mean animal foods: 304 Kcal/day) ¹⁸ do not differ substantially from the overall
313	an	imal foods (Kcal/day) in the GBD lowest CVD cohorts (338 Kcal/day, n=1000 cohorts,
314	C	VD < 292.97 deaths/year) in this analysis (Table 2). However, the Planetary Health Diet
315	ree	commended 40 Kcal/day of fish ¹⁸ while the GBD data show that the world fish
316	co	onsumption from 1990-2017 averaged 10.0 Kcal/day (Table 1). Levels of overfishing
317	ar	e unsustainable now, so quadrupling fish consumption worldwide is impossible.
318	Li	kewise, the Planetary Health Diet recommended average milk consumption to be 153

319	Kcal/day ¹⁸ while the GBD data show the world average milk consumption per person
320	from 1990-2017 of 25.0 Kcal/day (Table 1). Increasing the world's dairy cows six-fold,
321	most of whom would eventually be slaughtered for meat, would seem to contradict major
322	goals of the EAT-Lancet Commission—reducing methane emissions from cows and
323	reducing red meat consumption. Instead, increasing all livestock production in
324	developing countries would be projected to improve CVD outcomes (Table 1) as would
325	decreasing cattle, pig, and poultry raising, but not fish or eggs, in high FSVV cohorts
326	(Table 3).
327	4. Whereas the Planetary Health Diet has a single set of recommended ranges of quantities
328	of plant and animal foods for all humanity, the GBD data-based analysis methodology
329	can apply to people in developing countries as well as developed countries.
330	
331	Fat-soluble vitamins include vitamins A, D, E, and K (K1=phylloquinones and K2=
331 332	Fat-soluble vitamins include vitamins A, D, E, and K (K1=phylloquinones and K2= menaquinones). Vitamin K2 (menaquinones from animal foods and fermented plant products)
332	menaquinones). Vitamin K2 (menaquinones from animal foods and fermented plant products)
332 333	menaquinones). Vitamin K2 (menaquinones from animal foods and fermented plant products) inhibits arterial calcification, a major factor in the pathogenesis of atherosclerosis and
332333334	menaquinones). Vitamin K2 (menaquinones from animal foods and fermented plant products) inhibits arterial calcification, a major factor in the pathogenesis of atherosclerosis and cardiovascular disease. ¹⁹ Vitamin A and its beta-carotene precursor are important in preventing
332333334335	menaquinones). Vitamin K2 (menaquinones from animal foods and fermented plant products) inhibits arterial calcification, a major factor in the pathogenesis of atherosclerosis and cardiovascular disease. ¹⁹ Vitamin A and its beta-carotene precursor are important in preventing congenital heart disease. ^{20,21} Vitamin E protects the vasculature against oxidative stress,
 332 333 334 335 336 	menaquinones). Vitamin K2 (menaquinones from animal foods and fermented plant products) inhibits arterial calcification, a major factor in the pathogenesis of atherosclerosis and cardiovascular disease. ¹⁹ Vitamin A and its beta-carotene precursor are important in preventing congenital heart disease. ^{20,21} Vitamin E protects the vasculature against oxidative stress, including lipid peroxidation and the production of atherogenic forms of LDL-C—a part of the
 332 333 334 335 336 337 	menaquinones). Vitamin K2 (menaquinones from animal foods and fermented plant products) inhibits arterial calcification, a major factor in the pathogenesis of atherosclerosis and cardiovascular disease. ¹⁹ Vitamin A and its beta-carotene precursor are important in preventing congenital heart disease. ^{20,21} Vitamin E protects the vasculature against oxidative stress, including lipid peroxidation and the production of atherogenic forms of LDL-C—a part of the pathogenesis of cardiovascular disease. ²² Regarding vitamin D, a meta-analysis of

341 The four fat-soluble vitamins come primarily from animal foods. Vitamin K2 levels are high in aged cheeses, other fermented dairy products,²⁴ organ meats (e.g., bovine 342 and pork liver), chicken, and egg yolks.²⁵ The Japanese had the world's lowest CVD from 343 344 1990-2017 (mean CVD=169.2 deaths/100k/year). Paradoxically, crucial CVD risk factors were 345 high in the Japanese (e.g., smoking: mean male/female smoking=26.8%, salt intake (mean 346 sodium= 6.01 g/d, systolic blood pressure (mean SBP= 137.6 mm/Hg, Table 5). Relative to 347 fermented cheeses, the content of vitamin K2 in fish was low to negligible (Japanese fish consumption mean=260.5 Kcal/day, Table 4).²⁵ Instead, Japanese consumed high quantities of 348 vitamin K2 in the form of fermented sov products like natto and miso.^{26,27} People that also 349 350 consumed high amounts of fermented legumes were the Taiwanese (soybean Douchi, soybean Meitauza, and soybean curd²⁸), South Koreans (Cheonggukjang, a fermented soybean 351 stew²⁸), and Thais (soybean Thua nao²⁹). The Taiwanese, South Koreans, and Thais were 352 353 also listed among the 34 low CVD countries (Table 4). 354

In high FSVV cohorts, (FSVV≥ 567.27 Kcal/day), why LDL-C correlated negatively with FSVV
(r=-0.254 95% CI -0.312 to -0.194, *p*<0.0001, n=974 cohorts) is not clear. However, multiple
studies have documented that LDL-C may be influenced by genetic, racial, or ethnic differences
that do not necessarily correspond with risk of CVD.^{30,31} Additionally, LDL-C lowering
medications in wide use especially in high FSVV intake developed countries may also confound
the relationship of LDL-C with both LSVV and CVD risk in this subset cohort analysis.
Since there are high FSVV and low FSVV intake individual people widely distributed

363 worldwide, prospective observational studies of individuals in high FSVV areas, rather than

364	GBD cohort studies like this one, could better demonstrate positive correlations between LDL-C
365	(or total cholesterol) and CVD. This may explain why the Seven Countries Study ³² of Ancel
366	Keys and the Framingham Heart Study, ³³ both in high FSVV regions, supported the lipid
367	hypothesis. However, the Prospective Urban Rural Epidemiology (PURE) Study, with individual
368	data on 135,335 patients from three high-income, 11 middle-income, and four low-
369	income countries was clearly at variance with the lipid hypothesis. ³⁴ The PURE Study found
370	that higher saturated fat intake was associated with lower risk of stroke (quintile 5 vs quintile 1,
371	HR 0.79, (95% CI 0.64 to 0.98), p _{trend} =0.0498).
372	
373	Defining the optimal FSVV range that will reduce CVD risk while not increasing other diseases
374	(e.g., cancers and obesity) will require more research. Supplements of fat-soluble vitamins to
375	reduce the animal food and added fat intake required to minimise CVD should be studied,
376	especially in developing countries with less access to animal foods.
377	
378	Given the negative correlations of CVD with both fish and eggs in both tables 1 and 3, the
379	reduction of FSVV in high FSVV countries might best come from meat, poultry, and added fats.
380	Although milk (including other dairy products) correlated positively with CVD in Table 3
381	(r=0.185, 95% CI 0.123 to 0.245, p<0001), this probably related to Japan and Peru having the
382	lowest and fifth lowest CVD (Japan: mean CVD=169.2, mean milk=29.0 Kcal/day, Peru: mean
383	CVD=197.7, mean milk=15.3 Kcal/day). Without Japan and Peru in the analysis (n=834
384	cohorts), milk correlated negatively with CVD (r=-0.071, 95% CI -0.138 to -0.030, p=0.0405).
385	Of the 34 low CVD countries in Table 4, 20 had high milk intakes (milk Kcal/day range: 68.8
386	Kcal/day-124.1Kcal/day versus mean milk worldwide=25.0 Kcal/day, Table 1) and these high

milk intake cohorts all had relatively high per capita intakes of cheese.^{35,36} Fermented, full-fat
dairy products have high levels of fat-soluble vitamin K2,^{24,25} which have been found to be
important in preventing calcification of arteries and atherosclerosis.³⁷

390

391 Potatoes Kcal/day available positively correlated with CVD both worldwide (r=0.050, 95% CI

392 0.028 to 0.073, p< 0.0001, Table 1) and in cohorts with FSVV \geq 567.27 Kcal/day (r=0.109, 95%

393 CI 0.046 to 0.170, p< 0.0001, Table 3). Notably, half, or more of the potatoes consumed

394 worldwide are in the form of highly processed food products.³⁸ Recent large prospective

