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Abstract 
As vaccination coverage against SARS-CoV-2 increases amidst the emergence and spread of more 

infectious and potentially more deadly viral variants, decisions on timing and extent of relaxing 

effective, but unsustainable, non-pharmaceutical interventions (NPIs) need to be made. An individual-

based transmission model of SARS-CoV-2 dynamics, OpenCOVID, was developed to compare the 

impact of various vaccination and NPI strategies on the COVID-19 epidemic in Switzerland. We 

estimate that any relaxation of NPIs in March 2021 will lead to increasing cases, hospitalisations, and 

deaths resulting in a ‘third wave’ in spring and into summer 2021. However, we find a cautious 

phased relaxation can substantially reduce population-level morbidity and mortality. We find that 

faster vaccination campaign can offset the size of such a wave, allowing more flexibility for NPI to be 

relaxed sooner. Our sensitivity analysis revealed that model results are particularly sensitive to the 

infectiousness of variant B.1.1.7. 
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Introduction 
The COVID-19 pandemic has caused a public health and economic crisis worldwide. With rollout of 

COVID-19 vaccines following approval in December 2020 and in early 2021, there are many 

questions about when and how to relax non-pharmaceutical interventions (NPIs) while continuing to 

best protect the population. SARS-CoV-2 began emerging in Switzerland over 12-months ago, and by 

the end of January 2021 approximately 8,725 deaths were reported1. In response to the first steep 

increase in cases (the ‘first wave’) in the spring of 2020, a variety of NPIs were introduced, such as 

physical distancing, contact tracing, isolation of contacts, quarantining of confirmed cases, and 

closure or limited openings of shops and schools, with facemasks being introduced later. As a result, 

COVID-19 case numbers, ICU admissions, and deaths decreased prior to the summer of 2020, which 

led to a relaxation of some NPIs. In October 2020, Switzerland experienced a major second wave of 

infections, as did other countries in Europe, and NPIs were again strengthened2. The social and 

economic consequences of certain NPIs make them unsustainable in the long-term, while emergence 

of more transmissible SARS-CoV-2 variants are presenting new challenges. However, rollout of safe 

and efficacious vaccines will likely contribute to a substantial reduction in pandemic burden and thus 

raises the possibility of relaxing current NPIs while still potentially protecting the health and wealth 

of the population. 

Mathematical transmission models can provide insights to support decision-making around different 

epidemic control strategies and public health objectives3-5. We present an individual-based model, 

‘OpenCOVID’, which captures SARS-CoV-2 transmission dynamics using an age-structured 

population network that includes risk-groups (e.g., elderly and healthcare workers) and seasonal 

patterns. Figure 1 shows the disease and care states represented in OpenCOVID. The model was 

calibrated to Swiss epidemiological data – including data on variants of concern (VOC) – from 18 

February 2020 to 5 March 2021. The model is described briefly in this manuscript, with additional 

details in the Supplementary Information. 

We modelled multiple vaccine rollout scenarios with several phased NPI relaxation strategies and 

examined the interplay and potential impact on the epidemic in Switzerland. The impact of NPIs was 

modelled as a reduction in effective contacts scaled using the Oxford Containment and Health Index6. 

Vaccine rollout was modelled according to the strategy defined by the Swiss Federal Office of Public 

Health (FOPH). This analysis was conducted in early March 2021 prior to a Federal decision for 

potential relaxation of prevention measures planned to begin 22 March. The model and scenario 

analyses were done at the national level, and therefore do not capture the substantial heterogeneity 

within or between Swiss cantons. We explored when and by how much NPIs could be relaxed 

alongside two speeds of vaccine rollout to prevent or limit a potential ‘third wave’ surge of confirmed 

cases, hospitalisations, ICU admissions, and deaths. Since factors other than control measures can 

strongly influence the course of the epidemic, using a sensitivity analysis we examined the potential 
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impact of 1) varying properties of VOCs, 2) varying vaccine efficacies, and 3) varying levels of 

vaccine uptake in the population. Potential future changes or developments in the clinical care and 

general population health were not considered here; nor were potential changes in mass testing or in 

rates of effective testing, tracing, isolating, and quarantining, or the introduction of new, as of now, 

interventions.  

Results 
OpenCOVID was calibrated to national-level epidemiological data up to 5 March 2021 and accurately 

captured historical trends of confirmed cases, hospital and ICU cases, and deaths. See Supplementary 

Figures S1 and S2, also Figure 2. By the end of February 2021, we estimated that 18%–26% of the 

Swiss population had been exposed to SARS-Cov-2, approximately aligned with regional 

seroprevalence surveys7,8. It was assumed that variant B.1.1.7 has 60% more transmissibility than 

D614G9, with which OpenCOVID accurately captured available genomic surveillance data in 

Switzerland10-13 (Supplementary Figure S3). For control measures in place from January to February 

2021, this increased transmissibility translates to a relative transmission advantage of 1.3–1.4 over 

this period. 

Findings from our scenario analyses suggest that even if NPIs in place in early March 2021 are 

maintained until September 2021 (an unrealistic scenario), daily cases, hospitalisations, and deaths 

will increase (Figures 2 and 3), resulting in a third wave. Any relaxation during the month of April is 

also predicted to lead to increases in all three indicators (Figures 4 and 5). This is due to 1) increased 

rates of human contact following relaxation of NPIs, 2) the majority of the population still being 

immunologically naïve (i.e., no prior infection or vaccination, Supplementary Figure S10), and 3) the 

increasing incidence of VOC with higher transmissibility. Since these findings may be sensitive to 

uncertainties in VOC properties these factors were further explored via sensitivity analysis. Scenario 

details and assumptions are provided in Tables 1 and 2. 

The size of the resulting third wave is strongly dependent on timing and amount of measure 

relaxation. Faster and stronger relaxations lead to larger third waves, while slower relaxations resulted 

in a smaller, but also a delayed third wave peak (Figure 2). If relaxation is particularly strong, either 

in large steps or via quick successive relaxations (e.g., the ‘red’ scenario), we estimate that ICU 

occupancy will increase above 25% capacity, a key indicator for decision makers14. The size of a 

potential third wave however can be substantially reduced with faster vaccination by increasing the 

number of individuals vaccinated per day. We found that increasing vaccination rates from 50,000 to 

100,000 doses used per day (0.6% and 1.2% of the Swiss population, respectively) results in a halved 

and slightly earlier third wave peak. Furthermore, for the more gradual phased relaxation scenario, 

this increased vaccination rate results in a substantial reduction in ICU occupancy and deaths until 

September 2021. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 20, 2021. ; https://doi.org/10.1101/2021.04.14.21255503doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.14.21255503
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

The impact of delaying NPI relaxation was explored by comparing a relaxation on 22 March with the 

same relaxation delayed by 3-, 6-, or 9-weeks (Figure 4). Simulations indicated that delaying 

relaxation could lead to fewer cases, less morbidity, and less mortality. However, similar gains could 

also be achieved through faster vaccination, facilitating a more flexible epidemic exit strategy. 

For many scenarios, we observe a peak in cases and ICU occupancy in the summer of 2021 followed 

by a decrease. The initial rise in cases occurs through infections of people who were not previously 

infected or vaccinated rather than from re-infection of previously infected individuals or due to 

imperfect vaccine efficacy (Figure S5). Scenarios involving quicker NPI relaxation led to more 

person-to-person contact, increased transmission, and faster population immunity, which along with 

vaccination, build-up incrementally until the summer of 2021 (Figures 2 and 3). This also results in a 

large wave of infections, high ICU occupancy, and deaths in spring and into summer 2021 (Figures 2 

and 3). The peak in cases occurs when there are a sufficient number of people with vaccine-induced 

or natural immunity due to infection, such that while NPI measures are in place transmission is 

largely decreased. The subsequent decay in new daily cases occurs because fewer individuals are 

susceptible, and along with NPI measures remaining in place, results in an effective reproduction 

number of less than one. When projections increase towards Switzerland’s maximum ICU capacity or 

to death rates as high as observed in previous waves, predicted trajectories become highly unlikely 

since additional measures would likely be implemented. 

Assumptions around increased transmission of and mortality from new VOC, vaccine properties, and 

vaccine hesitancy were further explored. The biggest driver of impact from vaccination and NPI 

relaxation on mortality was the level of increased transmission of VOC (Figures 6 and 7). If new 

variants are more transmissible than assumptions explored here (namely greater than 70%), then there 

is a considerable risk of overwhelming the health system. Furthermore, if new variants have a 50% 

increased mortality compared with D614G15,16, then 41% to 44% more deaths may occur from March 

2021 to September 2021, depending on the NPI relaxation strategy and the speed of vaccination. Even 

with faster vaccination, if partial onward transmission from individuals who are vaccinated but then 

become infected occurs (i.e., less than 65% transmission blocking is assumed), an even slower NPI 

relaxation is needed to avoid subsequent re-strengthening of measures in the future. Regardless of 

vaccination speed, with higher vaccine acceptability among groups P2-P5 (90%), fewer cases are 

predicted during the third peak of the epidemic, compared with 60% lower acceptability (Figure 6).  

Discussion 
The OpenCOVID model has proven to be useful for comparing future scenarios for a range of NPI 

relaxation strategies, speed of vaccination rollout strategies and vaccination efficacies, as well as for 

examining the impact new variants on transmission dynamics. Even accounting for the uncertainty 

around the relative transmission advantage of new variants, all scenarios indicated that faster 

vaccination and more cautious, phased, NPI relaxation leads to more optimistic outcomes of COVID-

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 20, 2021. ; https://doi.org/10.1101/2021.04.14.21255503doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.14.21255503
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

19 incidence and mortality. This in turn leads to a reduced risk of surpassing 25% ICU capacity with 

COVID-19 patients and hence to a reduced risk of needing to re-strengthen measures in spring or 

summer 2021. Such a level of ICU occupancy from COVID-19 patients has the potential to fully 

exhaust capacity when ICU occupancy from other ailments is considered14,17. 

