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Abstract: The UK Biobank (UKB) is a highly promising dataset for brain biomarker research into 
population mental health due to its unprecedented sample size and extensive phenotypic, 
imaging, and biological measurements. In this study, we aimed to provide a shared foundation 
for UKB neuroimaging research into mental health with a focus on anxiety and depression. We 
compared UKB self-report measures and revealed important timing effects between scan 
acquisition and separate online acquisition of some mental health measures. To overcome 
these timing effects, we introduced and validated the Recent Depressive Symptoms (RDS-4) 
score which we recommend for state-dependent and longitudinal research in the UKB. We 
furthermore tested univariate and multivariate associations between brain imaging derived 
phenotypes (IDPs) and mental health. Our results showed a significant multivariate relationship 
between IDPs and mental health, which was replicable. Conversely, effect sizes for individual 
IDPs were small. Test-retest reliability of IDPs was stronger for measures of brain structure than 
for measures of brain function. Taken together, these results provide benchmarks and 
guidelines for future UKB research into brain biomarkers of mental health.  
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1. Introduction 

Over the years there have been a multitude of neuroimaging studies that aimed to investigate 
alterations in the brain in relation to affect-based mental health (e.g., anxiety and depression). 
The Major Depressive Disorder (MDD) literature reports structural changes in the cortico-limbic 
network [Klauser et al., 2015], insula and hippocampus [Stratmann et al., 2014], as well as 
functional changes in the Default Mode Network (DMN) [Tozzi et al., 2021; Yu et al., 2019], 
medial temporal gyrus, and caudate [Ma et al., 2012]. In Generalized Anxiety Disorder (GAD), 
similar functional changes are seen in the DMN [Andreescu et al., 2011] and ventromedial 
prefrontal cortex [Cha et al., 2014], as well as structural changes in the DMN [Wolf et al., 2016] 
and amygdala [He et al., 2016]. However, the literature on neural correlates of MDD contains 
some inconsistent findings. For example, some studies report greater functional connectivity in 
the DMN [Greicius et al., 2007; Sheline et al., 2010] while others report lesser functional 
connectivity in the same network [Bluhm et al., 2009; Tozzi et al., 2021; Yan et al., 2019]. A 
potential reason for inconsistent findings is the small sample size of most of these studies. The 
broader fields of psychology and neuroimaging are recognizing that small sample sizes lead to 
inflated effect sizes that often result from sampling variability and therefore do not replicate in 
new data [Button et al., 2013; Grady et al., 2021; Marek et al., 2020; Poldrack et al., 2017; 
Yarkoni, 2009]. Larger sample sizes are therefore needed to obtain reliable insights into the 
neural correlates of mental health. 
  
One option to achieve larger sample sizes is to conduct meta-analyses. Meta-analyses use 
results from prior studies as their input and employ quantitative methods to pool data across 
studies and test for consensus [Müller et al., 2018]. A meta-analysis on resting-state functional 
connectivity in MDD showed hypo-connectivity in fronto-parietal and salience networks and 
hyper-connectivity in the DMN [Kaiser et al., 2015]. Another meta-analysis showed that there 
are common grey-matter volume changes in MDD which are also seen in bipolar disorder [Wise 
et al., 2017b]. In GAD, meta-analyses have also been able to confirm consistent dysregulation 
of affective control related to numerous networks, which provides support for an integrated 
model of brain network changes [Xu et al., 2019]. Whilst these meta-analyses aid to establish 
consensus on brain correlates of mental health [Wager et al., 2007], they can be limited in their 
scope. This is because the input studies surveyed in meta analyses often adopt narrow 
inclusion and exclusion criteria for the patient sample, which limits cross-diagnostic mental 
health research. Additionally, due to the lack of availability of whole brain statistical result 
images from prior studies, coordinate-based meta-analyses are often undertaken which are 
limited in their spatial precision [Müller et al., 2018]. Furthermore, meta analyses suffer from 
publication bias (only including effect sizes from published significant studies) [Thornton and 
Lee, 2000], language bias (only including papers written in English) [Egger et al., 1997], and 
selective outcome reporting (input-papers selectively publish only significant variables) [Hutton 
and Williamson, 2000; Kirkham et al., 2010], which can lead to inflated meta analytical results 
[Sterne et al., 2001]. These inherent limitations of meta-analyses may explain why 
disagreement persists within even meta-analytical work, with a recent study showing hypo- 
(rather than hyper-) connectivity in the core DMN in patients with depression [Tozzi et al., 2021].  
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Consequently, in recent years there has been a move to accrue larger neuroimaging datasets 
such as the Young Adult and Lifespan Human Connectome Projects (HCP) [Harms et al., 2018; 
Van Essen et al., 2013], Connectomes Related to Human Disease studies (CRHD) [Tozzi et al., 
2020], UK Biobank (UKB) [Miller et al., 2016; Sudlow et al., 2015], Enhancing Neuro Imaging 
Genetics through Meta-Analysis ENIGMA) [Schmaal et al., 2017], and Adolescent Brain 
Cognitive Development study (ABCD) [Casey et al., 2018]. The increased statistical power 
afforded by these datasets enables studies to approximate the true effect [Marek et al., 2020]. 
Currently, the UKB is the largest neuroimaging dataset, encompassing data from extensive 
questionnaires, physical and cognitive measures, and biological samples (including genotyping) 
in addition to multimodal neuroimaging scans [Sudlow et al., 2015]. The UKB is a prospective 
epidemiological study that recruited a cohort of 500,000 participants, of which 100,000 subjects 
will take part in one round of imaging, and 10,000 of those subjects will undergo a further 
second round of scanning [Sudlow et al., 2015]. Health outcomes for all participants will be 
tracked over future years until participants’ decease, including full primary health and hospital 
records. Therefore, the UKB offers a valuable resource to study mental health and other 
disorders. The goal of our study is to establish a foundation for future mental health biomarker 
research in the UKB.  
 
The UK Biobank includes multiple rich self-report measures of mental health. However, the 
organization and abundance of this information can make it somewhat challenging for 
researchers to navigate. For data pertaining to mental health, there are three sources within the 
UK Biobank. The first are assessment center questions 
(https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100060) which participants complete via 
a touch screen on the day they were scanned. The second is a separately administered online 
mental health questionnaire (https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=136), which 
is completed by a subset of UKB participants at a time independent from the scanning date 
(median absolute number of days between scan 1 and online questionnaire completion: 742, 
range: -1,185 to +964 days in exploratory sample). The third are the health records available in 
the UKB which encompass the date of the first experience of specific ICD-10 diagnoses 
obtained from primary care (https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=3000) and 
hospital inpatient data (https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=2000). In this 
study, we tabulate and compare different mental health measures available in the UKB, with a 
focus on self-reported symptom scores from the assessment center information and online 
questionnaire. We test their relationship with brain measures, thereby providing a benchmark for 
using UKB mental health variables in future research.  
 