395 observational studies have found higher consumption of ultra-processed foods associated with an

396 increased risk of cardiovascular disease incidence and CVD mortality.^{39,40} Data from 79 high-

397 and middle-income countries showed that ultra-processed products dominate the food supplies of

398 high-income countries and that their consumption is now rapidly increasing in middle-income

399 countries.⁴¹

400

401 Dietary sodium negatively correlated with CVD worldwide (r=-0.213, 95% CI -0.234 to -0.192, 402 p<0.0001, Table 1) and was not significantly correlated with CVD in high FSVV cohorts 403 (FSVV \geq 567.27 Kcal/day: r=-0.040, 95% CI 0.023 to 0.170, p=0.21, Table 3) This was contrary 404 to an analysis of sodium intake versus cardiovascular deaths in 66 countries by Mozaffarian, et. al who attributed 9.5% of cardiovascular deaths worldwide to high sodium intake.⁴² However, 405 406 O'Donnell and colleagues found the relationship of sodium to cardiovascular disease to be J 407 shaped curve and suggested that the lowest cardiovascular risk is with moderate sodium intake in the 3-5 g/d range.⁴³ This analysis is consistent with O'Donnell's study. 408

409

410

411	The moderately strong positive correlation of child ≤ 5 years old severe underweight (weight >2
412	SD below the mean for height) with CVD worldwide (r=0.306, 95% CI 0.285 to 0.325,
413	p<0.0001, Table 1) suggested a relationship of infant/child malnutrition with later CVD. Babies
414	surviving the so called "Dutch famine" toward the end of the second world war (1944-45) have
415	been shown to have higher subsequent heart disease incidence than earlier or later cohorts in
416	Holland. ⁴⁴ This suggested that in utero and early infancy severe malnutrition may subsequently
417	contribute substantially to CVD, especially in developing countries.
418	
419	Prematurely stopping breast feeding positively correlated with CVD in the countries with FSVV
420	≥567.27 Kcal/day (r=0.268 95% CI: 0.208 to 0.325, <i>p</i> =0.0027, Table 3). A review of
421	observational studies of breast feeding related to metabolic risk factors for CVD in developed
422	countries suggested that breast feeding was associated with increased insulin sensitivity and
423	decreased systolic blood pressure in later life. Breast feeding also had metabolic benefits for the
424	mother. ⁴⁵
425	
426	According to the WHO, ambient air pollution (particulate matter \leq 2.5 micrometers
427	diameter (PM $_{2.5}$)) causes cardiovascular and respiratory diseases and cancers. ⁴⁶ The WHO
428	considers >10 μ g/m ³ of PM _{2.5} particles a health hazard. In this GBD data analysis, air
429	pollution (PM _{2.5}) in countries with FSVV \geq 567.27 Kcal/day and mean CVD=273.7
430	deaths/100k/year averaged 12.7 μ g/m ³ . Worldwide, comparable numbers for air pollution
431	(PM $_{2.5}$) were mean=44.7 μ g/m ³ and mean CVD=543.7 (Table 1).
432	
433	

434	These IHME GBD data support the link of smoking tobacco to CVD (r=0.298, 95% CI
435	0.278 to 0.318, p<0.0001, Table 1). The mean incidence of smoking worldwide=20.5%
436	(Table 1). In the 34 countries with the lowest CVD, the mean smoking
437	incidence=23.3% (n=974 cohorts, Table 3). Smoking was clearly a major risk factor
438	for CVD, but these data suggest that diet was more influential. Given the multiple
439	dietary and other contributors to CVD, the CVD population attributable fraction
440	(PAF) for smoking was probably far below the WHO estimate that tobacco accounts
441	for 20% of coronary artery disease mortality. ⁴⁷
442	
443	The positive correlation of blood lead levels with CVD worldwide (r=0.180, 95% CI 0.159 to
444	0.201, $p < 0.0001$, Table 1) was consistent with reports that lead toxicity leads to hypertension. ⁴⁸
445	Also, environmental lead exposure has been linked with all-cause mortality,
446	cardiovascular disease mortality, and ischaemic heart disease mortality in the US. ⁴⁹
447	
448	This analysis showed that kidney disease correlated positively with CVD (r=0.194, 95% CI
449	0.173 to 0.215, p<0.0001, Table 1). A systematic literature review of kidney disease revealed
450	that chronic kidney disease resulted in an estimated 1.2 million deaths in 2017, of which a large
451	portion were from CVD. ⁵⁰ Other CVD risk factors may also lead to kidney disease (e.g., systolic
452	hypertension, types 1 and 2 diabetes).
453	

454 Limitations

455 Our study was subject to all the limitations discussed in previous GBD publications.^{51,52} These

456 included gaps, biases, and inconsistencies in data sources as well as limitations in the methods of

457	data processing and estimation. Having comprehensive data on dietary inputs is key to more
458	accurate and reliable analyses. These GBD data on animal foods, plant foods, alcohol, sugary
459	beverages, and fatty acids were not comprehensive and comprised only 1191.4 Kcal/day per
460	person on average worldwide. Subnational data on all risk factors were available on only four
461	countries. Because the data formatting and statistical methodology were new, this was
462	necessarily a post hoc analysis and no pre-analysis protocol was possible. This GBD data
463	analysis should be repeated with the most recently released GBD 2019 data when those data
464	become available to volunteer collaborators.
465	
466	Generalisability
467	This new the GBD statistical analysis methodology for finding correlations between dietary and
468	other risk factors and health outcomes (e.g., CVD) can be applied to any of the risk factors and
469	health outcomes available with the new IHME GBD 2020 data. With further experience with the
470	methodology, we can determine the generalisability.

472 **Conclusion**

- 473 The lipid hypothesis (e.g., dietary SFA from animal foods and added fats causes CVD) was
- 474 consistent with the strong positive correlation of FSVV with CVD in high FSVV cohorts.
- 475 However, the lipid hypothesis was not supported worldwide. Global data analysis supported the
- 476 fat-soluble vitamin hypothesis because FSVV negatively correlated with CVD worldwide. This
- 477 methodology of analysing IHME GBD data might well have advantages over the CRA
- 478 systematic literature review and expert opinion method in developing policy recommendations,
- 479 clinical practice guidelines, and public health recommendations. The EAT-Lancet Commission
- 480 might consider using IHME GBD data to guide another version of a planetary health diet.