We found that significant delays exist between changing NPI measures and the measurable effect on 

case numbers, hospitalisations, and ICU admissions. Specifically, the consequence of a relaxation is 

not seen on ICU admissions until at least four- to six-weeks later. Given these delays, making 

decisions to relax NPI measures made more frequently than every four- to six- weeks18 runs the risk 

of causing undesirable knock-on effects, including mounting pressure on ICUs and a later need to re-

strengthen measures. Furthermore, if NPIs are relaxed too frequently or too strongly before a 

maximum ICU capacity trigger is reached, a larger peak in ICU occupancy will occur and a stronger 

reactive strengthening of NPIs may be required. Decisions on trigger points for changes in NPI 

measures must take this delay into account to effectively control ICU occupancy.  

In the coming months, vaccination alone will not be sufficient to control mortality from COVID-19. 

Crucially, given the increased transmissibility of the new variants, even without any further NPI 

relaxation after 1 March 2021, a third wave is expected, and, at the time of writing, cases were already 

increasing across Europe. Relaxation of NPIs is likely to lead to another wave of infection, however 

higher and quicker vaccine uptake, alongside a more gradual relaxation, will minimise this wave and 

associated mortality. Our phased relaxation scenarios indicate that if NPIs are relaxed too soon or too 

fast, the resulting third wave has the potential to overload the Swiss health system (e.g., red scenarios 

in Figure 2) and could thus prompt the need to reinforce more restrictive NPIs.  

Our results suggest that to safeguard against a significant third wave and not to overwhelm the health 

system, rigorous monitoring of vaccination uptake and the emergence of new viral variants is 

required, which can inform careful decision making surrounding the timing and strength of NPI 

relaxations. While vaccination is ongoing, it is critical to continuously assess the impact of each NPI 

relaxation over a sufficient length of time before committing to additional relaxations. Effective 

communication with the public will be key to ensure the successful uptake of vaccines and to ensure 

that NPI measures, including hand hygiene, physical distancing, and facemasks, are followed to 

protect unvaccinated individuals and those who cannot be vaccinated. It is the combination of both 

vaccine uptake and ongoing NPIs that dictates the size of any third wave and timing of its peak. Even 

once effective vaccination campaigns end, facemasks and some level of physical distancing will likely 

still be required19, and for this reason we modelled the lowest level of NPIs to be roughly equivalent 

to measures that were in place in Switzerland in September 2020.  

Although evidence beyond clinical studies is being accrued on vaccine efficacy (e.g., in Israel and the 

UK), our results are still dependent on assumptions for vaccine efficacy, uptake levels, and speed of 
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vaccination. Over the simulated time span, we also assumed no loss of natural or vaccine-induced 

immunity. It will be crucial to monitor real vaccine uptake and coverage rates, as well as vaccine 

efficacy on new variants, and waning immunity over the coming 6- to 12-months. We modelled two 

vaccination strategies, a faster rollout with 100,000 doses per day and a slower rollout with 50,000 

doses per day; however, the feasibility and capacity to administer these daily amounts of vaccine 

doses was not explored. Moreover, the impact of increasing vaccination coverage above 75% in the 

key risk group (adults older than 75 years of age, P1) was not explored, however, any increase in this 

will likely result in reduced mortality associated with the third wave. Increased vaccine hesitancy in 

less vulnerable groups is not expected to lead to increased mortality in the short-term. Vaccinating 

people under 18 years of age (since at the time of writing vaccine safety in children had yet to be 

tested) and delaying of second vaccine doses in order to increase coverage of first doses, or because of 

dosing shortages, was not explored. 

We only considered variants of concern identified in Swiss genomic surveillance data 10; B.1.1.7, the 

most prevalent VOC in Switzerland as of March 2021, and B.1.351. We did not consider P.1, for 

which vaccines may be less efficacious20,21. As more information about VOC becomes available, 

additional model simulations will be required to further examine the effects of new variants on the 

epidemic. We did not consider potential changes in behaviour among people once they are vaccinated. 

We used the Oxford Containment and Health Index (OCHI) to measure the strength of NPIs. This 

single-value index integrates 13 different SARS-CoV-2 protection measures. Equal levels of OCHI 

can be reached by different combinations of NPIs. This means that the scenarios modelled are not 

specific to a certain defined relaxation scenario, but rather treat the effect of a certain total amount of 

relaxations as measured by the OCHI. The set of relaxation scenarios modelled in this study was 

chosen to allow exploration of interactions between different vaccination speeds and delays of 

relaxation, and do not represent explicit measures planned for Switzerland.  

While we quantified short-term consequences of COVID-19 such as hospitalisations and mortality, 

we did not quantify long-term sequelae associated with severe and non-severe cases. While COVID-

19 lasts for two weeks on average22, an estimated one in ten individuals suffer with symptoms for 

more than 12 weeks23, defined as ‘long COVID’. Long COVID and disability associated with severe 

cases was not considered; however, the impact of these factors could be substantial as symptoms, 

including fatigue, anxiety, joint or muscle pain, and more24, could have a considerable impact on 

physical and mental health, and on workforce participation. In this context, our results were more 

optimistic since outcomes of long COVID and disability from severe cases were not considered. We 

also did not include economic consequences and secondary health impacts of relaxing and potentially 

re-strengthening measures. These must be considered as part of any policy decision, alongside 

additional economic and health analysis, and should be a priority for future modelling analyses. 
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As for any epidemic model, considerable uncertainty exists when projecting further into the future. 

The current pandemic will not end in September 2021; however, we ended our simulations at that 

time point due to increasing uncertainty of predicting beyond this period. During this projection 

period, it will be important to monitor the effect of waning immunity and any benefit from 

summertime climatic effects. We optimistically assumed that the seasonal effect of reduced 

transmission seen in summer 2020 will apply equally to the new variants of concern. It is important to 

highlight that the numbers of predicted cases are thus influenced by this phenomenon and that the 

opposite effect will take place in autumn and winter, also arguing for both high vaccination rates 

before autumn and effective monitoring beyond summer 2021. Precise transmission levels of new 

variants of concern are not yet known, which would directly affect the measure of the effective 

reproductive number for Switzerland. Likewise, the effectiveness of various COVID-19 vaccines on 

existing and possible new variants is not yet accurately known. Changes in testing (including mass 

testing), changes in NPI measures, and adherence to those measures may result in different future 

trends than those seen in 2020. Furthermore, communication of expected epidemic trends may lead to 

behavioural changes that make these trends less likely (such as the population becoming more careful 

and reducing contacts if cases are expected to increase, and vice versa). Such potential behavioural 

changes were not captured in the model. Although we have undertaken great effort to inform our 

model with the best available data and assumptions, this analysis should not be considered as a future 

prediction. Instead, our findings provide outcomes for various potential scenarios comparing the 

relative impact of different SARS-CoV-2 control strategies over the coming months at the national 

level and do not capture substantial heterogeneity within and between cantons. 

Disease models allow us to explore counterfactual scenarios and to counterbalance the human 

tendency to underestimate exponential growth. The complex interaction between new emerging 

variants, NPI control measures, and vaccine rollout strategies is difficult to grasp without using a 

model. Models offer a snapshot of several possible futures. They cannot automatically react to policy 

changes, as these changes will make model assumptions unfounded. Instead, models provide a tool to 

compare the relative impact of decisions made now on the future course of the pandemic. With this 

study, we have addressed these policy-related considerations for the Swiss population from a public 

health point of view. However, these insights can be applied more broadly to countries or regions to 

forecast the impact response measures will have on SARS-CoV-2 transmission, which we hope will 

aid in global control of COVID-19. 

Methods 
Model 

To represent the impact of vaccines and NPIs on the COVID-19 epidemic in Switzerland, we 

developed OpenCOVID; a stochastic, discrete-time, individual-based transmission model of SARS-

CoV-2 infection and COVID-19 disease. OpenCOVID is briefly described here, with additional 
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model details provided in Supplementary Information. Model code is open source and available from 
25. 

OpenCOVID tracks characteristics of individuals such as age (in one-year age bins), risk-group 

(namely those with comorbidity), SARS-CoV-2 infection status, COVID-19 disease state, level of 

immunity, and vaccination details. If infected, an individual's viral load is tracked as a function of 

time since infection (Supplementary Figure S5), along with the viral variant with which an individual 

is infected (inherited from the infector). The model captures viral transmission as infectious and 

susceptible individuals come into contact. The probability of transmission is dependent on the viral 

load of the infectious individual, the variant of the virus being transmitted, and any partial immunity 

acquired by the susceptible individual (either through previous infection26 or vaccination27,28). Further, 

seasonality affects the probability of transmission (Supplementary Figure S6) - with lower 

probabilities in warmer periods - reflecting a larger proportion of people coming into contact outdoors 

once temperatures warm. Any contact between an infectious and susceptible individual is assumed to 

carry the same probability of transmission, all else being equal. Human contacts are represented 

through an age-structured network (Supplementary Figure S4)29. 

A newly infected individual will, following a latent period, be assigned through stochastic 

distributions an age-dependent disease prognosis of either asymptomatic, mild, severe, critical, or 

eventual death (Figure 1). These prognosis probabilities are derived from publicly available age-

disaggregated morbidity and mortality data30,31. The viral variant an individual is infected with can 

alter prognosis probabilities, capturing the ability of certain variants to cause increased morbidity 

and/or mortality (e.g., B.1.1.715,16). Cases with prognosis of severe, critical, or eventual death may be 

admitted to hospital following some delay from symptom onset or may alternatively receive care 

outside of hospital (e.g., in a care home). Critical cases who are in hospital will be admitted to an 

intensive care unit (ICU), with sufficient capacity assumed in the model. The duration an individual 

remains in any given disease and/or care state is sampled from a distribution (Supplementary Figure 

S8). 