This study aims to achieve four key goals. Firstly, we aim to clearly tabulate the different self-
report measures of mental health available in the UKB and discern the relationships between 
summary scores to enable future studies to make an informed decision on which measure is 
most appropriate to use. Secondly, we propose and validate a new summary measure (Recent 
Depressive Symptoms; RDS-4) that uses depression questions which were asked on the day of 
scanning in the UK Biobank study. The RDS-4 score therefore enables research into current 
depressive symptoms and changes in symptomatology over time. Thirdly, we aim to establish 
realistic and robust univariate and multivariate effect sizes of commonly reported brain 
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correlates of mental health based on population data. Lastly, we aim to determine the test-retest 
reliability of imaging variables alongside their effect size as both reliability and sensitivity are 
critical requirements for biomarker research. Large-scale imaging datasets such as the UKB 
play a critical role in the long-term goal of finding brain biomarkers of mental health, and our 
hope is to provide a foundation that future studies can build on.  

2. Methods 

Dataset 

Imaging data from 32,420 UKB participants were available at the time the study was performed. 
From this we selected multiple independent test cohorts (Fig. 1; Table 1). Subjects with a mean 
head motion greater than 0.2mm were removed resulting in the exclusion of 5,265 subjects. 
Subjects with any missing online questionnaire or scan 1 assessment center mental health data 
were also removed, resulting in the exclusion of additional 10,848 subjects (largely because the 
online questionnaire was only performed in a subset of UKB participants). From the remaining 
16,307 subjects, we selected individuals who had undergone brain scans at two timepoints. 
These subjects make up the test-retest sample. 
 
Late onset depression (first episode at age 60+) is associated with different brain correlates 
(e.g., white matter hyperintensities) and different risk factors (e.g., vascular risk) compared with 
recurrent early onset depression (age of first episode before 60) [Salo et al., 2019]. Therefore, 
we assessed subjects for probable late-onset depression based on self-reported age at the first 
episode of depression (Data-field: 20433). Subjects who reported their first episode at 60 or 
older (N=418) were excluded. 
 
The majority of individuals within the UKB cohort are expected to have no mental health 
conditions because it is a population sample. To ensure sufficient power to identify neural 
correlates of mental health, we wanted to reduce the expected over-representation of healthy 
individuals and ensure that our samples richly capture mental health variability. This was 
achieved by including equal numbers of participants with and without a history of mental health. 
From the UKB showcase we used: Seen doctor (GP) for nerves, anxiety, tension or depression 
(Data-field: 2090) to ensure our samples included an equal number of subjects who 
experienced mental health issues on at least one occasion, and those who have not. For each 
subject who had seen a GP for nerves, anxiety, tension or depression (N=4,531) we paired a 
matched subject from those who had never seen a GP for nerves, anxiety, tension or 
depression (i.e., subject pairs were identically matched for sex and age, and minimal difference 
in head motion). Subsequently, approximately two-thirds of the ‘never seen GP’ subjects 
together with their matched ‘seen GP’ subjects was randomly assigned to the exploratory 
sample, and the remaining subjects were assigned to the confirmatory sample. During subject 
assignment to groups, we preserved the matched characteristics within each resulting sample 
(Fig. 1). No subjects overlapped between the exploratory and confirmatory samples. 
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Mental health measures 

The set of self-report questions related to mental health included in the UKB were informed by 
standardized measures, but did not simply cover a list of previously validated scales. Table 2 
summarizes the 5 different UKB mental health measures, which will be used for neuroimaging 
and questionnaire comparison analyses and Fig. 2 provides an overview of the acquisition 
timing of these mental health measures relative to the scan days. The questions included in the 
online questionnaire enable calculation of the Generalized Anxiety Disorder (GAD-7) and 
Patient Health Questionnaire (PHQ-9) scores [Davis et al., 2020]. Using the Assessment 
center information, the Eysenck Neuroticism (N-12) score was calculated. Smith and 
colleagues used questions from the Assessment information to develop a categorical (case-
control) measure of depression [Smith et al., 2013]. For the purposes of our study we adopted 
similar definitions to obtain a categorical assignment of Probable Depression Status, but we 
did not differentiate between single and recurrent episodes of depression. Depression status 
was set to 1 if subjects responded yes to variable IDs 4598 or 4631 (ever depressed | ever 
unenthusiastic/disinterested), and reported a duration of at least 1 week to variable IDs 4609 or 
5375 (depression | unenthusiasm/disinterest), and had seen either a GP or psychiatrist for 
nerves, anxiety, tension, depression (i.e., responded yes to variable IDs 2090 or 2100).  
  
For our study, we proposed a new summary measure of state depression using UKB questions 
included in the Assessment center information: Recent Depressive Symptoms (RDS-4), which 
is a continuous measure of depression symptomatology obtained on the day of scanning. The 
four self-report questions used for the RDS-4 assess depressed mood, disinterest, restlessness, 
and tiredness. Each question asks about recent experiences of symptoms (past 2 weeks). The 
response options for the four questions are: not at all (1), several days (2), more than half the 
days (3), and nearly every day (4). The summed score across these four variables therefore has 
a range of 4-16. Moreover, the RDS-4 questions correspond with several DSM-V diagnostic 
criteria for major depressive disorder and cover depression domains that are also considered in 
other measures such as the Hamilton and Montgomery–Åsberg scales. 
 