482 Table 1. Dietary and other risks related to CVD worldwide (n=7846 cohorts)

CVD and CVD risk factors	Mean	SD	Min	Max	r	95% CI	95% CI	р
Cardiovascular disease deaths/100k/year ages 15-69 (CVD)	543.66	288.01	73.47	1844				
CVD mean m/f	543.69	246.13	135.46	1727	0.855	0.849	0.860	<.0001
LDL cholesterol mmol/L	2.35	0.40	1.27	3.25	-0.279	-0.299	-0.258	<.0001
Fat-soluble vitamin variable Kcal/day	285.36	193.31	58.78	932.18	-0.329	-0.349	-0.309	<.0001
(FSVV)								
Processed meat Kcal/day	5.33	9.72	0.20	68.77	-0.204	-0.226	-0.183	<.0001
Red meat Kcal/day	50.27	45.13	3.21	235.95	-0.232	-0.253	-0.211	<.0001
Fish Kcal/day	9.99	36.52	0.40	370.36	-0.203	-0.224	-0.181	<.0001
Milk Kcal/day	25.04	27.05	1.06	146.82	-0.192	-0.214	-0.171	<.0001
Poultry Kcal/day available	44.32	50.08	1.06	411.87	-0.289	-0.309	-0.268	<.0001
Eggs Kcal/day available	19.36	14.71	0.79	69.64	-0.390	-0.408	-0.371	<.0001
Added Saturated fatty acids Kcal/day	87.67	29.41	32.56	221.29	-0.239	-0.260	-0.219	<.0001
Added PUFAs Kcal/day	37.30	33.78	1.35	175.40	-0.316	-0.336	-0.296	<.0001
Added Trans fatty acids Kcal/day	6.09	6.28	0.91	35.77	-0.104	-0.126	-0.082	<.0001
Alcohol Kcal/day	81.03	57.33	4.25	429.81	-0.061	-0.083	-0.039	<.0001
Sugary beverages Kcal/day	298.36	152.38	72.91	1472.00	0.113	0.091	0.135	<.0001
Potatoes Kcal/day available	84.04	74.60	3.07	533.88	0.050	0.028	0.073	<.0001
Corn Kcal/day available	34.72	48.28	0.16	305.17	-0.062	-0.084	-0.040	<.0001
Fruits Kcal/day	40.21	22.50	3.58	161.39	-0.355	-0.374	-0.336	<.0001
Vegetables Kcal/day	79.76	43.12	9.48	304.17	-0.107	-0.128	-0.085	<.0001
Nuts and seeds Kcal/day	8.41	8.36	0.05	102.99	-0.277	-0.297	-0.256	<.0001
Whole grains Kcal/day	55.65	30.93	1.14	235.10	-0.194	-0.216	-0.173	<.0001
Legumes Kcal/day	51.74	32.23	0.51	194.70	-0.024	-0.046	-0.002	0.0319
Rice Kcal/day available	141.86	116.34	1.42	461.80	0.007	-0.015	0.029	0.5417
Sweet potatoes Kcal/day available	22.76	35.95	0.02	364.74	-0.167	-0.189	-0.146	<.0001
Total Kcal/day available	2574	418	1579	3898	-0.203	-0.224	-0.181	<.0001
Vit A deficiency children/100k/year	23205	10939	1267	50969	0.210	0.189	0.231	<.0001
Sodium g/d	4.45	2.34	1.33	9.21	-0.214	-0.235	-0.193	<.0001
Calcium g/d	0.301	0.179	0.081	1.044	-0.169	-0.191	-0.148	<.0001
Dietary fiber g/d	9.21	3.15	2.72	22.68	0.019	-0.003	0.041	0.0932
Physical activity METs	4714	1368	1609	7669	0.160	0.139	0.182	<.0001
Child underweight >2SD	0.186	0.171	0.004	0.535	0.302	0.282	0.322	<.0001
Stop breast feeding <6 months	0.119	0.055	0.016	0.242	-0.302	-0.322	-0.282	<.0001
Ambient pollution PM 0.25	44.73	26.46	4.38	95.54	0.153	0.131	0.174	<.0001
Smoking rate (0-1)	0.205	0.176	0.003	0.640	0.297	0.277	0.317	<.0001
Secondhand smoking (0-1)	0.376	0.155	0.164	0.796	-0.225	-0.246	-0.204	<.0001
Sublingual tobacco rate (0-1)	0.068	0.095	0.001	0.419	0.284	0.264	0.304	<.0001
Blood lead level mcg/dl	5.01	1.01	1.22	8.37	0.180	0.159	0.201	<.0001
Household air pollution (0-1)	0.482	0.325	0.000	0.996	0.179	0.158	0.201	<.0001
Kidney disease stage III (0-1)	0.056	0.028	0.015	0.154	0.194	0.173	0.215	<.0001
Type 1 DM early deaths	10.37	9.39	0.55	112.49	0.340	0.320	0.359	<.0001
Type 2 DM early deaths	17.50	15.65	0.63	269.67	0.227	0.205	0.247	<.0001
BMI kg/M ²	21.77	2.29	17.95	29.39	-0.240	-0.261	-0.219	<.0001
Fasting plasma glucose mmol/L	4.30	0.35	3.32	5.58	-0.178	-0.200	-0.157	<.0001
Systolic BP mm Hg	133.91	4.32	123.41	147.89	0.195	0.174	0.216	<.0001
Socio-demographic index (0-1)	0.543	0.174	0.112	0.896	-0.337	-0.357	-0.317	<.0001
Sex male 1 and female 2	1.50	0.50	1.00	2.00	-0.395	-0.414	-0.376	<.0001

483

485 Table 2. CVD lowest (≈1 billion people) and highest 1000 cohorts (≈1 billion people)

	CVD lov	vest ≈1 bill coho		on people (n=1000 CVD highest ≈1 billion people rts) cohorts)			orts)	n=1000
CVD and risk factors	Mean	SD	Min	Max	Mean	SD	Min	Max
Cardiovascular Disease deaths/100k/year	227.81	95.25	73.47	422.36	1045	356.90	430.20	1844
CVD male/female mean	227.81	42.52	135.46	292.97	1045	200.47	802.24	1727
LDL cholesterol mmol/L	2.808	0.256	1.598	3.247	2.376	0.380	1.35	3.20
Fat-soluble vitamin variable Kcal/day (FSVV)	531.4	180.20	143.63	912.69	235.66	99.68	80.53	503.9
Processed meat Kcal/day	15.30	12.20	0.61	61.09	3.70	4.95	0.22	18.12
Red meat Kcal/day	90.72	48.06	12.03	235.95	36.82	29.40	7.07	172.0
Fish Kcal/day	49.54	92.63	2.85	370.36	4.56	2.69	0.78	12.97
Milk Kcal/day	55.64	35.39	7.70	146.82	25.61	16.78	1.06	75.87
Poultry Kcal/day available	90.44	47.27	4.74	240.56	30.23	22.39	2.78	100.0
Eggs Kcal/day available	36.63	11.25	4.77	69.64	14.73	13.63	1.51	46.81
Added Saturated fatty acids Kcal/day	113.40	36.53	59.52	221.29	87.22	24.03	33.03	205.8
Added PUFAs Kcal/day	69.80	35.78	15.77	175.40	25.48	14.54	2.73	84.90
Added Trans fatty acids Kcal/day	9.91	9.25	1.65	34.90	7.31	8.62	1.21	35.77
Alcohol Kcal/day	119.72	66.67	4.25	296.70	45.83	46.24	5.77	340.3
Sugary beverages Kcal/day	320.29	251.94	72.91	1472	303.30	63.68	180.80	685.4
Potatoes Kcal/day available	81.34	51.14	9.50	177.30	98.34	96.77	3.94	533.8
Corn Kcal/day available	48.19	75.26	1.79	287.14	31.77	37.30	0.20	305.1
Fruits Kcal/day	64.84	16.49	23.05	128.61	31.23	13.93	3.58	70.11
Vegetables Kcal/day	108.02	44.60	9.48	214.26	83.83	56.67	14.43	198.5
Nuts and seeds Kcal/day	15.90	10.50	0.66	39.80	4.81	2.91	0.05	17.91
Whole grains Kcal/day	64.71	38.62	1.61	173.46	28.30	33.01	1.14	156.7
Legumes Kcal/day	47.88	25.99	2.95	133.26	31.55	18.93	0.51	103.1
Rice Kcal/day available	78.10	97.95	7.58	349.08	75.93	107.38	1.42	461.8
Sweet potatoes Kcal/day available	3.92	5.14	0.04	27.51	5.84	20.20	0.02	364.7
Total Kcal/day available	2972	409	1948	3572	2627	409	1579	3254
/it A deficiency children/100k/year	14181	8723	1400	44100	20559	11395	1722	50969
Sodium g/d	3.92	1.22	1.33	6.70	3.30	0.76	1.33	5.96
Calcium g/d	0.506	0.189	0.183	1.044	0.321	0.150	0.089	0.792
Dietary fiber g/d	10.58	2.90	5.15	17.95	9.53	3.32	3.87	18.83
Physical activity METs	3802	1164	2162	7607	4273	1497	1838	7607
Child underweight >2SD	0.038	0.043	0.004	0.242	0.186	0.141	0.011	0.41
Stop breast feeding <6 months	0.176	0.032	0.071	0.218	0.116	0.044	0.036	0.208
Ambient pollution PM 0.25	17.60	8.27	4.38	38.42	40.81	22.19	7.90	77.69
Smoking rate (0-1)	0.217	0.121	0.012	0.448	0.212	0.190	0.005	0.627
Secondhand smoking (0-1)	0.328	0.097	0.164	0.569	0.397	0.158	0.164	0.780
Sublingual tobacco rate (0-1)	0.010	0.015	0.001	0.111	0.060	0.072	0.001	0.238
Blood lead level mcg/dl	4.08	1.00	1.22	6.85	4.74	1.28	1.92	8.37
Household air pollution (0-1)	0.103	0.182	0.001	0.839	0.404	0.353	0.002	0.993
Kidney disease stage III (0-1)	0.042	0.020	0.015	0.111	0.078	0.024	0.035	0.139
Type 1 DM early deaths	4.79	3.88	0.59	20.65	16.38	15.31	2.62	112.4
Type 2 DM early deaths	15.69	18.23	0.75	87.92	23.65	24.88	0.89	269.6
BMI kg/M ²	23.74	1.60	19.61	27.06	22.46	2.15	17.95	26.08
Fasting plasma glucose mmol/L	4.56	0.25	3.54	5.12	4.28	0.42	3.38	5.18
Systolic BP mm Hg	133.26	4.41	123.41	142.15	136.86	4.39	124.59	147.8
Socio-demographic index (0-1)	0.757	0.125	0.351	0.896	0.497	0.183	0.186	0.824