Data 

Application of OpenCOVID to the national-level epidemic in Switzerland was informed by publicly 

available demographic and epidemiological data from the Swiss Federal Office of Public Health 

(FOPH)32 and climate data from Meteo Schweiz33. NPI measure data from various public sources25 

were used to compute national- and cantonal-level interpretations of the OHCI. A subset of model 

parameters (Supplementary Table S1) was calibrated in order to align model output to six types of 

epidemiological data, including confirmed cases, patients in hospital, deaths, and prevalence of viral 

variants10,13. A log-likelihood objective function was used to measure the overall quality of the model 

fit weighted for each data type. The effect of NPIs on contact rates was also subject to model 
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calibration, where the OHCI index was proportionally scaled to represent a reduction in contacts. See 

Supplementary Information for calibration details and outcomes. 

Diagnosis 

Upon infection, an individual is assigned a date at which they may potentially be diagnosed as a 

consequence of test seeking behaviour. The delay between symptom onset and a potential diagnosis 

for each individual is sampled from a Gaussian distribution. We assume all non-severe cases isolate 

for a 10-day period immediately following diagnosis. For individuals presenting with severe disease 

that seek hospital care prior to diagnosis, a test (and consequent diagnosis) is assumed to be carried 

out once they are admitted to hospital. 

In this application for Switzerland, we derive numbers of diagnoses over time directly from data of 

confirmed COVID-19 cases. All COVID-19 cases that seek hospital care receive a diagnosis. After 

taking hospitalised diagnoses into account, other individuals with severe disease outside of the 

hospital setting and individuals with mild disease are randomly selected and assigned a diagnosis in 

the model. To represent future test-seeking behaviour, the model-calculated the proportion of cases 

diagnosed per infected case over the past 14-days and maintained this proportion into the future 

(Supplementary Figure S9). This assumption is not robust to major changes in testing policies or 

behaviours, including, but not limited to, mass testing. 

Immunity  

Following a period of infection, surviving individuals recover to a state in which viral shedding no 

longer occurs. These recovered individuals are assumed to be susceptible to reinfection but are 

assumed to retain some level of partial immunity, which reduces susceptibility to subsequent 

exposure. OpenCOVID can capture immunity decay, but for this study we optimistically assume no 

immunity decay following natural infection or vaccination. For naturally acquired immunity due to 

infection, we assume an 83%26 transmission blocking effect when/if re-exposed. If a previously 

infected but recovered individual is later vaccinated, the level of transmission blocking immunity is 

taken to be the highest of the two independent effects. No synergistic effect is considered. 

NPIs 

In OpenCOVID, non-pharmaceutical interventions (NPIs) can curb the spread of SARS-CoV-2 in an 

otherwise unprotected population by reducing the number of potentially transmissible pairwise 

contacts. In Switzerland, NPIs have targeted several aspects of public life, including closure of shops, 

restaurants and other entertainment venues, restrictions in sizes of spontaneous gatherings, the 

cancellation of events, and facemask mandates in publicly accessible spaces. The Oxford Health and 

Containment Index (OCHI) is a measure that is proportional to the amount (or stringency) that such 

measures are in place at a given moment in time34. The level of the OCHI, together with a calibrated 
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multiplicative scaling parameter is used in our model to capture the effect of NPIs in reducing the 

effective daily number of contacts. The Swiss level of the OCHI is collected on cantonal and federal 

levels, based on publicly available information25. This publicly available information is translated into 

16 Swiss-specific variables, and from there into the 13 variables that together make up the Oxford 

Containment and Health Index. 

Variants 

OpenCOVID tracks the transmission of multiple viral variants. Variants are imported into the 

modelled population 7 days prior to being identified in national genomic surveillance data. We 

assume the variant with which an individual is infected is inherited from the infector. At the time of 

writing, B.1.1.7 was the dominant variant in Switzerland, replacing D614G10,13. We modelled three 

variants in this study: D614G, B.1.1.7, and B.1.351. A 60% increase in B.1.1.7 transmissibility 

relative to D614G best matched variant prevalence data between January 2021 and February 2021 

(Supplementary Figure S3). For B.1.351, a 10% increase in transmissibility relative to D614G was 

assumed 12. For the primary results reported in this study, we assumed no increased probability of 

morbidity or mortality due to viral variants. However, we assess the impact of this scenario in a 

sensitivity analysis. 

Vaccines 

Fully susceptible, partially susceptible, and actively infected individuals not in hospital can potentially 

receive a vaccine. Vaccination is modelled using two properties: first, to trigger an immune response 

that blocks transmission for a proportion of exposure events, and second, to reduce the probability of 

developing symptoms if infection does occur. Upon vaccination, there is a time delay until the full 

efficacy of the vaccine is realised; a sigmoidal curve is used to represent this growth in vaccine effect. 

Vaccine efficacy, delay to full efficacy, transmission blocking effect, and number of doses required is 

vaccine specific (Supplementary Table S5). In this study, we consider only mRNA vaccines and 

assume all vaccinated individuals receive two doses spaced by 3-weeks with vaccination reaching 

maximum efficacy 28-days after the first dose27,28,35. We assume the vaccine is 80% transmission 

blocking and has a further 75% probability of preventing symptoms leading to the observed 95% 

vaccine efficacy reported in clinical trials27,28. In this study, we do not model decay of vaccine 

efficacy over time or reduction in vaccine efficacy due to variants of concern, but the model is able to 

capture changes to these assumptions. 

Model simulations 

This analysis and COVID-19 model outcomes are conducted at the national level, but this model can 

also be applied at the subnational level. All outcomes are reported as mean estimates alongside 

prediction intervals representing parameter and stochastic uncertainty. Model simulations were 

initiated on 18 February 2020, 7-days before the first cases were confirmed for three consecutive days 
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(25 to 28 February 2020) in Switzerland. All model processes were computed at 1-day time intervals. 

A number of initial cases were imported into the population, which were then able to cause onwards 

infection. A number of infections are also imported into the population at each time step. 

Furthermore, new virus variants are initiated by importing a number of new cases of each variant at a 

given time in alignment with the point the particular variant was first identified in Switzerland. All 

three importation rates are found through model calibration (see the following section). The number 

of individuals simulated in the model is capped at a predefined number (one million individuals for all 

simulations), with a population scaling factor applied to all relevant model outputs to represent a one-

to-one scale for the Swiss population of 8.5 million. 

Numerous model outputs are captured and reported temporally, including number of infections, 

diagnosed infections, morbidity, and mortality estimates (Supplementary Figure S1). Where 

appropriate, metrics are disaggregated by age and variant of concern (Supplementary Figures S2 and 

S3). 

Scenarios 

The OpenCOVID model was used to predict future national-level epidemic trajectories from early 

March to early September 2021. We did not simulate beyond this date due to substantial uncertainty 

around duration of natural and vaccine-induced immunity, the impact of additional new variants, and 

changes in NPIs, adherence, and testing. 

Two vaccination roll-out speeds (slower, 50,000 doses per day, and faster, 100,000 doses per day) and 

a range of NPI relaxations were modelled. Vaccine rollout up to 31 March 2021 was modelled as per 

publicly available data36. Vaccine eligible individuals were assigned to one of five priority groups 

according to age, comorbidity, and profession, and vaccines were not given to hesitant individuals. 

Priority groups were modelled with subsequent vaccination with two doses of an mRNA vaccine 

following the Swiss FOPH strategy37 (see Table 2 for further details). As per current Swiss 

vaccination guidelines, individuals under 18 years of age are not considered eligible for vaccination37. 

We assumed that 75% of each priority group was willing to be vaccinated. NPI relaxation scenarios 

were modelled as described in Table 1. An NPI ‘relaxation step’ translates to approximately 5 points 

on the OHCI, reflecting the set of NPI relaxations (further described in Supplementary Information) 

proposed by the Swiss Federal Council to occur initially on 1 April 2021 (subsequently re-scheduled 

to 22 March 202138). For all scenarios we assumed adherence to measures was consistent over time. 

Future scenarios assume similar levels of testing to that from early February 2021 to early March 

2021, the potential impact of mass testing or widespread testing outreach was not modelled. 
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Sensitivity analysis 

To assess the sensitivity of our findings, we simulated scenarios that independently varied several key 

model parameters related to vaccine characteristics and currently circulating variants of concern (see 

Table 2 for details). 
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Figures  

 

Fig. 1: Schematic of OpenCOVID model structure. Capturing potential states of individuals in the 

model, including fully susceptible or immune status (exposure), latent infection, pre-symptomatic 

state for which vaccination may affect immune development (indicated by dotted purple lines). Some 

remain asymptomatic, while disease progression may occur (mild, severe) for which vaccination 

could reduce symptom development. Isolation or care (hospital care, intensive care) may be required. 

Recovery (from symptomatic infection, mild or severe disease) or death results. Increasingly darker 

shading (grey, pink, red, dark grey) indicates increasing severity. Full model details are provided in 

the Methods and Supplement. 
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Fig. 2: Estimated impact of vaccination and NPI relaxation scenarios on the SARS-CoV-2 

epidemic in Switzerland. (a) Oxford Containment and Health Index: A measure for the severity of 

NPIs from 24 February 2020 to 21 March 2021 and projections for four relaxation scenarios 

thereafter. (b) Total number fully vaccinated: Cumulative amount of fully vaccinated persons 

(assuming two doses). (c) Number of doses per day: Number of vaccine doses administered per day. 