 
There are a number of important differences between the RDS-4 and the other mental health 
measures. Compared to PHQ-9, the RDS-4 was obtained on the day of the imaging scan, 
whereas the PHQ-9 was undertaken at a time point that was independent from the scan date. 
Compared to probable depression status, the RDS-4 provides a continuous measure of recent 
symptom severity, whereas probable depression status is a categorical (case-control) measure 
of lifetime occurrence of depression. Compared to N-12, RDS-4 is a measure of recent (‘state’) 
depressive symptoms, whereas N-12 is a more general measure of personality (‘trait’). 
Compared to GAD-7, the RDS-4 focuses on depression and the GAD-7 focuses on anxiety.  
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Imaging acquisition 

UKB structural modalities include: T1-weighted (T1), T2-weighted (T2), susceptibility-weighted 
MRI (swMRI); diffusion MRI (dMRI); and functional modalities: task-based fMRI (tfMRI) and 
resting-state fMRI (rsfMRI). MRI data were obtained using a Siemens Magnetom Skyra 3T 
scanner. For T1 structural scans, 3D MPRAGE acquisition was used to acquire 1mm isotropic 
resolution. For T2 scans fluid-attenuated inversion recovery (FLAIR) contrast was used with the 
3D SPACE optimized readout providing a strong contrast for white matter hyperintensities. For 
swMRI, a 3D gradient echo acquisition was used (resolution: 0.8x0.8x3mm), obtaining two echo 
times (TE=9.4 and TE=20 ms). Diffusion data was acquired with b-values of 1000 and 2000 
s/mm2, at 2mm spatial resolution, with a factor 3 multiband acceleration and 50 distinct 
diffusion-encoding directions. Both tfMRI and rs-fMRI used identical acquisition parameters 
(spatial resolution= 2.4mm, TR= 0.735s, factor = 8 multiband accelerator). Task fMRI used the 
Hariri faces/shapes “emotion” task as employed in the HCP [Barch et al., 2013; Hariri et al., 
2002], with a shorter total length and reduced repeats of the total stimulus block. For further 
information on UKB imaging, please refer to [Miller et al., 2016]. 

Imaging derived phenotypes 

In addition to raw and processed imaging data, Image Derived Phenotypes (IDPs) are available 
for download. IDPs are derived from calculations that combine many images and/or voxels to 
produce a scalar quantity from the processed imaging data [Miller et al., 2016]. Examples of 
IDPs include regional volumes from structural MRI and ‘edges’ from resting state functional MRI 
(i.e., connectivity between a pair of networks).  
 
The IDPs included in this paper are summarized in Table 3, and further information can be 
found in [Miller et al., 2016] as well as the UKB showcase brain imaging documentation 
resource (https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/brain_mri.pdf). Briefly, 
resting state IDPs were obtained using Independent Components Analysis performed at two 
different dimensionalities (25 and 100), which resulted in 21 and 55 signal networks, 
respectively. Subject-specific BOLD time series for each network were calculated using dual 
regression [Nickerson et al., 2017], and the amplitude for each network (temporal standard 
deviation) and functional connectivity between pairs of networks (full or partial correlation 
coefficients) were calculated. Resting state IDPs from both ICA dimensionalities were included 
as they may offer complimentary information at different levels of functional organization. From 
T1-weighted images, gray matter volumes were obtained with FSL FIRST and FAST, and 
cortical area and thickness were calculated with Freesurfer. Total volume of white matter 
hyperintensities was estimated based on T1-weighted and T2-flair images using FSL’s BIANCA 
algorithm [Griffanti et al., 2016]. From the diffusion data, weighted mean fractional anisotropy 
(FA) and mean diffusivity (MD) were obtained using FSL’s DTIFIT tool. Task fMRI IDPs reflect 
summary measures of activation (the median and 90th percentile for both the percent signal 
change and the z-statistic) in regions selected from the group-level activation map. 
Susceptibility weighted IDPs were generated from the signal decay times predicted from the 
magnitude images at the two TEs such that the IDPs equate to the median signal decay times. 
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Confound variables 

All analyses were corrected for the ‘simple’ set of confounds described in [Alfaro-Almagro et al., 
2021], namely: scanning site, age, age squared, sex, age * sex, head size, head motion in 
resting fMRI and in task fMRI scans, date, and date squared. This confound set was previously 
shown to explain 4.4% of variance in UKB imaging variables on average, and captured the most 
important sources of confound variation [Alfaro-Almagro et al., 2021].  

Correlations amongst mental health variables in the UKB 

To characterize the degree of overlapping information between mental health measures, 
Spearman rank correlations were computed between all measures of mental health using data 
from the exploratory sample (N=6,636).  
 
Data used to compute RDS-4 and N-12 were collected at the scan date (assessment center 
information), whereas GAD-7 and PHQ-9 were computed from data obtained from the online 
questionnaire. The absolute number of days elapsed between the two data collections ranged 
from 0 to 1,185 days. To investigate the effects of measurement latency on mental health 
measure correlation, Spearman rank correlations between the RDS-4 and PHQ-9 (both 
measures of depression) were computed as a function of elapsed time between measurement 
(see Supplementary Materials section S1 and Fig. S1).  
 
To test whether self-report measures differed significantly based on probable depression status, 
a two-sample Kolmogorov-Smirnov test was performed to ascertain whether subjects with a 
positive depression status had different distributions of depression scores than subjects with no 
depression status. 

Mapping between mental health variables in the UKB 

To gain insights into how the different measures of mental health included in the UKB relate to 
each other, we used equipercentile linking in the exploratory sample. Here, the stepwise 
percentiles for each measure were calculated, and for each score in one measure the 
equivalent percentile rank in a different measure was mapped [Kolen and Brennan, 2014]. We 
further calculated the Cronbach alpha for the newly proposed RDS-4 score to measure internal 
consistency in the exploratory sample.  

Mechanical Turk study to validate RDS-4 

To further validate the proposed RDS-4 score, we performed an independent study using the 
Amazon Mechanical Turk platform via CloudResearch.com [Litman et al., 2017]. Participants 
were paid a nominal compensation for questionnaire completion. 134 participants aged 60+ 
completed the study. This study was reviewed by the Washington University in St Louis IRB 
board and approved as exempt (IRB #201909165) because participants were fully anonymous 
(the option of ‘anonymized worker IDs in CloudResearch was adopted) and no participant key 
was available to any member of the research team.  
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Participants completed the same set of mental health questionnaires at two timepoints 7 days 
apart using the Qualtrics software (Qualtrics, Provo, UT). The following questionnaires were 
presented in randomized order: RDS-4, PHQ-9, CES-D (Center for Epidemiological Studies - 
Depression; [Radloff, 1977]) and MASQ-30 (short-form Mood and Anxiety Symptoms 
Questionnaire; [Wardenaar et al., 2010; Watson and Clark, 1991]). The latter two measures 
were included because they are commonly used measures of depression that can be 
considered ‘gold standard’ for self-report. Although these measures are not available in the 
UKB, our goal was to validate the RDS-4 against these standardized measures. 
 
