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Abstract 
 
Background: Pathology reports serve as an auditable trail of a patient’s clinical narrative 
containing important free text pertaining to diagnosis, prognosis and specimen processing. 
Recent works have utilized sophisticated natural language processing (NLP) pipelines which 
include rule-based or machine learning analytics to uncover patterns from text to inform clinical 
endpoints and biomarker information. While deep learning methods have come to the forefront 
of NLP, there have been limited comparisons with the performance of other machine learning 
methods in extracting key insights for prediction of medical procedure information (Current 
Procedural Terminology; CPT codes), that informs insurance claims, medical research, and 
healthcare policy and utilization. Additionally, the utility of combining and ranking information 
from multiple report subfields as compared to exclusively using the diagnostic field for the 
prediction of CPT codes and signing pathologist remains unclear. 
Methods: After passing pathology reports through a preprocessing pipeline, we utilized 
advanced topic modeling techniques such as UMAP and LDA to identify topics with diagnostic 
relevance in order to characterize a cohort of 93,039 pathology reports at the Dartmouth-
Hitchcock Department of Pathology and Laboratory Medicine (DPLM). We separately compared 
XGBoost, SVM, and BERT methodologies for prediction of 38 different CPT codes using 5-fold 
cross validation, using both the diagnostic text only as well as text from all subfields. We 
performed similar analyses for characterizing text from a group of the twenty pathologists with 
the most pathology report sign-outs. Finally, we interpreted report and cohort level important 
words using TF-IDF, Shapley Additive Explanations (SHAP), attention, and integrated gradients. 
Results: We identified 10 topics for both the diagnostic-only and all-fields text, which pertained 
to diagnostic and procedural information respectively. The topics were associated with select 
CPT codes, pathologists and report clusters. Operating on the diagnostic text alone, XGBoost 
performed similarly to BERT for prediction of CPT codes. When utilizing all report subfields, 
XGBoost outperformed BERT for prediction of CPT codes, though XGBoost and BERT 
performed similarly for prediction of signing pathologist. Both XGBoost and BERT outperformed 
SVM. Utilizing additional subfields of the pathology report increased prediction accuracy for the 
CPT code and pathologist classification tasks. Misclassification of pathologist was largely 
subspecialty related. We identified text that is CPT and pathologist specific.  
Conclusions: Our approach generated CPT code predictions with an accuracy higher than that 
reported in previous literature. While diagnostic text is an important information source for NLP 
pipelines in pathology, additional insights may be extracted from other report subfields. Although 
deep learning approaches did not outperform XGBoost approaches, they may lend valuable 
information to pipelines that combine image, text and -omics information. Future resource-
saving opportunities exist for utilizing pathology reports to help hospitals detect mis-billing and 
estimate productivity metrics that pertain to pathologist compensation (RVU’s). 
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Background and Significance 

Electronic Health Records (EHR) 1 refers to both the structured and unstructured components of 

patients’ health records/information (PHI), synthesized from a myriad of data sources and 

modalities. Such data, particularly clinical text reports, are increasingly relevant to “Big Data” in 

the biomedical domain. While structured components of EHR, such as clinical procedural and 

diagnostic codes, are able to effectively store the patient’s history 2–4, unstructured clinical notes 

reflect an amalgamation of more nuanced clinical narratives. Such documentation may serve to 

refresh the clinician on the patient’s history, highlight key aspects of the patient’s health, and 

facilitate patient handoff among providers. Furthermore, analysis of clinical free text may reveal 

physician bias or inform an audit trail of the patient’s clinical outcomes for purposes of quality 

improvement. As such, utilizing sophisticated algorithmic techniques to assess text data in 

pathology reports may improve decision making and hospital processes/efficiency, possibly 

saving hospital resources while prioritizing patient health. 

 

Natural language processing (NLP)3,5–8, is an analytic technique to extract semantic and 

syntactic information from textual data. Traditionally, rule-based approaches cross-reference 

and tabulate domain-specific key words or phrases with large biomedical ontologies and 

standardized vocabularies such as Unified Medical Language System (UMLS)9,10. However, 

although these approaches provide accurate means of assessing a narrow range of specified 

patterns, they are neither flexible nor generalizable since they require extensive annotation and 

development from a specialist. Machine learning approaches (e.g. support vector machines, 

random forest) 11,12, employ a set of computational heuristics to circumvent manual specification 

of search criteria to reveal patterns and trends in the data. While bag-of-word approaches13,14 

study the frequency counts of words (unigrams) and phrases (bigrams, etc.) to compare the 

content of multiple documents for recurrent themes, deep learning approaches15–17  

simultaneously capture syntax and semantics with artificial neural network techniques. Recent 
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deep learning NLP approaches have demonstrated the ability to capture meaningful nuances 

that are lost in frequency-based approaches; for instance, these approaches can effectively 

contextualize short- and long-range dependencies between words18,19. Despite potential 

advantages conferred from less structured approaches, analysis of text across any domain 

usually necessitates balancing domain-specific customization (e.g. a medical term/abbreviation 

corpora) with generalized NLP techniques.  