(d) Daily confirmed COVID-19 cases: Model estimates of the number of confirmed COVID-19 cases 

per day (not accounting for future testing changes including mass testing). (e) COVID-19 cases in 

ICU: Model estimates of COVID-19 patients in ICU. (f) Daily COVID-19 deaths: Model estimates of 

daily COVID-19-related deaths. In all panels, dark grey dots show data to date. Coloured lines show 

simulation results of different relaxation scenarios and two vaccine rollout scenarios. Vaccination 

scenarios: Solid lines correspond to a vaccination scenario assuming 50,000 vaccines are administered 

per day, while the dashed lines correspond to a faster vaccination scenario of 100,000 vaccines per 

day. NPI scenarios (details Table 1): Red represents an NPI relaxation scenario with relaxation steps 

on 22 March, 12 of April, and 3 of May. Blue represents a slower NPI relaxation scenario compared 

with the red scenario, with smaller relaxations, three-weekly steps from 22 March to 5 July. Yellow 

represents an NPI relaxation scenario with relaxation only on 22 March and no further NPI 

relaxations. Green represents a strategy with no further NPI relaxation after 1 March (an unrealistic 

scenario of no relaxations through to the end September 2021, provided as a reference only). The 

a a b c 
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vertical dashed lines represent the date at time of analysis. The horizontal black dashed line in the 

“COVID-19 cases in ICU” panel depicts the estimated maximum national capacity of ICU beds; the 

horizontal red dashed line 25% ICU capacity. Predictions of confirmed cases, ICU capacity, and 

mortality are reported as mean estimates with 95% prediction intervals. 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 20, 2021. ; https://doi.org/10.1101/2021.04.14.21255503doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.14.21255503
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

Fig. 3: Cumulative estimates of confirmed cases, ICU admissions, COVID-19 deaths, and 

vaccine doses provided from 6 March to 5 September 2021. (a) Cumulative admissions to ICU, (b) 

cumulative COVID-19 deaths, (c) cumulative confirmed COVID-19 cases (excl. mass testing), (d) 

cumulative vaccine doses provided. Bar colours indicate NPI relaxation and vaccination scenarios as 

per Figure 2, with darker shaded bars correspond to vaccination scenarios with 50,000 vaccines 

administered per day and lighter shaded bars to faster vaccination scenarios with 100,000 vaccines 

administered per day. 
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Fig. 4: Comparison of the impact of vaccination and NPI relaxation scenarios on SARS-CoV-2 

dynamics in Switzerland over time for delayed single-step relaxation. (a) Oxford Containment 

and Health Index: A measure for the severity of NPI measures from 24 February 2020 until 21 March 

2021 and for four exemplar relaxation scenarios with one step relaxation. NPI scenarios: Grey 

represents an NPI relaxation scenario with relaxation only on 22 March with no further NPI relaxation 

(also detailed as the yellow scenario in Table 1); Orange same relaxation but implemented three-

weeks later on 12 April; Blue same relaxation on 3 May, and Pink same relaxation 24 May. (b) Total 

number fully vaccinated: Cumulative amount of fully vaccinated persons (assuming two doses). (c) 

Number of doses per day: Number of vaccine doses administered per day. (d) Daily confirmed cases: 

Model estimates of the number of confirmed COVID-19 cases per day (not accounting for future 

testing changes including mass testing). (e) COVID-19 cases in ICU: Model estimates of COVID-19 

patients in ICU. (f) Daily COVID-19 deaths: Model estimates of daily COVID-19-related deaths. In 

all panels dark grey dots show data to date. The coloured lines show simulation results for the 

different relaxation scenarios and the two vaccine rollout scenarios. Vaccination scenarios: Solid lines 

correspond to a vaccination scenario assuming 50,000 vaccines are administered per day, while 

dashed lines correspond to a faster vaccination scenario of up to 100,000 vaccines per day. The 

vertical dashed line on all panels represents the current date at the time of the analysis. The horizontal 

red dashed line in the “COVID-19 cases in ICU” panel depicts the level of 25% of ICU capacity. 
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Predictions of confirmed cases, ICU capacity, and deaths are mean estimates with 95% prediction 

intervals. 
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Fig. 5: Cumulative estimates of the number of confirmed cases, ICU admissions, COVID-19 

deaths, and vaccine doses provided between 6 March and 1 September 2021.(a) Cumulative 

admissions to ICU, (b) cumulative COVID-19 deaths, (c) cumulative confirmed COVID-19 cases 

(excl. mass testing), (d) cumulative vaccine doses provided. Bar colours indicate NPI relaxation and 

vaccination scenarios as per Figure 4 with darker shaded bars correspond to the slower vaccination 

scenario with 50,000 vaccinations per day and lighter shaded bars to the faster vaccination 

with100,000 vaccinations per day. 
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Fig. 6: Sensitivity of predictions for daily confirmed cases and COVID-19 deaths given 

assumptions for vaccine transmission blocking, vaccine acceptability, infectiousness of VOC, 

and potential increased mortality from VOC. Each panel shows the time series of either daily 

confirmed COVID-19 cases (excluding testing changes) or daily COVID-19 deaths (indicated by the 

row labels) between 1 September 2020 and 1 September 2021 for the blue scenario with slower 

relaxations every three-weeks from 22 March to 5 July with 50,000 vaccines per day (rows 1 and 3) 

or faster vaccination with 100,000 per day (rows 2 and 4). Results of the blue scenario are represented 

by grey dots, and colours show the impact of (a) vaccine transmission blocking, influence of the 

assumption on the transmission blocking property of the vaccine. Dark orange line represents 60% 

vaccine transmission blocking, light orange line 95% transmission blocking, and the grey line the best 

estimate for 80% transmission blocking used in Figures 2 and 3. The transmission blocking property 

of the vaccine is offset with the symptom blocking property, so that the vaccine always has an 

efficacy of 95% in reducing symptoms. (b) vaccine acceptability in terms of coverage represents 

assumed vaccine hesitancy, resulting in a change in vaccination coverage. Dark green line represents 

60% coverage, light green line 90% coverage, and grey line the best estimate of 75% coverage as 

used in Figures 2 and 3. (c) VOC infectiousness represents assumed increased transmission for variant 

B.1.1.7. Dark purple line shows a 70% increased transmissibility (with transmission advantage of 1.4–

1.5), light purple line 50% increased transmissibility (transmission advantage of 1.2–1.3), and grey 

a b c d 
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line the reference scenario of 60% increased transmissibility (transmission advantage of 1.3–1.4) used 

in Figures 2 and 3. (d) VOC mortality with dark pink lines representing assumed 50% increased 

mortality for variant B.1.1.7 compared with D614G, while the grey lines the same mortality 

assumptions as for variants that emerged in 2020. Predictions of confirmed cases and mortality are 

reported as mean estimates with 95% prediction intervals. 
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Fig. 7: Cumulative mean impact on daily COVID-19 deaths and confirmed cases given the 

sensitivity analysis of Figure 6 (Table 2) on the blue reference scenario for slower relaxation 

until 5 July (Table 1, Figure 2). Estimated impact on (a) daily COVID-19 deaths and (b) daily 

confirmed COVID-19cases (excluding mass testing) from 1 September 2020 to 1 September 2021 

given the different assumptions on infectiousness of VOC, potential increased mortality from VOC, 

and vaccine transmission blocking and vaccine acceptability as illustrated in Figure 6. The colour and 

shading schemes are identical to those in Figure 6. The dividing line at 0 is the reference cumulative 

mean estimate from Figure 3 for the dark blue scenario bar modelled with (50,000 vaccines per day) 

and light blue scenario bar (100,000 vaccines per day): slow phased NPI relaxation scenario of three-

weekly steps from 22 March to 5 July. Influence of the assumption of the increased transmission of 

variant B.1.1.7: dark purple bars represent an assumed 70% increased transmissibility (corresponding 

to a transmission advantage of 1.4–1.5), the light purple bars, 50% increased transmissibility 

(corresponding to a transmission advantage of 1.2–1.3), over the reference of 60% transmissibility for 

D614G. Influence of the assumption of an increased mortality of 50% for variant B.1.1.7 (dark pink 

bars). Influence of the assumption on the transmission blocking property of the vaccine: dark orange 

bars represent a vaccine with 60% transmission blocking, the light orange bars represent 95% 

transmission blocking. The transmission blocking property of the vaccine is offset with the symptom 
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blocking property, so the vaccine has a 95% efficacy for reducing symptoms. The influence of the 

assumption for vaccine hesitancy, resulting in a change of vaccination coverage: the dark green line 

shows a coverage of 60% (acceptance), the light green line a coverage of 90% (compared with the 

reference 75% coverage). For all bars, the negative values on the left indicate fewer cases or deaths 

are predicted compared with the reference scenario, for positive values on the right, more deaths or 

cases are predicted. 
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TABLES 
Table 1: Summary of model scenarios from Figures 2 and 3. Oxford Containment and Health Index (OCHI) levels are detailed in the methods. 