We undertook multiple steps to avoid low quality responses, which can be a concern in 
Mechanical Turk questionnaire research. Firstly, we adopted premium options in 
CloudResearch, such as only including ‘CloudResearch approved participants’ who undergo 
more extensive vetting. Secondly, we included two questions to assess the attention levels of 
the participants while performing the study (“If you are still paying attention, please select 'yes'” 
& “Please answer this question with the 'Most or all of the time' option”). Participants who failed 
to answer these questions appropriately were excluded. Thirdly, we imposed a minimum 
duration for questionnaire completion at 172.5 seconds (which equals 2.5 seconds per 
question). Participants who completed the questionnaire in less than 172.5 seconds were 
excluded.  
 
Spearman rank correlation was used to compare scores between the RDS-4, PHQ-9, CES-D, 
and MASQ-30 using data from time point 1. Intraclass correlation coefficient (ICC A,1; also 
known as criterion-referenced reliability [Koo and Li, 2016; McGraw and Wong, 1996]) was used 
to calculate the test-retest reliability between time point 1 and time point 2 separately for each 
measure.  

Exploratory brain-mental health analysis 

We used Canonical Correlation Analysis (CCA) as a data-driven approach to identify joint 
multivariate relationships between mental health measures and brain imaging variables 
[Hotelling, 1936]. Following nuisance regression to remove variance explained by nuisance 
regressors, dimensionality reduction was performed separately for resting state, structural, and 
task IDPs (Table 3) using Principal Component Analysis (PCA). The substantial differences in 
IDP numbers between resting state IDPs (3,466), structural IDPs (346), and task fMRI IDPs (16) 
was the reason for performing the dimensionality reduction separately to ensure that all classes 
of IDPs were represented in the input components. The top components explaining at least 50% 
of variance were retained for each of resting state, structural, and task IDPs. This threshold was 
chosen as a good trade-off between retaining a substantial amount of IDP variance for the CCA 
while limiting the number of input variables to the CCA to ensure a sufficient subject-to-variable 
ratio required for stable CCA results [Helmer et al., 2021]. The structural and task IDP matrix 
included a small number of missing values, which were excluded for the nuisance regression 
and then imputed using nearest neighbor imputation (Matlab’s knnimpute.m). The combined set 
of IDP eigenvectors were entered into the CCA against 5 mental health input variables 
corresponding to summary scores from GAD-7, N-12, PHQ-9, RDS-4 and probable depression 
status (residuals after regressing out confound variables). CCA was performed on N=6,636 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.04.08.21255070doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.08.21255070
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

9 

subjects in the exploratory sample. Permutation testing with 2000 permutations was used to 
obtain p-values for the resulting canonical correlations. Here, the subject order of IDP 
component inputs and mental health inputs were independently shuffled to break subject 
correspondence. This is especially important for CCA because the canonical correlation is 
explicitly maximized and therefore it is important to compare the canonical correlation to the 
empirical null distribution obtained with permutation testing (which does not center around zero 
but shows relatively high null correlations) [Smith et al., 2015].  
 
To calculate the univariate contributions (or ‘loadings’) from individual IDPs to the CCA result, 
we correlated subject scores against original IDPs. For this purpose, the ‘U’ and ‘V’ canonical 
subject scores from the strongest CCA result were averaged within each subject to obtain a 
CCA summary subject score (UV). Here, U = XA and V = YB, where X are the IDP principal 
component inputs and Y are the mental health inputs. A and B are the canonical coefficients for 
IDP eigenvectors and mental health variables respectively, which are optimized such that the 
correlation between U and V is maximized. We could calculate IDP contributions by correlating 
U with the IDPs, but the resulting correlations would potentially be inflated because U is 
optimized for X. Therefore, using the averaged UV subject score for correlations with the IDPs 
provides a more realistic and unbiased measure of individual IDP correlations [Bijsterbosch et 
al., 2018]. Bonferroni correction for multiple comparisons was performed for these post-hoc 
correlations that were used to estimate univariate contributions from each original IDP (i.e., p-
value below 0.05/(3,466+346+16)=1.3*10-5, where 3,466 is the number of resting state IDPs, 
346 is the number of structural IDPs, and 16 is the number of task IDPs). IDPs that survived 
correction were selected for subsequent tests of effect size in the confirmatory sample. These 
IDPs are referred to as ‘selected brain variables’ in subsequent confirmatory analyses.  
 
The multivariate CCA results were also replicated in the independent confirmatory sample by 
projecting the resting state, structural, and task IDPs onto the same PCA subspace (i.e., not 
repeating the PCA, but using the weights from the exploratory sample), and multiplying brain 
eigenvectors as well as mental health scores by their respective canonical coefficients (i.e., A & 
B as estimated from the exploratory sample). The CCA replication was tested based on the 
correlation between the resulting U and V (i.e., the canonical correlation). We also performed 
the same post-hoc univariate correlations between averaged UV and individual IDPs as 
described above to assess the replicability of IDP contributions to the CCA. 

Confirmatory analysis of effect size 

The independent confirmatory sample (N=2,426) was used to test univariate effect sizes of 
selected brain variables from CCA analysis (i.e., significant IDPs after Bonferroni correction). 
Specifically, we performed a Cohen’s d test based on probable depression status, and 
calculated the Pearson’s r from the correlations between the selected brain variables and each 
of the four mental health variables (i.e., RDS-4, PHQ-9, N-12 and GAD-7), respectively. These 
analyses were repeated for each imaging modality including surface area, gray matter volume, 
cortical thickness, white matter hyperintensity, fractional anisotropy, median T2*, task activity, 
resting-state network amplitude and edge connectivity at both dimensionalities (i.e., 25 and 
100). We de-confounded both the brain variables and the mental health variables before 
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running the aforementioned analyses. The only exception from de-confounding is the binary 
grouping based on probable depression status, as deconfounding would result in subject-
specific values that are non-categorical, which is unsuitable for the Cohen’s d test.  

Test-retest reliability of imaging measures 

To assess the stability of IDPs across time, we performed test-retest reliability analyses using 
data from N=624 subjects that were scanned twice at separate time-points, with an inter-scan 
interval of approximately 2 years (Table 1). Data were de-confounded for this sample using the 
same approach employed for the exploratory CCA analysis. After data were de-confounded, 
intra-class correlations were computed between the IDPs collected at each scan time-point 
using the ICC(A,1) formulation to quantify the agreement between measurements collected at 
each timepoint [McGraw and Wong, 1996]. Test-retest reliability measures were grouped 
according to IDP measurement modality (e.g., cortical area, cortical volume, etc.) to allow for 
assessment of the ICC distributions for different modalities.  
 