487 Table 3. CVD and risk factors for countries with FSVV ≥567.27 Kcal/day (n=974 cohorts)

CVD and CVD risk factors	Mean	SD	Min	Max	r	95% CI low	95% CI high	Р	
Cardiovascular deaths/100k/year ages 15-69	273.72	143.95	73.47	913.2					
LDL cholesterol mmol/L	2.91	0.14	2.36	3.20	-0.254	-0.312	-0.194	<.000	
Fat-soluble vitamin variable	692.6	111.9	527.7	932.2	0.523	0.476	0.567	<.000	
Processed meat Kcal/day	25.01	15.30	2.16	68.77	0.459	0.408	0.507	<.000	
Red meat Kcal/day	122.2	41.41	43.65	236.0	0.655	0.618	0.690	<.000	
Fish Kcal/day	49.08	89.24	7.60	370.4	-0.259	-0.317	-0.199	<.000	
Milk Kcal/day	78.58	26.14	14.60	146.8	0.185	0.123	0.245	<.000	
Poultry Kcal/day available	130.0	60.21	41.65	411.9	0.366	0.311	0.419	<.000	
Eggs Kcal/day available	40.80	7.25	14.59	69.64	-0.242	-0.301	-0.182	<.000	
Saturated fatty acids Kcal/day	299.9	66.83	129.4	481.0	0.193	0.132	0.253	<.000	
PUFAs Kcal/day	211.9	83.06	80.53	381.3	0.382	0.327	0.435	<.000	
Trans fatty acids Kcal/day	25.17	17.82	4.23	66.89	0.224	0.163	0.283	<.000	
Alcohol Kcal/day	155.0	65.23	11.92	429.8	0.475	0.425	0.522	<.000	
Sugary beverages Kcal/day	231.7	121.9	72.91	769.9	0.332	0.274	0.386	<.000	
Potatoes Kcal/day available	106.4	40.47	9.50	225.0	0.109	0.046	0.170	0.00	
Corn Kcal/day available	19.45	9.41	1.79	47.39	0.086	0.024	0.148	0.01	
Fruits Kcal/day	66.91	15.93	34.83	161.4	-0.014	-0.077	0.049	0.66	
Vegetables Kcal/day	117.4	34.24	42.27	304.2	-0.127	-0.188	-0.064	<.000	
Nuts and seeds Kcal/day	21.98	8.91	0.85	103.0	0.177	0.115	0.237	<.000	
Whole grains Kcal/day	52.11	20.93	1.61	92.45	0.121	0.059	0.183	0.00	
Legumes Kcal/day	40.76	25.29	2.95	133.3	0.040	-0.023	0.102	0.2	
Rice Kcal/day available	38.82	46.75	6.50	179.6	-0.138	-0.199	-0.076	<.000	
Sweet potatoes Kcal/day available	3.63	3.99	0.04	17.63	-0.128	-0.189	-0.066	<.000	
Total Kcal/day available	3219	292	2516	3898	0.249	0.189	0.307	<.000	
Vit A deficiency children/100k/year	9316	6877	1400	28081	-0.105	-0.166	-0.042	0.00	
Sodium g/d	3.98	0.96	2.22	6.70	-0.040	-0.102	0.023	0.21	
Calcium g/d	0.645	0.129	0.353	1.044	0.396	0.342	0.448	<.000	
Dietary fiber g/d	10.62	1.75	6.30	18.15	0.241	0.181	0.299	<.000	
Physical activity METs	3523	765	1781	5494	0.578	0.535	0.618	<.000	
Child underweight >2SD	0.015	0.013	0.004	0.058	-0.197	-0.257	-0.136	<.000	
Stop breast feeding <6 months	0.196	0.017	0.129	0.219	0.268	0.208	0.325	<.000	
Ambient pollution PM 0.25	12.67	7.13	4.38	87.22	0.005	-0.058	0.068	0.87	
Smoking rate (0-1)	0.233	0.084	0.021	0.444	0.233	0.172	0.291	<.000	
Secondhand smoking (0-1)	0.309	0.070	0.201	0.586	-0.306	-0.362	-0.248	<.000	
Sublingual tobacco rate (0-1)	0.013	0.020	0.001	0.125	0.579	0.536	0.620	<.000	
Blood lead level mcg/dl	3.93	0.77	1.22	5.72	0.451	0.400	0.500	<.000	
Household air pollution (0-1)	0.012	0.026	0.000	0.201	-0.011	-0.073	0.052	0.74	
Kidney disease stage III (0-1)	0.036	0.012	0.016	0.109	-0.028	-0.090	0.035	0.39	
Type 1 DM early deaths	3.93	2.67	0.55	15.97	0.573	0.529	0.613	<.000	
Type 2 DM early deaths	9.54	7.52	0.75	54.22	0.622	0.582	0.659	<.000	
BMI kg/M ²	24.87	1.78	21.40	29.39	0.484	0.434	0.530	<.000	
Fasting plasma glucose mmol/L	4.73	0.23	3.84	5.58	0.091	0.028	0.153	0.00	
Systolic BP mm Hg	133.6	4.362	126.9	142.1	-0.148	-0.209	-0.086	<.000	
Socio-demographic index (0-1)	0.838	0.053	0.592	0.896	-0.052	-0.114	0.000	0.11	
Sex male 1 and female 2	1.50	0.50	1.00	2.00	-0.745	-0.772	-0.716	<.000	

488

490	Table 4. CVD related dietary risk factors (Kcal/day) in low CVD countries

CVD lowest	n co-	CVD	FSVV	Processed	Red	Fish	Milk	Poultry	Eggs	Added
Countries	horts	ascending		meat	meat				00	SFA
(n=1000		order								+PUFA
cohorts)										+TFA
Japan	158	169.19	618.69	19.19	58.72	260.54	29.04	63.93	52.23	135.04
France	64	174.00	644.78	13.59	135.07	11.17	95.75	99.86	43.30	246.04
Switzerland	8	175.04	558.41	11.50	129.01	6.75	110.90	55.57	31.20	213.47
Andorra	2	185.55	763.18	16.58	150.84	16.44	99.23	189.92	47.55	242.62
Peru	32	197.74	183.12	1.01	16.92	3.82	15.34	35.04	12.03	98.95
Spain	46	206.25	597.93	11.65	139.92	10.28	82.99	113.88	43.35	195.86
Italy	60	206.44	587.57	15.78	126.36	9.15	89.54	84.16	36.39	226.20
Iceland	2	206.51	609.62	11.97	112.73	11.67	85.37	63.57	29.51	294.81
Australia	24	208.03	698.26	9.79	164.14	14.15	97.05	153.33	24.92	234.89
Canada	36	222.11	624.98	25.31	126.28	18.48	76.13	147.46	34.94	196.39
Israel	8	228.32	662.00	5.95	59.50	15.35	68.79	240.56	40.54	231.30
South Korea	50	232.63	357.23	5.97	82.88	5.96	15.72	43.10	26.89	176.71
Belgium	12	235.98	636.39	12.28	122.36	11.19	93.44	85.00	33.28	278.86
Netherlands	18	236.61	629.56	15.72	133.06	8.66	114.16	72.70	41.67	243.59
Taiwan	24	237.37	587.36	3.01	106.58	9.15	15.95	132.38	34.87	285.41
Mexico	108	237.55	413.25	11.29	63.03	8.69	34.29	85.85	39.92	170.19
Panama	4	244.31	383.83	2.75	61.32	9.44	20.72	95.43	12.96	181.23
Sweden	10	247.21	563.83	29.31	119.77	11.80	124.13	45.42	35.04	198.37
New	4	247.32	699.81	9.31	158.86	11.56	88.74	128.14	40.24	262.95
Zealand non										
Mauri										
Norway	32	248.72	605.30	48.14	109.37	10.10	100.96	41.65	31.52	263.56
England	20	253.09	534.56	19.21	96.29	10.70	87.80	89.30	32.90	198.36
Costa Rica	4	260.73	408.42	2.63	51.74	8.12	46.55	78.05	28.17	193.14
Luxembourg	2	262.53	578.00	14.65	163.17	11.79	91.99	71.48	27.60	197.32
Chile	18	267.50	404.12	19.11	90.33	9.65	31.93	97.29	19.70	136.10
Guatemala	16	269.85	231.05	1.89	20.05	5.28	13.32	53.94	30.46	106.12
Kenya	12	270.04	150.04	1.41	25.83	3.09	18.89	4.74	4.77	91.31
Ecuador	16	270.64	375.35	6.87	56.88	7.34	35.51	59.92	14.66	194.16
USA	94	274.00	825.54	36.45	136.35	15.79	90.90	190.90	41.10	314.05
Denmark	6	275.10	600.48	14.46	137.75	13.38	98.01	74.42	45.96	216.51
Austria	8	277.67	621.00	8.95	194.65	9.26	98.68	70.00	39.96	199.50
Portugal	10	278.50	524.81	5.16	124.77	8.77	79.43	94.26	24.18	188.25
Nicaragua	6	282.04	214.24	1.52	14.93	4.07	20.66	41.76	17.41	113.90
Tehran	16	283.29	299.65	1.23	22.63	5.36	19.23	65.90	18.89	166.41
(Iran)										
Thailand	70	289.91	247.43	0.70	32.01	6.95	7.85	57.07	31.10	111.75
Total	1000									
cohorts										