Scenario NPI 
relaxation 
speed 

NPI OCHI 
level on 22 
March 

NPI OCHI 
level on 12 
April 

NPI OCHI 
level on 3 
May  

NPI OCHI 
level on 5 
July  

Vaccination 
speed 

VOC 
transmission 

Vaccine 
assumptions  

1A) RED  NPI 
relaxation 
steps on 22 
March, 12 
April, and 3 
May 2021 

53.5 

Similar to 
levels in 
early June 
2020  

48.5 

Similar to 
levels in 
early July 
2020 

43.5 

Similar to 
levels at the 
end September 
2020 

43.5 

 

50,000 per day 
(solid line) or 

100,000 per day 
(dashed line) 

Baseline – 
60% 
increased 
transmission 

Baseline - 80% 
transmission 
blocking 

1B)  

BLUE  

Small NPI 
relaxations 
every 3-
weeks 
between 22 
March and 5 
July 2021 

55.9 

Similar to 
levels in 
early June 
2020  

53.5 

Similar to 
levels in 
early June 
2020  

51.0 

Similar to 
levels in 
November and 
December 
2020 

43.5 

Similar to 
levels at the 
end 
September 
2020 

50,000 per day 
(solid line) or 

100,000 per day 
(dashed line) 

Baseline – 
60% 
increased 
transmission 

Baseline – 80% 
transmission 
blocking 

1C)  

YELLO
W 

NPI 
relaxation 
step on 22 
March 2021 
with no 
further NPI 
relaxations 
(in 
accordance 
with 

55.9 

Similar to 
levels in 
early June 
2020 

55.9 

 

55.9 

 

55.9 

 

50,000 per day 
(solid line) or 

100,000 per day 
(dashed line) 

Baseline – 
60% 
increased 
transmission 

Baseline – 80% 
transmission 
blocking 
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relaxations 
communicate
d on 17 
February)  

1D)  

GREEN 

No further 
relaxation 
after 1 March 
2021 

58.3 

Since 1 
March 2021 

58.3 

Since 1 
March 2021 

58.3 

Since 1 March 
2021 

58.3 

Since 1 
March 2021 

50,000 per day 
(solid line) or 

100,000 per day 
(dashed line) 

Baseline – 
60% 
increased 
transmission 

Baseline – 80% 
transmission 
blocking 

 

Table 2: Summary of model scenarios from Figures 6 and 7 

Scenario  NPI relaxation speed 

(blue scenario from Figure 2) 
OCHI levels on 22 March of 
55.9, 12 April of 53.5, 3 May of 
51.0, and 5 July of 43.5 

Vaccinatio
n speed 

Variants of concern 
(VOC) 

Vaccine 
assumptions  

Vaccination coverage 
(accounts for hesitancy or 
increased acceptance among 
groups P2-P5) 

3A)  

DARK 
ORANGE 

Small NPI relaxations every 3-
weeks between 22 March and 5 
July  

100,000 
per day 

Baseline – 60% 
increased transmission 

Lower transmission 
blocking - 60% 
transmission 
blocking  

Baseline – 75% coverage 

3B)  

LIGHT 
ORANGE 

Small NPI relaxations every 3-
weeks between 22 March and 5 
July  

100,000 
per day 

Baseline – 60% 
increased transmission 

Higher transmission 
blocking – 95% 
transmission 
blocking  

Baseline – 75% coverage 
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4A) 

DARK 
GREEN 

Small NPI relaxations every 3-
weeks between 22 March and 5 
July  

100,000 
per day 

Baseline – 60% 
increased transmission 

Baseline – 80% 
transmission 
blocking 

75% coverage for P1 

60% coverage for P2-P5 
reflecting higher vaccine 
hesitancy 

4B) 

LIGHT 
GREEN 

Small NPI relaxations every 3-
weeks between 22 March and 5 
July  

100,000 
per day 

Baseline – 60% 
increased transmission 

Baseline – 80% 
transmission 
blocking 

75% coverage for P1 

90% coverage for P2-P5 
reflecting lower vaccine 
hesitancy 

5A) DARK 
PURPLE 

Small NPI relaxations every 3-
weeks between 22 March and 5 
July  

100,000 
per day 

Higher transmission – 
70% increased 
transmission of B.1.1.7 
relative to D614G 

Baseline – 80% 
transmission 
blocking 

Baseline – 75% coverage 

5B) LIGHT 
PURPLE 

Small NPI relaxations every 3-
weeks between 22 March and 5 
July  

100,000 
per day 

Lower transmission – 
50% increased 
transmission of B.1.1.7 
relative to D614G 

Baseline – 80% 
transmission 
blocking 

Baseline – 75% coverage 

6A) DARK 
PINK 

Small NPI relaxations every 3-
weeks between 22 March and 5 
July  

100,000 
per day 

Baseline – 60% 
increased transmission 
and with 50% increased 
mortality of B.1.1.7 
relative to D614G 

Lower transmission 
blocking – 60% 
transmission 
blocking  

Baseline – 75% coverage 

P1 (highest priority, adults older than 75 years of age); P2 (65–75 years, under 65 with comorbidity, and healthcare workers); P3 (household members of 

high-risk people); P4 (18–64 years in communal facilities and their caregivers); P5 (18–65 years of age with no comorbidities). See Supplementary 

Information for additional details. 
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Model calibration 
 

OpenCOVID was calibrated to the national-level epidemic in Switzerland using publicly 
available epidemiological data from the Swiss Federal Office of Public Health (FOPH) [1]. 
Model output was matched to six types of observed temporal metrics: 1) daily confirmed 
COVID-19 cases, 2) daily COVID-19-related deaths, 3) daily hospital admissions, 4) number 
of COVID-19 patients in hospital, 5) number of COVID-19 patients in ICU, and 6) relative 
prevalence of virus variants [2, 3]. Figure S1 shows the alignment of the model output to the 
epidemiological data, along with several additional model metrics. Age-disaggregated metrics 
are illustrated in Figure S2. The alignment of the model to data regarding prevalence of viral 
variants is shown in Figure S3. See  

Table S1 for a full list of calibrated and fixed model parameters. 

 

Figure S1: OpenCOVID calibrated to national-level data of confirmed cases, hospitalisations, ICU 
occupancy, and deaths in Switzerland up to 5 March 2021. Black dots represent the data to which the model 
has been calibrated. Coloured lines represent model output. Daily hospitalisation rates are not shown due to 
discrepancies in the data (as described in more detail in the Likelihood and calibration details section). 
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Figure S2: Daily confirmed cases, COVID-19 cases in hospital, COVID-19 cases in ICU, daily COVID-19 
deaths, all currently infected and total number fully vaccinated split by age group. Outputs are shown for 
the calibrated period between 18 February 2020 and 5 March 2021. 

 

Parameter table 
 

Model parameter Description 
Calibrated 

value or fixed 
distribution 

Truncation 
bounds 

Specifications and 
sources 

contacts Number of contacts per person per day, where 
a contact has a transmission probability of beta 11.4 5 – 25 

Calibrated 
See Contact network 
section 

beta 

Baseline probability of transmission in one 
contact between a fully susceptible individual 
(i.e., no partial or sterile immunity) and a fully 
infectious individual (i.e., when viral load is at 
maximum) 

! = 0.05 Not 
applicable 

Not calibrated 
See Infectiousness per 
contact section 

seasonality_scaler Multiplicative factor for effect of temperature 
on transmission probability per contact 0.27 0.2 – 0.8 Calibrated 

See Seasonality section 

proportion_asymptomatic Proportion of all cases that are asymptomatic !~'(0.3, 0.02!) 0.2 – 0.4 Not calibrated  
[4-9] 

presymptomatic_days Number of days infectious before showing 
symptoms !~'(3, 0.5!) 1 – 5 Not calibrated 

[10-14] 
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Model parameter Description 
Calibrated 

value or fixed 
distribution 

Truncation 
bounds 

Specifications and 
sources 

latency_days Number of days in latency (infected but not 
infectious) state !~'(4.6, 1!) 3 – 7 Not calibrated  

[10-14] 

infectious_days_mild 
Number of days for which non-severe cases 
are infectious (excluding presymptomatic 
phase) 

!~'(6, 1!) 3 – 10 Not calibrated  
[10, 15-17] 

infectious_days_severe Number of days for which severe cases are 
infectious (excluding presymptomatic phase) !~'(28, 1!) 14 – 30 Not calibrated [14, 

15, 18-20] 

seek_hospital Proportion of severe cases that will seek 
hospital care 0.41 0.4 – 0.95 

Calibrated 
Assumed prior 
distribution 
[21] 

onset_to_hospital_days Number of days between symptom onset and 
hospitalisation 13.4 1 – 14 Calibrated 

[14, 20, 22-25] 

diagnosis_delay Delay between symptom onset and test (and 
diagnosis) !~'(3, 0.5!) 0 – 5 Not calibrated 

[26] 

reporting_delay General reporting delay for all epidemiological 
and hospital metrics !~'(1, 0.1!) 0 – 4 Not calibrated 

Assumed 

isolation_probability Proportion of mild and asymptomatic cases 
that isolate after diagnosis ! = 1 Not 

applicable 
Not calibrated 
Assumed 

isolation_duration Number of days spent in isolation after 
diagnosis ! = 10 Not 

applicable 
Not calibrated 
[17] 

hospital_stay_days Number of days a severe non-critical case 
spends in hospital before discharge !~'(9, 1!) 7 – 20 Not calibrated 

[14, 20, 23, 25, 27] 

hospital_to_icu_days 
Number of days between hospital admission 
and ICU admission for cases that will become 
critical 

!~'(2, 1!) 1 – 10 Not calibrated [23, 
28] 

icu_stay_days Number of days a critical case spends in ICU 
before transfer back to non-ICU ward !~'(7, 1!) 1 – 14 Not calibrated 

[14, 20, 23, 25, 27] 

icu_stay_death_days Number of days a critical case spends in ICU 
before death !~'(6, 1!) 3 – 14 Not calibrated [14, 

19, 20, 23, 27] 

hospital_transfer_days Number of days spent in non-ICU ward 
following discharge/transfer from ICU !~'(2, 0.1!) 1 – 7 Not calibrated  

[22] 

home_death_days Number of days between symptom onset and 
death for those not seeking hospital care !~'(10, 1!) 7 – 14 Not calibrated 

Assumed 

death_reporting_delay Additional delay between a COVID-19 death 
and that death being reported in the data !~'(2, 0.2!) 1 – 14 Not calibrated 