We also assessed the effect of inter-scan interval length on the test-retest correlation strengths 
by computing ICCs for each IDP after including regressing out the inter-scan interval (in days) 
from each IDP, thus removing any additional variance attributable to inter-subject differences in 
inter-scan interval lengths. Finally, we assessed whether ICCs were affected by mental health 
changes as indicated by the difference in the RDS-4 scores between time-points. Of the N=624 
subjects included in the test-retest analyses, n=336 exhibited no change in RDS-4 scores 
between time-points, while n=288 exhibited changes in RDS-4 scores between time-points (i.e., 
at least 1 point difference in the RDS-4 scores). For these analyses, we separately computed 
ICCs for each mental health sub-group and then plotted the ICC distributions for each modality 
between the sub-groups. We also computed ICCs after regressing out mental health change 
values from each IDP.  

3. Results 

Correlations amongst mental health variables in the UKB 

Mental health measures showed moderate correlations with one another, indicating redundancy 
between these metrics (Fig. 3A). RDS-4 and N-12, which are both measured from questions 
administered on the scan date, had a Spearman rank correlation coefficient (SRCC) of 

⍴=0.57±0.01  �� � 10�����; PHQ-9 and GAD-7, which were both taken from the online 

questionnaire, have SRCC ⍴=0.69±0.01 �� � 10�����. Correlations between PHQ-9 and GAD-7 

scores were significantly higher than between any other pairs of scores (� � 10��). 
 
 
Both the RDS-4 and N-12 measures were collected at each scan time, which allows for an 
assessment of the within-measure two-year correlation of these measures on a sample of 
N=555 subjects from the test-retest sample (69 subjects were removed from the full N=624 test-
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retest sample due to missing mental health assessment center information on scan 2). Within 
this subgroup, the subjects’ RDS-4 measures showed a 2-year Spearman rank correlation 

coefficient of ⍴ = 0.57 between initial and follow-up scans, and N-12 showed a 2-year 

correlation of ⍴ = 0.85. It should be noted that this reflects correlation between scan timepoints 

between 761 and 980 days apart. Therefore, a given metric’s 2-year correlation (i.e., self-
correlation over a long time period) effectively establishes an approximate upper bound on any 
correlation value between it and other metrics collected over the same time frame. Because 
anxiety and depression are not fixed states and scores may meaningfully differ between the two 
timepoints available in the UKB, we also performed a separate Mechanical Turk study to test 
the short-term (7-day) test-retest reliability of RDS-4 (see ‘Mechanical Turk study to validate 
RDS-4’ section). 
 
We performed a two-sided, two-sample Kolmogorov-Smirnov test on RDS-4, PHQ-9, N-12, and 
GAD-7 scores over subjects with and without probable depression status. Subjects with 
probable depression scored significantly higher than subjects with no probable depression 
status on all measures (KS-statistic 	 
 0.19, � � 10���; Fig. 2B). 

Mapping between mental health variables in the UKB 

Given that this is a largely healthy sample, as expected, the distributions for PHQ-9, RDS-4, and 
GAD-7 all reveal a large number of participants with scores on the lower end of the mental 
health measure, with a sharp decline seen in the number of participants scoring on the upper 
end of the mental health measures (Fig. 4A-D). Notably, the distribution of N-12 is relatively less 
skewed than PHQ-9, RDS-4, and GAD-7. 

Equipercentile linkage was used to map between different measures of mental health. The 
results show a stable and approximately linear mapping between RDS-4 and PHQ-9 (Fig. 4E). 
Additionally, our results show stable mapping between RDS-4 and N-12 (Fig. 4F), and between 
N-12 and GAD-7 (Fig. 4G). These results are in line with the literature showing that the 
personality trait of neuroticism is closely associated with mental health [Lahey, 2009]. 

We calculated Cronbach's internal consistency alpha for RDS-4, which measures the internal 
consistency. The Cronbach alpha for RDS-4 was 0.78, which indicates a moderate to strong 
internal reliability. This was similar to N-12 (Cronbach alpha = 0.83).  

 

Mechanical Turk study to validate RDS-4 

Out of 134 subjects who completed our separate validation study, 3 subjects were removed 
because they failed the attention questions and a further 44 subjects were removed because 
they completed the surveys too fast, resulting in N=87 subjects (53 female and 34 male; mean 
age 66.0 ± 4.8). The results showed that RDS-4 was highly correlated with other depression 
scales and achieved test-retest reliability comparable to other depression scales (Table 4). 
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Exploratory brain-mental health analysis 

Prior to performing the CCA, the data reduction of resting state IDPs resulted in 100 
components which explained 50.1% of variance. The data reduction of the structural IDPs 
resulted in 24 components which explained 50.6% of variance. The data reduction of the task 
IDPs resulted in 2 components which explained 51.2% of variance. Therefore, the total number 
of brain variables input into the CCA was 126 and this was tested against the 5 mental health 
variables. The CCA resulted in two significant canonical covariates (R1UV = 0.207, p = 0.0005 & 
R2UV = 0.174, p = 0.015). The first multivariate canonical correlation partly replicated in the 
independent confirmatory sample (R1UV(confirmatory) = 0.125, p = 3.7*10-9, where the p-value was 
Bonferroni corrected for the maximum of 5 canonical correlations). Although the second 
canonical correlation also reached significance in the confirmatory sample (R2UV(confirmatory) = 
0.06, pBonferroni = 0.02) we did not perform post-hoc analysis for this finding due to the low 
canonical correlation in the replication sample. There are a number of factors that may have 
contributed to the replicability of the first canonical correlation. Firstly, the CCA was relatively 
well-powered with 50.7 subjects per input variable leading to relatively stable estimates [Helmer 
et al., 2021]. Secondly, the exploratory and confirmatory samples were well matched in terms of 
sample characteristics. Thirdly, data reduction of IDPs prior to CCA likely reduces measurement 
noise. Post-hoc correlations between the averaged UV subject scores and the mental health 
variables and IDPs also replicated well (Fig. 5 and S2).  
 
In terms of post-hoc correlations with IDPs, 770 resting state IDPs and 86 structural IDPs, and 1 
task IDP were significantly correlated with the canonical covariate (UV) after Bonferroni 
correction for multiple comparisons. The post-hoc CCA results confirm many regions previously 
highlighted in the literature such as prefrontal and orbitofrontal cortices.  
 