491

493 Table 5. Representative examples of low CVD countries including all risk factors

Countries	Japan ^a	France ^b	Peru ^c	Mexico ^d	Panama ^e	Guatemala ^f	Ecuador
n cohorts	158	64	32	108	4	16	16
CVD/100k/year ages 15-69	169.19	174.00	197.74	237.55	244.31	269.85	270.64
Fat-soluble vitamin variable	618.69	644.78	183.12	413.25	383.83	231.05	375.35
LDL cholesterol mmol/L	2.81	3.08	2.37	2.59	2.61	2.20	2.46
Processed meat Kcal/day	19.19	13.59	1.01	11.29	2.75	1.89	6.87
Red meat Kcal/day	58.72	135.07	16.92	63.03	61.32	20.05	56.88
Fish Kcal/day	260.54	11.17	3.82	8.69	9.44	5.28	7.34
Milk Kcal/day	29.04	95.75	15.34	34.29	20.72	13.32	35.51
Poultry Kcal/day available	63.93	99.86	35.04	85.85	95.43	53.94	59.92
Eggs Kcal/day available	52.23	43.30	12.03	39.92	12.96	30.46	14.66
Added Saturated fatty acids Kcal/day	77.73	172.79	68.34	89.13	101.32	60.62	133.54
Added PUFAs Kcal/day	53.78	67.38	24.47	52.14	72.29	41.90	51.69
Added Trans fatty acids Kcal/day	3.54	5.88	6.13	28.92	7.62	3.60	8.93
Alcohol Kcal/day	183.16	118.64	55.79	58.39	27.44	28.79	59.77
Sugary beverages Kcal/day	94.78	323.88	284.76	847.81	921.54	964.08	283.57
Potatoes Kcal/day available	42.29	126.40	142.55	25.79	32.01	16.68	67.56
Corn Kcal/day available	27.58	23.85	33.54	242.41	50.86	206.19	11.76
Fruits Kcal/day	44.43	59.56	52.27	65.68	52.92	39.61	107.07
Vegetables Kcal/day	149.32	101.07	46.17	60.72	27.81	54.98	31.79
Nuts and seeds Kcal/day	9.26	16.94	1.02	6.27	1.92	12.72	0.68
Whole grains Kcal/day	76.05	16.16	58.94	142.06	83.46	68.32	43.78
Legumes Kcal/day	71.84	17.07	45.78	76.99	38.35	73.84	21.99
Rice Kcal/day available	124.52	12.09	93.09	14.07	141.66	13.46	118.02
Sweet potatoes Kcal/day available	12.09	0.04	7.94	0.69	8.67	1.71	0.49
Total Kcal/day available	2590	3406	1948	3015	2288	2330	2273
Vit A deficiency	8151	1643	19372	23939	11463	17947	20185
children/100k/year							
Sodium g/d	6.01	3.21	3.14	2.62	2.97	1.83	3.16
Calcium g/d	0.425	0.707	0.299	0.370	0.293	0.220	0.314
Dietary fiber g/d	13.43	8.68	9.44	15.51	5.90	12.54	6.25
Physical activity METs	3460	2795	3774	3833	4935	6142	3740
Child underweight >2SD	0.045	0.012	0.069	0.050	0.042	0.193	0.096
Stop breast feeding <6 months	0.171	0.208	0.108	0.171	0.140	0.087	0.130
Ambient pollution PM 0.25	13.10	13.87	28.99	24.28	13.24	28.61	17.86
Smoking rate (0-1)	0.268	0.289	0.075	0.149	0.073	0.077	0.080
Secondhand smoking (0-1)	0.353	0.320	0.238	0.344	0.178	0.224	0.206
Sublingual tobacco rate (0-1)	0.012	0.003	0.004	0.002	0.002	0.001	0.004
Blood lead level mcg/dl	2.65	3.86	5.17	5.34	4.80	5.89	4.51
Household air pollution (0-1)	0.002	0.010	0.454	0.213	0.193	0.627	0.080
Kidney disease stage III (0-1)	0.038	0.028	0.050	0.078	0.068	0.075	0.055
Type 1 DM early deaths	1.25	2.91	4.84	12.64	7.71	12.03	6.92
Type 2 DM early deaths	2.03	3.70	11.37	60.97	18.07	40.38	27.44
BMI kg/M ²	21.89	23.47	23.29	24.82	22.98	21.97	25.04
Fasting plasma glucose mmol/L	4.77	4.46	4.01	4.53	4.31	4.12	4.26
Systolic BP mm Hg	137.56	135.11	125.19	130.31	133.66	131.15	126.85
Socio-demographic index	0.828	0.822	0.590	0.608	0.644	0.431	0.575
Likely mechanism of low CVD	FSVV,	FSVV	Smoking,	FSVV,	Physical	Physical	FSVV,
(see discussion for explanation)	Plants	1011	metabolic	Plants	activity, smoking	activity, smoking	smoking

- ^a Japan not only had high FSVV but also had relatively high intake of healthy plant foods (fruits,
 vegetables, nuts and seeds, whole grains, and legumes: 350.9 Kcal/day).
- ^b France was characteristic of 23 other low CVD countries in that intake of milk products was
- 497 high (France milk=95.75 Kcal/day and in the other 23 countries' milk>68 Kcal/day, Table 3 408 compared with worldwide mean milk=25.04 Keal/day, Table 1)
- 498 compared with worldwide mean milk=25.04 Kcal/day, Table 1).
- ^c The low CVD of Peru might be attributed to a relatively low smoking rate (7.5%) and good
- metabolic statistics (mean BMI=23.3 Kg/M², mean FPG=4.01 mmol/L, mean LDL-C=2.37
 mmol/L, mean SBP=125.2 mm/Hg).
- ^d While Mexico had a lower FSVV than most low CVD countries (Mexico FSVV=413.3
- 503 Kcal/day), like Japan it had relatively high intake of important plant foods (fruits, vegetables,
- nuts and seeds, whole grains, and legumes: totaling 351.7 Kcal/day).
- ^e Panama, with moderate FSVV=383.8 Kcal/day, had relatively high physical activity (Panama physical activity=4935 METs) and low smoking rate (male/female mean smoking=7.3%).
- ^f While Guatemala had relatively low FSVV (FSVV=231.1 Kcal/day) and low healthy plant food
- 508 intake (fruits, vegetables, nuts and seeds, whole grains, and legumes: 249.5 Kcal/day), it had
- relatively high physical activity (physical activity=6142 METs) and a low smoking rate
- 510 (male/female mean smoking=7.7%).
- ^g Ecuador had an intermediatory FSVV (FSVV=375.4 Kcal/day) and relatively low intake of
- 512 important plant foods (fruits, vegetables, nuts and seeds, whole grains, and legumes: totaling
- 513 205.3 Kcal/day). However, Ecuador had a low rate of smoking (male/female mean
- 514 smoking=8.0%). and a low SBP (mean SBP=126.9 mm/Hg).
- 515
- 516