[22, 25] 

critical_death_icu Proportion of critical cases that die in ICU care 
(ventilators assumed to be available) 0.63 0.4 – 0.8 Calibrated 

[22, 24, 25] 

critical_death_non_icu Proportion of critical cases that die when ICU 
not available or not sought !~'(0.95, 0.1!) 0.5 – 0.99 Not calibrated 

[25] 

improved_care_factor 

Proportionate reduction in probability of 
severe cases becoming critical cases (and 
requiring ICU) due to improved care and 
treatment procedures 

0.72 0.40 – 0.99 Calibrated 
[29] 
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Model parameter Description 
Calibrated 

value or fixed 
distribution 

Truncation 
bounds 

Specifications and 
sources 

import_date Number of days delay between first case 
importation and first confirmed case ! = 7 Not 

applicable 
Not calibrated 
Correlated with 
import_initial 

import_initial 
Number of people (per 100,000) initiated with 
infection import_date number of days before 
first confirmed cases 

78 1 – 100 
Calibrated 
Assumed prior 
distribution 

import_constant Number of imported cases per 100,000 people 
per day 1.4 0.1 – 5 

Calibrated 
Assumed prior 
distribution 

npi_scaler 

Calibration factor for proportionally scaling 
the Oxford Health and Containment Index 
(OCHI) to derive a reduction in effective 
contacts 

1.3 0.8 – 1.5 

Calibrated 
See  
Non-pharmaceutical 
interventions 
section 

acquired_immunity Initial level of acquired immunity due to 
infection !~'(0.83, 0.1!) 0.76 – 0.87 Not calibrated 

[30, 31] 

vaccine_immunity_days Number of days following vaccination (first 
dose) until full efficacy is attained ! = 28 No bounds 

assumed 
Not calibrated 
[32] 

 
Table S1: Calibrated and fixed model parameters with sources. 

 

Variants of concern 
 

OpenCOVID tracks transmission chains of viral variants. The model can consider any number 
of variants, providing there is sufficient data to inform the relative prevalence of each variant 
in the population. Three viral variants were modelled in this application of Switzerland: 
D614G (considered the dominant variant at the start of the epidemic), B.1.1.7, and S501Y V2. 
Figure S3 shows the alignment of the calibrated model to variant prevalence over time. We 
modelled the B.1.1.7 and S501Y V2 variants by assigning them a percentage increase in the 
probability of transmission per contact then further calculated the likely transmission 
advantage in a heterogeneous population with pre-existing immunity during an ongoing 
pandemic with existing non-pharmaceutical interventions (captured in our individual-based 
model). We estimated the effective reproductive number, Re, of B.1.1.7 for the months of 
January and February, for the specified increase in the transmission probability, assuming a 
serial interval of 6-days and calculated the transmission advantage as the ratio of the effective 
reproductive number to that of variant D614G. We further conducted a sensitivity analysis 
varying the serial interval (3-9 days).  

The transmission advantage is therefore the proportional increase in the expected number of 
cases from one infected individual in the epidemic setting in Switzerland in early 2021 
(including the effects of pre-existing natural immunity and the impact of control measures). It 
is thus important to note that a 60% increase in the probability of transmission per contact 
does not correspond to a 60% increase in the effective reproductive number, Re, but rather 
closer to a 30% increase. Allowing for variation in the serial interval, this can vary between 
10% and 50%.  The scenario with a 70% increase in transmissibility corresponded to a 
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transmission advantage of 1.4 (1.2-1.6); and that with a 50% increase in transmissibility 
corresponded to a transmission advantage of 1.2 (1.1-1.4). 

 

 

Figure S3: Calibrated variant dynamics in Switzerland until 5 March 2021. Blue is the D614G variant 
which was dominant in Switzerland from summer 2020 on and is used here synonymously with the earlier 
strains circulating in Switzerland due to their epidemiological similarity. Red is the B.1.1.7 variant with a 60% 
increased infectivity. Green is S501Y V2 with a 10% increased infectivity. The solid lines are the model fit, the 
coloured points is the data. 

 

Viral variant Model import 
date 

Number imported 
(per 100,000 people) Infectivity factor Disease severity 

factor 

D614 See Table S1 
Calibrated 

(see  
Table S1) 

1 
Reference 

1 
Reference 

B.1.1.7 
24 November 

2020 
12 1.6* [1.5-1.7] 1* [up to 1.5] 

B.1.351 1 December 2020 8 1.1 1 

 
Table S2: Baseline properties of viral variants modelled for this application of Switzerland. * Note that the 
sensitivity of model outputs to varying infectivity and disease severity factors were quantified in a sensitivity 
analysis.  
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Likelihood and calibration details 
 

The calibration process for this application to Switzerland was as follows: 4,000 parameter 
sets were initially sampled across parameter hyperspace. That is, the region defined by the 
bounds of each calibrated parameter in Table S1 (calibrated parameters highlighted in blue). 
A Latin hypercube algorithm was used for this initial sampling; thus, no focus was placed on 
regions in which parameter priors are located. Each parameter set was then simulated 10 times 
for different stochastic realisations using OpenCOVID, thus capturing a basic understanding 
of stochastic uncertainty. All model simulations were performed simultaneously on a high-
performance computing cluster [33]. The value of a log-likelihood objective function was 
calculated for each parameter set, quantifying the likelihood of the model parameters given 
the epidemiological data illustrated in Figure S1 and Figure S3. The log-likelihood function is 
given by: 

! = 	sum $% &̅!()* !, ,*!-
"

∙ /"0 

&̅!()* !, ,*!- = 12 34
1

(,*! − 1-!
)* !

#$!%&8%'$ !9 ∙ :;< 

Where: 

• )* ! = (>"&, >"(, … ,>")	) represents model output for metric A, and  
• ,*! = (B"

&, B"
(, … , B"

)	- represents the observed epidemiological data for metric A.  

The values >"& and B"
& represent the first date for which we have non-zero data for metric A, 

starting from 24th February 2020, whilst >") and B"
) represent the final date for which we use 

data in the model calibration process. In this application of Switzerland, 2 represents 5th 
March 2021. The vector :; = (C&, C(, … , C)	) is the time weight vector, where C* ∈ [0, 1] for 
all H. In this application :; is defined to linearly increase from 0.5 to 1 between 24th February 
2020 and 5th March 2021. The constant /" is the weighting applied to metric A. These 
weightings used for this application are shown in Table S3. 

 

Metric Weighting (I!) Comments 

Daily confirmed cases 1 Default weighting 

Daily COVID-19 deaths 2 Higher weighting to account for higher 
reporting probability  

New daily admissions to 
hospital 0 No weighting applied due to discrepancies 

between data sources 

COVID-19 cases in hospital 4 Higher weighting to account for higher 
confidence in reporting  
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COVID-19 cases in ICU 4 Higher weighting to account for higher 
confidence in reporting 

Variant prevalence 1.6 Weighting of 50 applied to 12 data points 
implies a relative weighting of 1.6 

 
Table S3: Weightings of calibration metrics in likelihood function 

 

A Gaussian Process model was then trained using all parameter sets and associated likelihood 
values to predict the log-likelihood over all data given a model parameter set. For this 
analysis, we used a heteroscedastic Gaussian Process algorithm as the model emulator [34, 
35]. Ten rounds of adaptive sampling were applied to efficiently resample regions of the 
parameter hyperspace that were good candidates for the global maximum. An expected 
improvement acquisition function was used to identify these candidate regions and sample 
100 new parameters sets per round, with a filtering function applied to ensure resampled 
parameters sets are not within a predefined distance of each other (with distance measured in 
Manhattan space). Following the ten rounds of adaptive resampling, the simulated parameter 
set with the highest log-likelihood value (considering the mean over all stochastic 
simulations) was identified as the best estimate parameter set, as reported in Table S1. See 
Figure S1 and Figure S3 for alignment of model outcomes to the observed data.  

 

Infectiousness per contact 
 

In OpenCOVID, we define a pairwise transmissible contact to be a human-to-human contact 
that has a transmission probability of J when the infectious individual is fully infectious, and 
the susceptible individual is fully susceptible. An individual is fully infectious when their viral 
load is at a maximum (see Viral load profile section). An individual is considered to be fully 
susceptible when they have zero immunity (see Immunity section). We note here that in this 
application, both previously infected and vaccinated individuals will possess a non-zero level 
of immunity. Two additional factors can alter the probability of transmission between and 
infectious individual and a susceptible individual. First, a seasonality effect reduces the 
probability of transmission in warmer periods, reflecting a larger proportion of contacts being 
outdoors with warmer temperatures (see Seasonality section). Second, novel viral variants can 
enter the population, being more (or less) infectious than the current dominant variant, and 
therefore increase (or decrease) the probability of transmission. For this study, we assume the 
SARS-CoV-2 epidemic in Switzerland began with variant D614G being the dominant variant 
(see Figure S3). For this study, we defined J to be 5% (see  

Table S1). That is, we define a contact to have a 5% probability of transmission when the 
infectious person has a peak in viral load, the susceptible person has no partial immunity, the 
contact is during the coldest day of the year, and the variant being transmitted in D614G. 
With the value of J fixed, the population average number of contacts can then be calibrated 
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such that observed epidemiological data is matched (see Contact network, Model calibration, 
and Parameter table sections).  

In equation form, the probability of transmission between an infection individual, K, and a 
susceptible individual, L, is given by: 

M(transmission) = J ∙ N+(C) ∙ O+ ∙ P(Q) ∙ 	 (1 − R,) 

Where: 

• N+(C) ∈ [0, 1] denotes the viral load of the infectious individual, C days following 
infection (see Viral load profile section). 