IDPs that contributed significantly to the CCA were also tested for univariate direct correlations 
with individual mental health variables in the independent confirmatory sample (see next section 
for the results). For these follow-up univariate tests, we furthermore supplemented the target 
IDPs with a literature-curated list (supplementary table 1) that partly overlaps with the data-
driven IDP identification.  
 

Confirmatory analysis of effect size 

Our findings showed that univariate effect sizes of the relationship between IDPs and mental 
health determined in our robust population sample were very low. Overall, effect sizes of the 
differences in the brain variables (i.e., IDPs), indicated by Cohens’ d, based on probable 
depression status, was larger than the Pearson’s r values from correlations between IDPs and 
continuous mental health measures (Fig. 6). On average, resting-state node amplitude and 
edge connectivity derived from partial correlation matrices appeared to have the higher effect 
sizes in most mental health measures, and task activity and fractional anisotropy ranked high in 
some mental health measures. At the level of individual IDPs, edges derived from both partial 
and full correlation matrices emerged as the best “predictors'' in explaining data variance in all 
mental health variables except for PHQ-9 where amplitude of a few resting-state nodes ranked 
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at top (Figs. S3-S7). These findings together suggest an overall higher effect size of resting-
state in contrast to non-resting state measures on the investigated mental health variables.  
 

Test-retest reliability of imaging measures 

We next assessed the stability of IDPs over time in 624 subjects who had data from two 
separate scan sessions conducted approximately 2-2.5 years apart. Fig. 7A shows the 
distribution of inter-scan intervals for all 624 subjects. To assess test-retest reliability, ICCs were 
computed between the scan 1 measurements for each IDP and the corresponding scan 2 
measurements for the same IDP. Then, the ICCs were assigned to categories based on the 
measurement modality of the corresponding IDPs: brain surface area (62 measures), brain 
volume (154 measures), cortical thickness (CT - 62 measures), fractional anisotropy (FA - 27 
measures), mean diffusivity (MD - 27 measures), T2* value (T2 - 14 measures), task activation 
(TA - 16 measures), resting-state time-series amplitudes (AMP - 76 measures), full correlation-
based resting-state networks (FNT - 1695 measures), and partial correlation-based resting-state 
networks (PNT - 1695 measures).  
 
Fig. 7B depicts the distributions of ICCs for each IDP measurement modality obtained using the 
confound-regressed data from both scan time-points, along with those obtained after 
additionally regressing out the effects of inter-scan interval length (i.e. days between scans). 
Notably, ICC distributions were highly similar for both analyses. In general, IDPs corresponding 
to measures of brain structure had higher ICCs than IDPs corresponding to measures of brain 
function. The highest ICCs were observed for IDPs corresponding to brain volume/brain area 
measures and the lowest ICCs were observed for IDPs corresponding to task measures. This 
pattern of results is not particularly surprising since macro-scale structural properties like 
regional volume are expected to be relatively stable over time, especially when considering 
relative between-subject correlations. Macro-scale functional properties like task activation 
magnitudes or network connectivity patterns exhibit higher variability over time due to influences 
of factors such as the level of task engagement (during task), cognitive state (during rest), and 
physiological state (e.g. hungry vs. sated, sleepy vs. alert), and therefore are expected to have 
somewhat reduced test-retest stability.  
 
Analyses performed for sub-groups of patients that did (n=288) vs. did not (n=336) exhibit 
changes in mental health between time-points as determined by the difference between RDS-4 
measures obtained at each time point yielded highly similar results, as did those obtained after 
regressing out the change in RDS-4 score (See Supplementary Material section 5 and Fig. S8). 
Overall, these results suggest that the test-retest reliability of the IDPs is largely independent of 
mental health change as indicated by the RDS-4. 
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4. Discussion 

In the present study we aimed to tabulate mental health questionnaires available in the UK 
Biobank and investigate their neural correlates. We summarize five different UKB measures of 
mental health: PHQ-9, GAD-7, RDS-4, N-12, and probable depression status. Our results show 
that all measures were moderately correlated with one another (Fig. 3). CCA analyses to 
identify multivariate associations between these mental health measures and IDPs indicated a 
significant CCA mode of covariation which linked brain IDPs to mental health scores (Fig. 5). 
The multivariate CCA analysis indicated a significant correlation between mental health and 
imaging that was largely reproducible in the independent confirmatory sample. All mental health 
measures contributed to the CCA result indicating a ‘trait-like’ multivariate brain-mental health 
association. In a separate test of univariate effect sizes, modalities with the strongest modality-
mean effect sizes included amplitude and edge connectivity of resting-state networks, but 
univariate effect sizes were generally very low (Fig. 6). All IDPs showed moderate to high test-
retest reliability, with IDPs of brain structure showing higher reliability than IDPs of brain function 
(Fig. 7). Together, these findings provide the foundation for future biomarkers research into 
mental health using the UK Biobank. 
  
We highlighted a difference in acquisition timing of mental health questionnaires in the UKB 
study relative to neuroimaging data acquisition. Two well-validated measures of mental health 
(GAD-7 and PHQ-9) were obtained as part of the online questionnaire, which is acquired 
independently of scan days such that they were obtained 742 days apart (median across 
exploratory subjects) from scan 1 (range -1,185 to +964 days). Because of this time 
discrepancy (which is highly inconsistent across subjects), the PHQ-9 (which tests recent 
depressive symptoms over a 2-week period) is not well-suited as a state depression measure 
for UKB neuroimaging research despite its validity for lifetime depression [Cannon et al., 2007], 
and its sensitivity to depression in older populations [Levis et al., 2019]. Therefore, we 
introduced the RDS-4 (obtained on each day of scanning) as a new UKB measure of recently 
experienced depressive symptoms. We propose the RDS-4 as a more appropriate measure for 
any UKB neuroimaging research that aims to study acute (state) depression severity or track 
symptom fluctuations over time. Our results from the independent Mechanical Turk study show 
that the correlation between the RDS-4 and the PHQ-9 is high when obtained concurrently (0.9, 
Table 4), whereas a lower ‘trait-level’ correlation between RDS-4 and PHQ-9 is observed in the 
UKB data (0.6; Fig. 3A) due to the gap in acquisition times (Fig. S1). Furthermore, RDS-4 has 
high internal consistency and its scores map closely onto established measures of depression 
(Fig. 4, and Table 4) - further confirming its validity. The RDS-4 questions cover four different 
depression domains (mood, disinterest, restlessness and tiredness) that are also considered in 
other measures such as the Hamilton and Montgomery–Åsberg scales [Hamilton, 1967; 
Montgomery and Asberg, 1979]. Hence, by asking questions in different domains, the RDS-4 
inventory reflects overall depression severity relatively well, despite the comparatively small 
number of items. The Neuroticism-12 index – also obtained on each day of scanning - is a 
personality trait [Eysenck and Eysenck, 1975] that is strongly related to an increased risk in 
depression [Hirschfeld et al., 1983; Shaw and Hare, 1969]. N-12 items assess generic traits as 
opposed to recently experienced clinical symptoms (RDS-4 and PHQ-9). Our results confirm 
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that N-12 is more stable over time compared with RDS-4 and PHQ-9 as assessed by the 2-year 
correlation. We therefore suggest that N-12 can be used as a measure of trait-level 
susceptibility to depression in UKB neuroimaging research.  
 