517 Supplementary Table 1. Definitions of GBD risk factors and covariates related to CVD

Variables	Definition
Alcohol	Any alcohol consumption (g/day)
Ambient particulate matter pollution Body-mass index	Annual average daily exposure to outdoor air concentrations of particulate matter with an aerodynamic diameter of ≤2.5 µg/m ³ (PM _{2.5}) Body mass index (BMI) (kg/m ²)—the dependent variable of interest
Chewing tobacco	Current use of any chewing tobacco product
Chewing tobacco	Current use of any enewing tooleeo product
Child underweight	Proportion of children – 3 SD to – 2 SD of the WHO 2006 standard weight-for-age curve (0-1)
Corn	Corn availability per capita (g/day), a covariate
Discontinued breast feeding	Proportion of children aged 6-23 months who do not receive any breast milk
Eggs	Eggs availability per capita (g/day) a covariate
Fasting plasma glucose	Fasting plasma glucose (mmol/L)
Fish	This variable expressed in g/day was derived by determining the weight of fish in g corresponding to 1 g of omega-3 fatty acids (eicosapentaenoic acid and docosahexaenoic acid) by averaging the fish g per 1 g of omega-3 fatty acids 20 species of fish= 117.04 g/day fish/1 g/day omega-3 fatty acids (Supplementary Table 3)
Fruits	Consumption of fruits (includes fresh, frozen, cooked, canned, or dried fruit but excludes fruit juices and salted or pickled fruits) (g/day)
Household air pollution from solid fuels	Individual exposure to PM _{2.5} due to use of solid cooking fuel
Kidney function impaired	Proportion of the population with ACR >30 mg/g or GFR <60 mL/min/1·73 m ² , excluding end-stage renal disease
Kilocalories available /day	The mean number of kilocalories per capita available per day to people in each location (kcal/day available), a covariate
LDL cholesterol	Serum low-density lipoprotein cholesterol (mmol/L)
Lead exposure	Blood lead levels in $\mu g/dL$ of blood, bone lead levels in $\mu g/g$ of bone
Legumes	Consumption of beans, lentils, pulses (g/day)
Milk	Consumption of milk including non-fat, low-fat, and full-fat milk but excluding soy milk and other plant derivatives (g/day)
Nuts and seeds	Consumption of nuts and seeds (g/day)
Physical activity	Average weekly physical activity at work, home, transport-related and recreational measured by MET min per week. Less than 3000 METs per week constitutes low physical activity.
Poultry	Poultry availability per capita (g/day), a covariate
Potatoes	Potatoes availability per capita (g/day), a covariate
Processed meat	Consumption of any processed meat (includes meat preserved by smoking, curing, salting, or addition of chemical preservatives, including bacon, salami, sausages, or deli or luncheon meats like ham, turkey, and pastrami (g/day)
Red meat	Consumption of red meat (includes beef, pork, lamb, and goat but excludes poultry, fish, eggs, and all processed meats) (g/day)
Rice	Rice availability per capita (g/day), a covariate
Seafood omega-3 fatty acids	Seafood omega-3 fatty acids (eicosapentaenoic acid and docosahexaenoic acid) in tablet or fish form (g/day)
Second-hand smoke	Average daily exposure to air particulate matter from second-hand smoke with an aerodynamic diameter smaller than 2.5 μ g, measured in μ g/m ³ , among non-smokers
Smoking	Prevalence of current use of any smoked tobacco product and prevalence of former use of any smoked tobacco product; among current smokers, cigarette equivalents smoked per smoker per day and cumulative pack-years of exposure; among former smokers, number of years since quitting
Socio-demographic index	SDI is a composite indicator of development status that was originally constructed for GBD 2015 and is derived from components that correlate strongly with health outcomes.

	It is the geometric mean for indices of the total fertility rate among women younger than 25 years, mean education for those aged 15 years or older, and lag-distributed income per capita. The resulting metric ranges from 0 to 1, with higher values corresponding to higher levels of development.
Sugar-sweetened beverages	Consumption of any beverage with ≥50 calories of sugar per one-cup serving, including carbonated beverages, sodas, energy drinks, fruit drinks but excluding 100% fruit and vegetable juices (g/day)
Sweet potatoes	Sweet potato availability per capita (g/day), a covariate
Systolic blood pressure	Systolic blood pressure (mm Hg)
Total sugar	Total sugar availability per capita (g/day), a covariate
Vegetables	Consumption of frozen, cooked, canned, or dried vegetables (including legumes but excluding salted or pickled, juices, nuts and seeds, and starchy vegetables such as potatoes or corn) (g/day)
Vitamin A deficiency	Proportion of children aged 0-5 years with serum retinol concentration <0.7 µmol/L
Whole grains	Consumption of whole grains (bran, germ, and endosperm in their natural proportions) from breakfast cereals, bread, rice, pasta, biscuits, muffins, tortillas, pancakes, and others (g/day)

521 Supplementary Table 2. Omega-3 Fatty Acid g to fish g calculation¶

Fish	DHA g/3-ounce fish	EPA g/3- ounce fish	Omega-3 Fatty Acids (DHA _ EPA) g/3-ounce fish mean	Fish 3 ounces = 85.02 g	Fish (g) per omega-3 Fatty Acids (g)=85.02 / 0.7264
Salmon Atlantic farmed	1.24	0.59			
Salmon Atlantic wild	1.22	0.35			
Herring Atlantic	0.94	0.77			
Sardines canned in tomato sauce drained	0.74	0.45			
Mackerel Atlantic	0.59	0.43			
Salmon pink canned drained	0.63	0.28			
Trout rainbow wild	0.44	0.40			
Oysters eastern wild	0.23	0.30			
Sea bass	0.47	0.18			
Shrimp	0.12	0.12			
Lobster	0.07	0.10			
Tuna light canned in water drained	0.17	0.02			
Tilapia	0.11				
Scallops	0.09	0.06			
Cod Pacific	0.1	0.04			
Tuna yellowfin	0.09	0.01			
Mean DHA and EPA Omega-3 Fatty Acids g/3 ounce fish	0.4531	0.2733			
Calculations total Omega-3 FA g to fish g			0.7264	85.02	117.043

522 ¶ Data on omega-3 fatty acid content of varieties of fish came from the National Institutes of

523 Health Office of Dietary Supplements (USA)

524

Foods	Food sub- categories	Mean kcal/serving	Mean g/serving	Mean kcal/g
Milk (2% fat)		122	244	0.5
Fish		218	170	1.28
Eggs		72	50	1.44
Poultry		187	85	2.91
Red meat		247	85	2.91
Processed meat				
	Salami	222	59	3.76
	Pastrami	104	71	1.46
	Ring baloney	86	28	3.07
	Pepperoni	94	100	0.94
Average processed meat		126.5	64.5	1.96
Fruits		97	162	0.60
Vegetables		59	91	0.65
Legumes		249	179	1.39
Nuts		172	28	6.14
Seeds				
	Flax seeds	55	10	5.5
	Chia seeds	58	12	4.83
	Fennel seeds	34.5	10	3.45
	Hemp seeds	55.3	10	5.53
Average of seeds		50.7	10.5	4.83
Average of nuts and seeds		111.4	19.25	5.78
Corn		99	103	0.96
Potatoes		161	173	0.93
Sweet potatoes		115	151	0.76
Rice		205	158	1.3
Whole grains	12	120	52	2.31

526 Supplementary Table 3. Calculations of KC/d from g/day of animal and plant foods¶

¶ Source: NutritionIX app¹²

529 Article information

530 Corresponding author: David K. Cundiff, MD, Independent researcher

- 531 (davidkcundiff@gmail.com).
- 532

533 (Contri	butors

534 DKC had full access to the GBD data in the study and takes responsibility for the integrity of the

535 data and the accuracy of the data analysis. DKC conceived and designed the study, acquired and

analysed the GBD data from IHME, interpreted the study findings, drafted the manuscript,

537 critically reviewed and edited the manuscript and tables, and approved the final version for

538 publication.

539

540 CW designed software programs in R to format and population weight the data,

541 aided with the SAS statistical analysis, critically reviewed the manuscript, and

- 542 approved the final version for publication.
- 543

544 **Competing interest disclosures:** None reported.