• O+ denotes the infectivity factor of the viral variant with which the infectious 
individual is infected (see  

• Table S2 in Variants of concern section). 
• P(Q) denotes the seasonality scaler at date Q (see Seasonality section) 
• R, denotes the immunity of the susceptible individual (see Immunity and Vaccine 

properties sections) 

 

Contact network 
 

The contact network in OpenCOVID is based on the POLYMOD contact survey [36] which 
reports age-structured contact frequencies. The POLYMOD survey is implemented in 
OpenCOVID via the R package socialmixr [37] which provides symmetric matrices in which 
the rows and columns are the age class of the ego (the person reporting the contact) and the 
alter (the person receiving the contact), and the cell content is the average number of contacts 
between those age classes. This data can be accessed by country. As POLYMOD does not 
provide Swiss survey data, we use artificial contact frequencies based on survey data from 
France, Germany, and Italy. We then use Swiss age-structured demographic data to sample 
this contact frequency space and create an age-structured random network by sampling with 
replacement, weighted by the average number of contacts per cell. We sample such that the 
resulting network has a mean number of contacts (as defined by the ‘contacts’ parameters, see  

Table S1). In such a network, not all age classes have the same number of contacts. Younger 
age classes have more contacts and especially have more contacts with other young age 
classes while older age classes have fewer contacts. See Figure S4 for an illustration. This 
captures the qualitative aspect of an age structured network based on European survey data, 
and then transforms to Swiss specific demography. This network does not distinguish between 
work, school or home networks but is rather integrated across all these separate networks. 
Individual ages are tracked for 0-90 years in one-year age bins, with an additional group for 
90+. Gender is not considered in the model. 
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Figure S4: Age-related contact properties in OpenCOVID for this application to Switzerland. Top: 
Number of people in age group vs. number of contacts per person. Shows both the groups’ sizes and the 
distribution of contacts. Note that younger people have more contacts. Top right: Normalized number of contacts 
per person vs. age group. Again, shows the distribution of the average number of contacts per person in an age 
group. The age group of 10 to 20 year olds has the highest number of contacts. Bottom left: Total number of 
people vs. number of contacts per person. Bottom right: Number of people vs. age group. Shows the distribution 
of age group sizes. 

 

With J (the infectiousness per contact, see Infectiousness per contact section) set at a fixed 
value (see  

Table S1), the population average number of contacts can then be calibrated such that 
observed epidemiological data is matched. The primary signal for the contacts parameter is 
the exponential increase in all observed metrics during the first wave prior to the observed 
impact of NPIs. 

 

Viral load profile 
 

During the latent period that follows infection, we assume viral load is zero (and therefore 
that the infected person is not yet infectious). We then use a gamma probability density 
function with shape parameter S = 3 and rate parameter J = 0.5 to represent individual-level 
viral load over the course of the infectious period. We assume infectiousness is proportional 
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to this viral load, and therefore standardise viral load values to between zero and one to 
convert viral load into an infectiousness scaler that scales the probability that the individual 
can infect other contacts. The parameters of the gamma function were selected to best 
represent the current understanding of viral load profiles from time since infection [38, 39]. 
Figure S5 illustrates this infectiousness scaler profile from time since infection. In equation 
form, the infectiousness scaler for an individual W infected C days after infection is given by 

N(C) = X
0, C < 1

N′(C), [ ≥ 1
 

where 1 is the sampled latent period for individual W (see ‘Infection, disease, and 
hospitalisation durations’ for duration distributions) and 

N′(C) =
J-(C − 1)-%&8%.(0%1)

(S − 1)!
 

 

 

Figure S5: Viral load profile from time since infection. This curve is standardised to between zero and one to 
result in an infeciousness multiplier used to calculate the probability of transmission. Peak infectivity is reached 
between days 6 and 14 following infection. 

 

Seasonality  
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We take daily temperature data from the federal office of meteorology and climatology 
MeteoSwiss [40] which is made available via the opendata.swiss service [41]. We use the 
daily maximum temperature values that are available from the NBCN measurement station 
network [42]. These stations provide different daily weather data across Switzerland. 
Nevertheless, not all cantons have stations, and some cantons have several stations. For 
national level analyses we use averaged data across all available weather stations. For cantons 
with multiple weather stations, we take the mean value across all stations. We then use a 
population-weighted mean to derive national level values. In Figure S6, the grey lines 
represent temperature data from 1st January and 5th March 2021 (date of calibration). Over 
this time period, the yellow line represents the population-weighted national average. From 6th 
March onwards, the line represents the future projection of temperature. This future projection 
uses monthly data from years 1981-2010, and is generated by a spline fitting algorithm form 
the R package RMAWGEN [43]. The seasonality effect used in the model (see Infectiousness 
per contact section) is then derived from the normalized inverse of the temperature curve.  

 

 

Figure S6: Temperature and associated seasonality effect in OpenCOVID. Grey lines represent past 
cantonal temperatures, and the yellow line represents the population-weighted national average. The green line 
represents the associated best estimate seasonality effect. That is, with a seasonality scaler of 0.27 (as reported in 
Table S1). The green shading represents the range of possible seasonality effects, considering the bounds of the 
seasonality scaler (see Table S1). 
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Non-pharmaceutical interventions 
 

In OpenCOVID non-pharmaceutical interventions (NPIs) can curb the spread of SARS-CoV-
2 by reducing the number of potentially transmissible pairwise contacts. In Switzerland, such 
measures have included the closing of non-essential shops, restrictions on mass gatherings, 
and facemask mandates in publicly accessible spaces. The Oxford Containment and Health 
Index (OCHI) is a measure that is proportional to the amount (or stringency) of such measures 
that are in place at a moment in time [44, 45]. The OCHI ranges from 0 to 100, with 0 being 
no measures in place and 100 being the most restrictive full lockdown possible. The level of 
the OCHI, together with a calibrated multiplicative scaling parameter is used in OpenCOVID 
to capture the effect of NPI in reducing the effective daily number of contacts. In effect, the 
edge list associated with the contact network – that is, the list of all daily pairwise contacts in 
the network – is reduced by a proportion given by the product of the OCHI on a given day and 
the calibrated NPI scaling constant (see  

Table S1). In this manner, we do not explicitly simulate the effect of individual measures, but 
instead model the total effect of all NPIs in place. 

The Swiss level of the OCHI is collected at the cantonal- and federal-level based on publicly-
available information from various sources, and is available from the SwissTPH GitHub [46]. 
This publicly available information is translated into 16 Swiss specific variables, and from 
there into the 12 variables that together make up the Oxford Containment and Health Index. 
The SwissTPH GitHub on the Swiss measures provides a codebook for the Swiss specific 
variables. For an overview of the variables that make up the Oxford Containment and Health 
Index, their coding schemes and how to calculated the OCHI from the constituent variables, 
the reader is referred to the codebook, the coding interpretation guide, and the instruction on 
how to calculate indexes provided by the Blavatnik School of Government at the University 
of Oxford [44, 45]. 

Figure S7 shows the value of the Oxford Containment and Health index, that is representative 
of the strength of measures as applied in Switzerland, for past data (left of the vertical black 
dashed line) as well as an example scenario of future NPI relaxation (right of the vertical 
black dashed line) which corresponds to the red scenario from figure 2 in the main 
manuscript. This scenario considers three different five point NPI relaxation steps, from 58.5 
to 53.5 on 22 March 2021, to 48.5 on 12 April, and to 43.5 on 5 May. The five percentage 
point relaxation steps were chosen to approximately represent a potential NPI relaxation 
package published by the Federal Council on 17 February 2021 [47]. This potential package 
included increasing the limit on indoor private events from 5 to 10, opening professional 
sporting and cultural events at one-third capacity, and reopening restaurants for outside 
service [47]. It is important to note that not all openings have a quantitative effect on the 
OCHI. We stress here that the specific openings are not modelled explicitly, but rather the 
abstraction of an equivalent amount of NPI relaxation that is reflected in the OCHI. 
Moreover, the same amount of opening in terms of OCHI can also be reached with different 
combinations of openings, so that the OCHI stays agnostic to a specific type of opening, and 
only reflects a certain amount of opening. We provide all gathered detailed information on the 
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measures that were in place at all dates, both at the cantonal and national level on the Swiss 
TPH GitHub [46]. 

 

 

 

Figure S7: Non-pharmaceutical interventions (NPIs) as Oxford Containment and Health Index over time 
in Switzerland as implemented at the national level. The depicted NPI relaxation scenario corresponds to the 
red NPI relaxation scenario from figure 2 in the main manuscript. The red scenario represents five NPI 
relaxation steps, from 58.5 to 53.5 on 22 March, to 48.5 on 12 April and to 43.5 on 5 May 2021. The vertical 
dashed black line represents 22 March 2021, the date of the first potential NPI release that was simulated. The 
colours of the future scenario and the coloured vertical lines highlight the dates when previous NPIs were at a 
similar level to the future opening steps. Higher values depict stricter measures.    

 

Prognosis probabilities 
 

Once infected with SARS-CoV-2 and following a latent period, an infected individual 
develops either asymptomatic, mild, or severe disease. Individuals that develop severe disease 
may, after some time, either seek hospital care or remain outside of the hospital setting (e.g., 
within care homes). We model three distinct prognosis tracks for those that will seek hospital 
care: 1) the patient will eventually recover without intensive care, 2) the patient will require 
intensive care but will eventually recover, and 3) the patient will require intensive care and 
will ultimately die from COVID-19-related complications. See manuscript Figure 1 for an 
illustration of modelled natural history and prognosis pathways. We quantify age-group 
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stratified probabilities for each prognosis using publicly available age-disaggregated 
morbidity and mortality data [47, 48], see  

Table S4. Once infected, a prognosis is derived for all individuals by stochastically sampling 
from a uniform distribution. 