In terms of neuroimaging correlates of mental health, our findings show that multivariate 
associations explain more variance in mental health effects than univariate associations, which 
is supported by previous work [Marek et al., 2020]. It should be noted that our estimated effect 
sizes are derived from a large sample (N>2000) and are therefore expected to capture true 
effect sizes that are uninfluenced by sampling variability [Marek et al., 2020]. The literature to 
date is dominated by underpowered studies which, by design, only report high effect sizes 
because the significance threshold is itself high due to limited power. We have to adjust our 
expectations to value realistic effect sizes from well-powered samples, which may be lower but, 
importantly, reproducible. The observed increase in explained variance when using multivariate 
methods is consistent with the proposal of complex macroscopic patterns of psychopathology in 
mental health patients [Williams, 2016; Wise et al., 2017a]. Future biomarker research will 
therefore need to focus on multivariate techniques such as canonical correlation analysis, 
connectome fingerprinting [Finn et al., 2015], topological network properties [Zhu et al., 2017], 
or machine learning [Dinga et al., 2018].  
 
One reason why multivariate methods may have higher effect sizes than univariate methods 
could be due to the relatively low signal-to-noise ratio and high measurement noise of individual 
univariate IDPs and the effective averaging that occurs in multivariate combinations of IDPs and 
during the dimensionality reduction prior to CCA, which reduces noise. For example, previous 
work showed substantial increases in heritability when combining connectivity IDPs with 
independent component analysis compared with univariate IDPs [Elliott et al., 2018]. Given the 
low SNR of individual IDPs and the risk of overfitting in multivariate methods, robust cross-
validation [Poldrack et al., 2020] and independent replication of findings (in a split-half group 
and/or in a fully independently acquired dataset) are essential requirements for future biomarker 
research [Dinga et al., 2019; Dinga et al., 2020]. 
 
A second potential reason for limited effect sizes (even with the use of multivariate methods like 
CCA) is between-subject heterogeneity. One type of heterogeneity is diversity in symptoms, 
such that two patients with depression may present with largely non-overlapping symptom 
profiles [Drysdale et al., 2017; Feczko et al., 2019; Feczko and Fair, 2020; Kaczkurkin et al., 
2020]. Another type of heterogeneity is diversity in psychophysiological disease mechanisms. 
Here, it is possible that the same symptom may be caused by a number of different patterns of 
brain changes [Feczko and Fair, 2020], which we refer to as ‘many-to-one mechanistic 
mapping’. Notably, both types of heterogeneity are potentially more prominent in large-scale 
population studies such as the UK Biobank compared with smaller studies. This is because 
studies with smaller samples often implement stricter exclusion criteria in relation to 
comorbidities and medication to control for known sources of heterogeneity. Reducing the 
exclusion criteria in the UKB is likely advantageous for mental health research because the UKB 
and other large-scale studies provide a more accurate representation of ‘real-life’ mental health 
as it occurs across the population. This makes the findings more likely to be generalizable. 
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However, gaining a better understanding of both symptom heterogeneity and many-to-one 
mechanistic heterogeneity is critically important for effective clinical translation of mental health 
biomarkers. Computational methods are available to account for heterogeneity, such as 
subtyping analyses to reveal any distinct sub-groups [Drysdale et al., 2017; Kaczkurkin et al., 
2020] and normative modelling analysis to compare each individual against the normative range 
[Marquand et al., 2016]. These models of heterogeneity benefit from the large sample size 
available in the UK Biobank which enables stringent cross-validation. 
 
In summary, this paper provides a guide for future neuroimaging biomarker research into affect-
based mental health in the UK Biobank. We recommend using RDS-4 for imaging-based 
research into state depression (i.e., currently experienced symptoms) and N-12 for imaging-
based research into personality traits associated with depression [Lahey, 2009]. Our results 
regarding the brain correlates of mental health show low effect sizes of individual IDPs, but 
higher effect-sizes and replicability of multivariate associations and relatively high test-retest 
reliability. Therefore, we recommend the use of approaches that capture multivariate patterns 
and parse patient heterogeneity in combination with stringent out-of-sample replication to avoid 
overfitting. 

5. Code and Data Availability 

All analysis code for this article is available at: https://github.com/PersonomicsLab/MH_in_UKB. 
UK Biobank data [Miller et al., 2016; Sudlow et al., 2015] are available following an access 
application process, for more information please see: https://www.ukbiobank.ac.uk/enable-your-
research/apply-for-access. In accordance with the UKB regulations, newly derived variables in 
this article (e.g., RDS-4) will be made available to other researchers via UKB data access post-
publication. 
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7. Tables 

Sample N Sex (n male) Age (mean±SD) Time between scans 
(mean absolute days±SD) 

Exploratory  6,636 2,258 61.9±7.2 N.A. 

Confirmatory  2,426 796 60.6±7.1 N.A. 

Test-Retest 624 300 61.7±7.04 823.7±44.8 

Table 1. Demographics for samples. SD = Standard Deviation. The ‘ever seen GP for mental 
health’ and ‘never seen GP for mental health’ subjects were matched, such that the same male-
to-female ratio and mean age applies to these groups.  
 