545

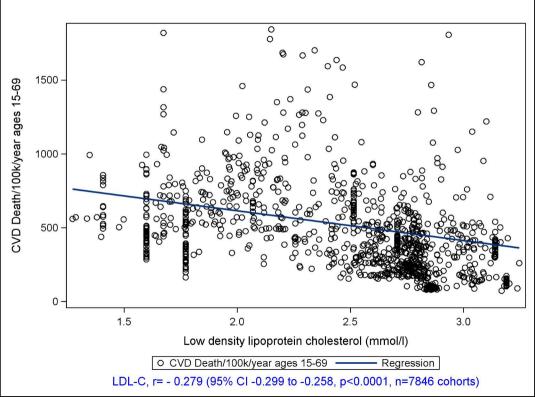
546 **Competing interests' statement:** Both authors have completed the ICMJE uniform disclosure 547 form at www.icmje.org/coi_disclosure.pdf and declare: no support from any Organization for the 548 submitted work; no financial relationships with any organizations that might have an interest in 549 the submitted work in the previous three years; no other relationships or activities that could 550 appear to have influenced the submitted work. 551•

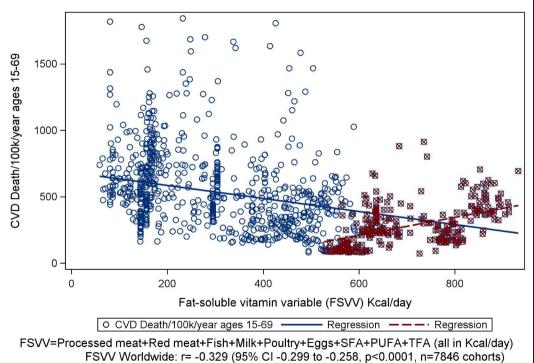
- 552 **Funding/Support:** This research received no grant from any funding agency in the public,
- 553 commercial or not-for-profit sectors. The Bill and Melinda Gates Foundation funded the
- acquisition of the data by the IHME for this analysis.
- 555
- **Role of the Funder/Sponsor:** The IHME provided the data for this analysis but neither the
- 557 IHME nor Bill and Melinda Gates Foundation had any role in the analysis of the data.
- 558
- 559 Data Sharing Statement: The formatted analysis dataset for this analysis, SAS codes, and Excel
- 560 files are posted on the Mendeley data repository
- 561 <u>https://data.mendeley.com/datasets/g6b39zxck4/6</u>)
- 562

563 Additional Contributions

- 564 We thank Scott Glenn and Brent Bell from IHME who supplied us with the GBD risk factor
- 565 exposure data.

- 567 **Checklist:** This report followed the STrengthening the Reporting of OBservational studies in
- 568 Epidemiology (STROBE) guidelines for reporting global health estimates.⁵³
- 569


570 **References**


571	1.	Teicholz N. The scientific report guiding the US dietary guidelines: is it scientific?
572		BMJ. 2015; 351. http://www.bmj.com/bmj/351/bmj.h4962.full.pdf
573	2.	Teicholz N. The scientific report guiding the US dietary guidelines: is it scientific?
574		Rapid responses. BMJ. 2015; 351: h4962.
575		https://www.bmj.com/content/351/bmj.h4962/rapid-responses
576	3.	Global Burden of Disease Study 2017 (GBD 2017) Data Resources. Seattle,
577		Washington: Institute of Health Metrics and Evaluation 2018; Accessed.
578		http://ghdx.healthdata.org/gbd-2017
579	4.	Global Health Data Exchange. Seattle, WA: Institute of Health Metrics and Evaluation
580		2017; Accessed January 10, 2020. http://ghdx.healthdata.org/
581	5.	Naghavi M, Abajobir AA, Abbafati C, et al. Global, regional, and national age-sex
582		specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the
583		Global Burden of Disease Study 2016. The Lancet. 2017; 390 (10100): 1151-1210.
584		https://doi.org/10.1016/S0140-6736(17)32152-9
585	6.	Flaxman AD, Lee YY, Vos T, et al. An Integrative Metaregression Framework for
586		Descriptive Epidemiology. Seattle, WA: University of Washington Press, 2015.
587	7.	GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative
588		risk assessment of 84 behavioural, environmental and occupational, and metabolic
589		risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic
590		analysis for the Global Burden of Disease Study 2017: Table of risk factor
591		definitions. The Lancet. 2018; 392 (10159): 1923-94.
592		https://www.thelancet.com/action/showFullTableHTML?isHtml=true&tableId=tbl1&pii=
593		<u>S0140-6736%2818%2932225-6</u>
594	8.	PROTOCOL FOR THE GLOBAL BURDEN OF DISEASES, INJURIES, AND RISK
595		FACTORS STUDY (GBD) Version 3.0; Issue 26. Seattle, Washington: Institute for
596		Health Metrics and Evaluation Accessed August 2, 2019.
597		http://www.healthdata.org/sites/default/files/files/Projects/GBD/GBD_Protocol.pdf
598	9.	Food and Agriculture Organization of the United Nations United Nations Accessed
599		August 26, 2021. http://www.fao.org/faostat/en/#data
600	10.	Call for Collaborators Seattle, Washington: Institute for Health Metrics and Evaluation
601		at the University of Washington 2019; Accessed April 25, 2019.
602		http://www.healthdata.org/gbd/call-for-collaborators
603	11.	Omega 3 Fatty Acids: Fact Sheet for Health Professionals. The Office of Dietary
604		Supplements 2018; Accessed September 1, 2018.
605		https://ods.od.nih.gov/factsheets/Omega3FattyAcids-HealthProfessional/
606	12.	Nutritionix Track App. Syndigo LLC Accessed April 25, 2019.
607		https://www.nutritionix.com/
608	13.	Ritchie H, Roser M. Diet Compositions. Our World in Data. 2017.
609		https://ourworldindata.org/diet-compositions
610	14.	Willett W, Rockström J, Loken B, et al. Food in the Anthropocene: the EAT-Lancet
611		Commission on healthy diets from sustainable food systems. The Lancet. 2019; 393
612		(10170): 447-492. https://doi.org/10.1016/S0140-6736(18)31788-4

613	15.	Noncommunicable diseases: Mortality Geneva, Switzerland: World Health Organization
614		2021; Accessed August 25, 2021.
615		https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/ncd-mortality
616	16.	Zagmutt FJ, Pouzou JG, Costard S. The EAT-Lancet Commission: a flawed
617		approach? The Lancet. 2019; 394 (10204): 1140-1141. https://doi.org/10.1016/S0140-
618		6736(19)31903-8
619	17.	Torjesen I. WHO pulls support from initiative promoting global move to plant
620		based foods. BMJ. 2019; 365: 11700.
621		https://www.bmj.com/content/bmj/365/bmj.11700.full.pdf
622	18.	Willett W, Rockström J, Lang T, et al. Healthy Diets From Sustainable Food Systems,
623		Food Planet Health: Target 1 Healthy Diets pg 10. Stockholm, Sweden: EAT
624		Established by the Stordalen Foundation, Stockholm Resilience Centre and Wellcome
625		Trust 2019; Accessed July 10, 2020. https://eatforum.org/content/uploads/2019/01/EAT-
626		Lancet_Commission_Summary_Report.pdf
627	19.	Beulens JWJ, Booth SL, van den Heuvel EGHM, Stoecklin E, Baka A, Vermeer C. The
628		role of menaquinones (vitamin K2) in human health. British Journal of Nutrition.
629		2013; 110: 1357–1368. https://www.cambridge.org/core/journals/british-journal-of-
630		nutrition/article/the-role-of-menaquinones-vitamin-k2-in-human-
631		health/5B9F317B526629D8BA77B6435F1E5509
632	20.	Zile MH. Vitamin A-not for your eyes only: requirement for heart formation begins
633		early in embryogenesis. Nutrients. 2010; 2 (5): 532-50.
634		https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3257662/
635	21.	Xing X, Tao F. [Advance of study on vitamin A deficiency and excess associatied
636		with congenital heart disease]. Wei Sheng Yan Jiu. 2008; 37 (6): 754-6.
637		https://pubmed.ncbi.nlm.nih.gov/19239019/
638	22.	Saremi A, Arora R. Vitamin E and cardiovascular disease. Am J Ther. 2010; 17 (3):
639		e56-65.
640	23.	Wang L, Song Y, Manson JE, et al. Circulating 25-Hydroxy-Vitamin D and Risk of
641		Cardiovascular Disease: A Meta-Analysis of Prospective Studies. Circulation:
642		Cardiovascular Quality and Outcomes. 2012; 5 (6): 819-829.
643		http://circoutcomes.ahajournals.org/content/5/6/819.abstract
644	24.	Fu X, Harshman SG, Shen X, et al. Multiple Vitamin K Forms Exist in Dairy Foods.
645		<i>Current developments in nutrition.</i> 2017; 1 (6): e000638-e000638.
646		https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5998353/
647	25.	Walther B, Chollet M. Vitamin K2 - Vital for Health and Wellbeing. In: Gordeladze JO,
648		ed. Menaquinones, Bacteria, and Foods: Vitamin K2 in the Die: IntechOpen, 2017.
649	26.	Kamao M, Suhara Y, Tsugawa N, et al. Vitamin K content of foods and dietary
650		vitamin K intake in Japanese young women. J Nutr Sci Vitaminol (Tokyo). 2007; 53
651		(6): 464-70. <u>https://pubmed.ncbi.nlm.nih.gov/18202532/</u>
652	27.	Kaneki M HS, Hosoi T, Fujiwara S, Lyons A, Crean SJ, Ishida N, Nakagawa M, Takechi
653		M, Sano Y, Mizuno Y, Hoshino S, Miyao M, Inoue S, Horiki K, Shiraki M, Ouchi Y,
654		Orimo H. Japanese fermented soybean food as the major determinant of the large
655		geographic difference in circulating levels of vitamin K2: possible implications for
656		hip-fracture risk. <i>Nutrition</i> . 2001; 17 (4): 315-21.
657		https://pubmed.ncbi.nlm.nih.gov/11369171/