The prognosis probabilities given in  

Table S4 assume an equal probability of infection across all age groups. Whilst the probability 
of infection in any given contact is not assumed to be age-dependent (see Infectiousness per 
contact section), the number of contacts for any given person is age-dependant (see Figure S4 
in Contact network section). Therefore, each age-dependent prognosis probability needs to be 
scaled by an age-correction factor to convert to per-infection probabilities. Three additional 
factors can affect these age-related prognosis probabilities: 

1. Improved care procedures (see improved_care_factor, Table S1) 
2. Increased mortality of viral variant infected with (see Table S2) 
3. Symptom reducing effect of vaccination 

The improved care factor represents the reduction in hospitalized COVID-19 cases requiring 
intensive care due to improved triage, use of treatments such as dexamethasone, and other 
factors. This improved care factor is calibrated, and assumed to take an effect on 1st June 2020 
following the ‘first wave’ experienced in Switzerland. For individuals infected following 
vaccination, an age-dependent prognosis is initially derived as described above. A further 
probability of being asymptomatic instead of symptomatic is then calculated by multiplying 
the symptom reducing effect of the vaccine with the normalized level of vaccine efficacy at 
that point in time (see Vaccine properties section).  

 

Age 
group Asymptomatic Mild disease Severe disease Critical 

disease Death 

0-10 30% 69.93% 0.07% 0.00% <0.0001% 
10-20 30% 69.79% 0.20% 0.01% <0.0001% 
20-30 30% 69.16% 0.80% 0.04% <0.0001% 
30-40 30% 67.76% 2.13% 0.11% 0.0002% 
40-50 30% 66.57% 3.21% 0.21% 0.0014% 
50-60 30% 62.86% 6.27% 0.85% 0.0193% 
60-70 30% 58.38% 8.44% 2.95% 0.23% 
70-80 30% 52.99% 9.66% 5.56% 1.79% 

80-90+ 30% 50.89% 5.56% 1.63% 11.92% 
 
Table S4: Age-group dependant probabilities of a given prognosis. 

 

Infection, disease, and hospitalisation durations 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 20, 2021. ; https://doi.org/10.1101/2021.04.14.21255503doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.14.21255503
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

Upon infection, the duration for which an individual will remain in each disease or care state 
is sampled from a distribution, as illustrated in Figure S8, and described in  

Table S1 (including sources for the best estimated values for each duration). 

 

 

Figure S8: Distributions of disease- and care-related durations used in this OpenCOVID application of 
Switzerland.  

 

Testing, diagnosis, and isolation 
 

Upon infection, an individual is assigned a date at which they may potentially seek a test and 
be diagnosed as a confirmed COVID-19 case. The delay between symptom onset and a 
potential diagnosis for each individual is sampled from a truncated Gaussian distribution (see 
Figure S8). We derive the number of diagnoses over time directly from observed data of 
confirmed COVID-19 cases (see Figure S1) and apply the relevant number of diagnoses per 
day across the modelled population. By definition, all COVID-19 cases that seek hospital care 
receive a diagnosis. After taking hospitalised diagnoses into account, other individuals with 
severe disease outside of the hospital setting and individuals with mild disease are randomly 
selected as those who seek testing and are assigned a diagnosis in the model. To represent 
future test-seeking behaviour, the model-calculated proportion of cases diagnosed per infected 
case over the past 14-days is fixed into the future (Figure S9). We note here that this 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 20, 2021. ; https://doi.org/10.1101/2021.04.14.21255503doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.14.21255503
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

assumption is not robust to major changes in testing policies or behaviours, including, but not 
limited to, mass testing. We assume no change in behaviour for individuals who test negative, 
and further assume that all non-severe cases isolate for a 10-day period immediately following 
diagnosis.  

 

 

Figure S9: Proportion of modelled new infections to be diagnosed over time. The blue points represent the 
future testing and diagnosis assumption. 

 

Immunity 
 

For individuals that recover from SARS-CoV-2, we assume a partial acquired immunity of 
83% to future infection upon recovery regardless of disease severity, risk group, or age [49-
51]. For the relatively short-term projections presented in this application to Switzerland, we 
assumed no waning of acquired immunity. We note here that this optimistic assumption may 
not be appropriate for longer-term projections. In future work, the assumptions regarding 
level of immunity by disease state and waning acquired immunity will likely be reassessed as 
new evidence becomes available. 
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Figure S10: Development of population susceptibility levels of scenarios 1A-1D over time. Population 
susceptibility is the complement of population immunity. The colours are the scenarios from manuscript figure 2.  

 

Vaccine properties 
 

Vaccine efficacy following two doses was assumed to depend on vaccine type. For the mRNA 
vaccines (Pfizer and Moderna), an efficacy of 95% was assumed for all priority groups P1–
P5. We implemented the vaccination of an individual as the smooth increase in immunity over 
time using a sigmoidal function that has a lower asymptote of 0, an upper asymptote of 
overall 'vaccine efficacy' (95% for Pfizer and Moderna, 62% for AstraZeneca) and an 
inflection point 14-days after vaccination. The growth rate of this curve is such that vaccine 
efficacy is close to zero on the day of vaccination, and is closer to full 'vaccine efficacy' after 
28-days (see Figure S11). 
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Figure S11: Development of vaccine efficacy from day of receiving a first dose. Shown in blue is the 
development of immunity for a two-dose course with an mRNA vaccine, and in yellow for a two-dose course of 
the AstraZeneca viral vector vaccine. The vaccine efficacy is the combined effect of immunity and the reduction 
of severe disease. It is assumed that the second dose is given according to schedule within 28 days depending on 
vaccine, but not modelled explicitly. 

 

Most vaccine trials claim to reduce COVID-19 symptom development as well as disease 
severity, however it remains unclear to what extent they prevent transmission. As a baseline, 
we assume mRNA vaccines are 80% effective in preventing infection (and future 
transmission) when at full efficacy. We then calculate the additional effectiveness of the 
vaccine to reduce symptoms such that the total reduction in symptoms among those 
vaccinated when the vaccine is at full efficacy (that is, 95% from 28 days after receiving the 
first dose).  

By definition we have that 

] = 1 − (1 − S) ∙ (1 − ^) 

Where ] is the overall efficacy of the vaccine in symptomatic COVID-19, S is the 
transmission blocking effect, and ^ is the additional symptom reducing effect. Solving for ^, 
we have 

^ = 1 −
(1 − ])

(1 − S)
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In this application, we assess the sensitivity of model outputs to different assumptions of the 
vaccine fully protecting from infection (sterile immunity and preventing onward 
transmission). Namely, values of 60% and 95% for sterile immunity. The corresponding 
additional symptom reducing effect in each case is reported in  

Table S5. 

 

Vaccine type Overall efficacy (_) Sterile immunity 
effect (`) 

Symptom reducing 
effect (a) 

mRNA 95% 80% 75% 

mRNA 95% 60% 87.5% 

mRNA 95% 95% 0% 
 
Table S5: Vaccine properties under different assumptions of vaccine transmission blocking effect. 

 

Vaccine rollout  
 

Vaccination strategies were modelled according to FOPH priority groups and updated (10 
February 2021) after input from FOPH and other experts to reflect current rollout realisation 
(Table S6). We assumed a baseline coverage of 75% across all priority groups for most 
scenarios. For scenarios 4A) and 4B) we modelled 60% and 90% coverage for priority groups 
P2 – P5 as a sensitivity analysis. We assumed either 50,000 or 100,000 vaccine doses used per 
day from 1 April 2021, which is within the bounds of the maximum vaccine availability as 
expected by the FOPH. Until 5 March we use data for number of doses used as provided by 
FOPH and scale linearly from there up to the target daily doses by 1 April. With 100,000 
doses per day the target coverage of 75% across all groups will be reached before July 2021, 
with 50,000 doses per day it will not be reached before the end of the simulation in September 
2021.  OpenCOVID vaccinates people strictly according to priority groups, with the highest 
priority group receiving all doses until the target coverage is reached. Vaccines from 
CureVac, Novavax, and AstraZeneca were not incorporated in our projections.  

 

 

Priority group Description Number of model-eligible 
people 

P1 Aged over 75 years 756,400 

P2 Aged between 65 and 75 years, under 65 
with comorbidities, and healthcare workers 

2,031,600 
(850,000, 621,600, and 560,000, 

respectively) 
P3 Household members of high-risk people 1,243,000 
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P4 Adults (18-64 years) in communal facilities 
and their caregivers 100,000 

P5 All other adults (18-65 years) 4,414,600 
 
Table S6: Vaccine priority groups based on FOPH priority groups and modified after discussion with FOPH.  

 

Simulation details 
 

Model simulations were initiated on 18th February 2020, 7-days before the first cases were 
confirmed for three consecutive days in Switzerland (25th to 28th February 2020). All model 
processes were computed at time intervals representing one day. One million individuals were 
modelled for simulations reported here, with a population scaling factor subsequently applied 
to all relevant model outputs to represent a one-to-one scale for the Swiss population. Where 
appropriate, metrics were disaggregated by age, variant of infection, and vaccine priority 
group. All model simulations were performed at sciCORE (http://scicore.unibas.ch/) 
maintained by the Scientific Computing Center at University of Basel. 

 

Model development and maintenance 
 

OpenCOVID is written primarily in the R programming language [52] and is stable with R 
version 3.6.0. The code for OpenCOVID is open source, and available from the Swiss TPH 
GitHub [53]. Due to the level of computational power required to calibrate the model and 
simulate scenarios, the model pipeline makes use of a SLURM based cluster sciCORE 
(http://scicore.unibas.ch/) maintained by the Scientific Computing Center at the University of 
Basel. Interactions to the cluster are written in bash script. The authors of the manuscript 
maintain the model source code. 
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