 
 Scan 

day 
Online Range Questions Variable 

IDs 
PHQ-9  ✔ 0-27 Little interest or pleasure in doing things  

Feeling down, depressed, or hopeless 
Trouble sleeping  
Feeling tired  
Poor appetite or overeating  
Feeling bad about yourself 
Trouble concentrating 
Moving or speaking slowly or fidgety or restless 

20514 
20510 
20517 
20519 
20511 
20507 
20508 
20518 
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Thoughts that you would be better off dead 20513 
RDS-4 ✔  4-16 Frequency of depressed mood in last 2 weeks 

Frequency of unenthusiasm / disinterest in last 2 
weeks 
Frequency of tenseness / restlessness in last 2 
weeks 
Frequency of tiredness / lethargy in last 2 weeks 

2050  
2060  
 
2070  
 
2080 

GAD-7  ✔ 0-21 Feeling nervous, anxious or on edge 
Not being able to stop or control worrying 
Worrying too much about different things  
Trouble relaxing 
Being so restless that it is hard to sit still 
Becoming easily annoyed or irritable  
Feeling afraid as if something awful might happen 

20506 
20509 
20520 
20515 
20516 
20505 
20512 

N-12 ✔  0-12 Mood swings 
Miserableness 
Irritability 
Sensitivity / hurt feelings 
Fed-up feelings 
Nervous feelings 
Worrier / anxious feelings 
Tense / 'highly strung' 
Worry too long after embarrassment 
Suffer from 'nerves' 
Loneliness, isolation 
Guilty feelings 

1920 
1930 
1940 
1950 
1960 
1970 
1980 
1990 
2000 
2010 
2020 
2030 

Probable 
depression 
status 

✔  0/1 Ever depressed  
Ever unenthusiastic/disinterested  
Duration of longest period of depression  
Duration of longest period of 
unenthusiasm/disinterest  
Seen Doctor (GP) for nerves, anxiety, tension, 
depression 
Seen psychiatrist for nerves, anxiety, tension, 
depression 

4598 
4631 
4609 
5375 
 
2090 
 
2100 

Table 2: Measures of affect-based mental health available in the UK Biobank. PHQ-9 = Patient 
Health Questionnaire-9, RDS-4 = Recent Depressive Symptoms-4, GAD-7 = General Anxiety 
Disorder-7, N-12 = Neuroticism-12. 
 
 
 # IDPs UKB ID Description 
Resting 
state 
 
 
Total 
3,466 

21 
55 
210 
210 
1,485 
1,485 

25754 
25755 
25750 
25752 
25751 
25753 

rfMRI network amplitudes from 21 signal components 
rfMRI network amplitudes from 55 signal components 
Pairwise full correlation edges between 21 components 
Pairwise partial correlation edges between 21 components 
Pairwise full correlation edges between 55 components 
Pairwise partial correlation edges between 55 components 

Structural 
 

139 
14 

1101 
1102 

FAST gray matter volumes 
FIRST gray matter volumes 
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Total 
346 

62 
62 
1 
27 
27 
14 

196 
196 
25781 
107 
107 
109 

Cortical surface area from Freesurfer DKT atlas 
Cortical thickness from Freesurfer DKT atlas 
Total volume of white matter hyperintensity 
Weighted-mean FA  
Weighted-mean MD 
Median T2-star from susceptibility weighted imaging 

Task 16 106 Task fMRI median + 90th percentile of BOLD effect and z 
Table 3: Full set of IDPs considered for canonical correlation analysis. IDP = Imaging Derived 
Phenotype, UKB = UK Biobank. 
 
 

 Test-retest reliability (ICC) Correlation with RDS-4 (⍴) 

RDS-4 0.88 - 
CES-D 0.91 0.89 
PHQ-9 0.94 0.91 
MASQ general distress 0.87 0.78 
MASQ anhedonic depression 0.82 0.67 
MASQ anxious arousal 0.92 0.71 
Table 4: Comparison of RDS-4 to other depression scales from MTurk study.  

8. Figure Legends 

Figure 1: UK Biobank subject inclusion chart. 
 
Figure 2: Schematic overview of the acquisition timing of UK Biobank mental health measures in 
relation to imaging acquisition. Mental health measures in light green were obtained on the day 
of scanning, whereas mental health measures in light blue were obtained at an independent 
time point that varied from 1,185 days before to 964 days after scan 1 across participants. The 
range of possible scores for each mental health measure is included. All five measures were 
included in neuroimaging and questionnaire comparison analyses in this paper.  
 
Figure 3. A) Spearman rank correlation coefficients between each pair of mental health 
measures. Variables measured on the same date are labeled the same color (green = 
assessment center day-of-scan information; blue = online questionnaire). B) Distributions of 
scores for subjects with probable depression status (pink) and without probable depression 
status (cyan). Subjects with probably depression status scores significantly higher on all mental 
health measures (KS-statistic � � 0.19,� 	 10���). 
 
Figure 4. A-D are the distributions of scores for participant responses to each questionnaire. E-
G depict the equipercentile linkages of the scores for each questionnaire, mapping the 
equivalence of a score from one questionnaire to the score of the other questionnaire.  
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Figure 5. Canonical correlation results. A: post-hoc correlations for non-resting (structural & 
task) IDPs, showing only significant IDPs after Bonferroni correction. A similar figure for the 
resting state IDPs is included in the supplementary material (Fig. S2). B (insert): post-hoc CCA 
relations for mental health show that the first canonical covariate is broadly linked to affect-
based mental health.  
 
Figure 6. Effect sizes are shown for the grouped brain variables of structural (Area, Volume, 
Cortical Thickness, Fractional Anisotropy and T2*) and functional (Task Activity, Amplitude, Full 
Network connectivity matrix and Partial Network Connectivity Matrix) modalities. Blue boxes 
indicate the middle 50% of the data (i.e., the range between the first and third quartile) and 
small black squares and blue lines inside each box represent the mean and median values, 
respectively. Outliers for each grouped brain IDP are shown as blue circles, which are above 
the 1.5 times of inter-quartile range (IQR), indicated by the whiskers extending from the boxes. 
For detailed assessments of effect sizes in specific IDPs see supplementary figures S3-S7. 
 
Figure 7. Test-retest analyses. A. The histogram shows the inter-scan interval distribution for 
the 624 subjects included in these analyses. The x-axis shows days between scans, and the y-
axis shows the number of subjects. B. The boxplots show the ICCs obtained using brain IDPs 
after standard confound regression (blue) vs. ICCs obtained using brain IDPs after standard 
confound regression plus regressing out effects of inter-scan interval length (orange). IDP 
measurement modality categories are organized along the x-axis, and the y-axis shows ICC 
values. See also Supplemental Figure S8.  
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