658 659	28.	Joseph M. Fermented Soy Products: A Guide To 12 Traditional Foods. Nutrition Advance 2020; Accessed April 11, 2021. <u>https://www.nutritionadvance.com/fermented-</u>
660		soy-products/
661	29.	Tamang JP, Cotter PD, Endo A, et al. Fermented foods in a global age: East meets
662		West. COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY. 2020;
663		19 (1): 184-217. <u>https://onlinelibrary.wiley.com/doi/full/10.1111/1541-4337.12520</u>
664	30.	Pu J, Romanelli R, Zhao B, et al. Dyslipidemia in special ethnic populations.
665		<i>Cardiology clinics.</i> 2015; 33 (2): 325-333.
666		https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4421090/
667	31.	Frank ATH, Zhao B, Jose PO, Azar KMJ, Fortmann SP, Palaniappan LP. Racial/ethnic
668		differences in dyslipidemia patterns. Circulation. 2014; 129 (5): 570-579.
669		https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4212818/
670	32.	Keys A, Menotti A, Karvonen MJ, et al. The diet and 15-year death rate in the seven
671		countries study. Am J Epidemiol. 1986; 124 (6): 903-15.
672		https://academic.oup.com/aje/article-abstract/124/6/903/174332?redirectedFrom=fulltext
673	33.	Mahmood SS, Levy D, Vasan RS, Wang TJ. The Framingham Heart Study and the
674		epidemiology of cardiovascular disease: a historical perspective. Lancet (London,
675		<i>England</i>). 2014; 383 (9921): 999-1008.
676		https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159698/
677	34.	Dehghan M, Mente A, Zhang X, et al. Associations of fats and carbohydrate intake
678		with cardiovascular disease and mortality in 18 countries from five continents
679		(PURE): a prospective cohort study. The Lancet. 2017; 390 (10107): 2050-2062.
680		https://doi.org/10.1016/S0140-6736(17)32252-3
681	35.	Countries Who Eat The Most Cheese. World Atlas 2021; Accessed March 28, 2021.
682		https://www.worldatlas.com/articles/countries-who-consume-the-most-
683		cheese.html#:~:text=The%20top%20cheese%20consumer%20is,kilograms%20of%20che
684		ese%20per%20capita.
685	36.	Cheese Consumption Per Capita in New Zealand. Czech Republic: Helgi Library,
686		Source: Faostat Accessed April 9, 2021. https://www.helgilibrary.com/indicators/cheese-
687		consumption-per-capita/new-zealand/
688	37.	Khalil Z, Alam B, Akbari AR, Sharma H. The Medical Benefits of Vitamin K(2) on
689		Calcium-Related Disorders. Nutrients. 2021; 13 (2): 691.
690		https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7926526/
691	38.	POTATO PROCESSING AND USES. Lima, Peru: International Potato Center
692		Accessed May 28, 2020. https://cipotato.org/potato/potato-processing-uses/
693	39.	Juul F, Vaidean G, Lin Y, Deierlein Andrea L, Parekh N. Ultra-Processed Foods and
694		Incident Cardiovascular Disease in the Framingham Offspring Study. Journal of the
695		American College of Cardiology. 2021; 77 (12): 1520-1531.
696		https://doi.org/10.1016/j.jacc.2021.01.047
697	40.	Srour B, Fezeu LK, Kesse-Guyot E, et al. Ultra-processed food intake and risk of
698		cardiovascular disease: prospective cohort study (NutriNet-Santé). BMJ. 2019; 365:
699		11451. https://www.bmj.com/content/bmj/365/bmj.11451.full.pdf
700	41.	Monteiro CA, Moubarac JC, Cannon G, Ng SW, Popkin B. Ultra-processed products
701		are becoming dominant in the global food system. Obes Rev. 2013; 14 Suppl 2: 21-8.
702		https://pubmed.ncbi.nlm.nih.gov/24102801/

703	42.	Mozaffarian D, Fahimi S, Singh GM, et al. Global Sodium Consumption and Death
704		from Cardiovascular Causes. New England Journal of Medicine. 2014; 371 (7): 624-
705		634. https://www.nejm.org/doi/full/10.1056/NEJMoa1304127
706	43.	O'Donnell M, Mente A, Yusuf S. Sodium Intake and Cardiovascular Health.
707		<i>Circulation Research.</i> 2015; 116 (6): 1046-1057.
708		https://www.ahajournals.org/doi/abs/10.1161/CIRCRESAHA.116.303771
709	44.	Roseboom T, van der Meulen JHP, Osmond C, et al. Coronary heart disease after
710		prenatal exposure to the Dutch famine, 1944-45. Heart. 2000; 84 (6): 595-598.
711		https://www.heart.bmj.com/content/84/6/595
712	45.	Dieterich CM, Felice JP, O'Sullivan E, Rasmussen KM. Breastfeeding and health
713		outcomes for the mother-infant dyad. Pediatric clinics of North America. 2013; 60 (1):
714		31-48. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3508512/
715	46.	Ambient (outdoor) air pollution. Geneva, Switzerland: World Health Organization 2018;
716		Accessed March 24, 2021. https://www.who.int/news-room/fact-sheets/detail/ambient-
717		(outdoor)-air-quality-and-health
718	47.	Tobacco responsible for 20% of deaths from coronary heart disease Geneva,
719		Switzerland: World Health Organization 2020; Accessed March 2, 2021.
720		https://www.who.int/news/item/22-09-2020-tobacco-responsible-for-20-of-deaths-from-
721		coronary-heart-disease
722	48.	Vaziri ND. Mechanisms of lead-induced hypertension and cardiovascular disease.
723		American Journal of Physiology-Heart and Circulatory Physiology. 2008; 295 (2):
724		H454-H465. https://journals.physiology.org/doi/abs/10.1152/ajpheart.00158.2008
725	49.	Lanphear BP, Rauch S, Auinger P, Allen RW, Hornung RW. Low-level lead exposure
726		and mortality in US adults: a population-based cohort study. The Lancet Public
727		Health. 2018; 3 (4): e177-e184. https://doi.org/10.1016/S2468-2667(18)30025-2
728	50.	Bikbov B, Purcell CA, Levey AS, et al. Global, regional, and national burden of
729		chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of
730		Disease Study 2017. The Lancet. 2020; 395 (10225): 709-733.
731		https://doi.org/10.1016/S0140-6736(20)30045-3
732	51.	Global, regional, and national age-sex-specific mortality for 282 causes of death in
733		195 countries and territories, 1980-2017: a systematic analysis for the Global
734		Burden of Disease Study 2017. Lancet. 2018; 392 (10159): 1736-1788.
735		https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(18)32203-7/fulltext
736	52.	Afshin A, Sur PJ, Fay KA, et al. Health effects of dietary risks in 195 countries, 1990-
737		2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet.
738		2019; 393 (10184): 1958-1972.
739		https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(19)30041-8/fulltext
740	53.	Stevens GA, Alkema L, Black PRE, et al. Guidelines for Accurate and Transparent
741		Health Estimates Reporting: the GATHER statement. The Lancet. 2016; 388
742		(10062): e19-e23. https://doi.org/10.1016/S0140-6736(16)30388-9
743		

FSVV>=567.27 Kcal/day, r=0.523 (95% CI 0.476 to 0.567, p<0.0001, n=974 cohorts)