 

Analysis of pathology reports using NLP has been particularly impactful in recent years, 

particularly in the areas of information extraction, summarization, and categorization. 

Noteworthy developments include information extraction pipelines which utilize regular 

expressions (regex), to highlight key report findings (eg. extraction of molecular test results) 20–

23, as well as topic modeling approaches that summarize a document corpus by common 

themes and wording24. In addition to extraction methods, machine learning techniques have 

been applied to classify pathologist reports25; notable examples include prediction of ICD-O 

morphological diagnostic codes 26,27 and prediction of CPT codes based only on diagnostic text 

28,29. Widespread misspelling of words and jargon specific to individual physicians have made it 

difficult to reliably utilize the rule-based and even machine learning approaches for report 

prediction in a clinical workflow. Additionally, hedging and uncertainty in text reports may further 

obfuscate findings30. 

 

Objective 

In this study, we sought to predict the assignment of 38 different CPT procedure codes across a 

large corpus of over 93,039 pathology reports using XGBoost, Support Vector Machine (SVM) 

and BERT (Bidirectional Encoder Representation from Transformers) techniques from the 

Dartmouth-Hitchcock Department of Pathology and Laboratory Medicine (DPLM), a mid-sized 

academic medical center. Furthermore, we explored methods that incorporate, into the deep 
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learning modeling approach, other document subfields outside of the diagnostic text, which may 

contain additional information. Finally, we utilized these technologies to investigate physician-

specific or uncertain word choices that could have biased results. 

 

Approach and Procedure 

Data Acquisition 

We obtained an Institutional Review Board approval and accessed over 96,418 pathologist 

reports from DPLM, collected between June 2015 and June 2020. We removed a total of 3,379 

reports that did not contain any diagnostic text associated with CPT codes, retaining 93,039 

reports (Supplementary Table 1).  Each report was appended with metadata including 

corresponding EPIC (EPIC systems, Verona, WI)31, Charge Description Master (CDM), and 

CPT procedural codes, the practicing pathologist, the amount of time to sign out the document, 

and other details. A fuzzy word matching system was deployed to resolve misspellings between 

documents. The documents were deidentified by stripping all PHI-containing fields and 

numerals from the text and replacing with holder characters (e.g. 87560 becomes #####).A 

publicly available database of hundreds of thousands of first and last names was utilized to 

remove all mention of names in the report text as a final check. 

 

Preprocessing 

The text was preprocessed using the Spacy package32, to tokenize text and removed stop 

words. We also split up each pathology report into their structured sections: Diagnosis, Clinical 

Information, Specimen Processing, Discussion, Additional Studies, Results, Interpretation. This 

allowed for an equal comparison between the machine learning algorithms. The deep learning 

algorithm BERT can only operate on 512 words at a time due to computational constraints. 

Sometimes, the pathology reports exceeded this length when considering the entire document 

(1.77% exceeded 512 words) and as such these reports were limited to the diagnosis section 
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(0.02% exceeded 512 words) when training a new BERT model (Supplementary Table 1; 

Supplementary Figure 1). We removed all pathology reports which did not contain a diagnosis 

section. 

 

Characterization of the Text Corpus 

After preprocessing, we encoded each report tabulating the occurrence of all contiguous one- to 

two-word sequences (unigram and bigrams) to form sparse count matrices, where each column 

represents a word or phrase and each row represents the document, and the value is the 

frequency of occurrence in the document. While the term frequency may be representative of 

the distribution of words/phrases in a corpus, high frequency words that are featured across 

most of the document corpus are less likely to yield informative lexicon that is specific to a 

subset of the documents. To account for less important but ubiquitous words, we transformed 

raw word frequencies to term frequency inverse document frequency (tf-idf) values, which up-

weights the importance of the word based on its occurrence within a specific document (term 

frequency), but down-weights the importance if the word is featured across the corpus (inverse 

document frequency) (see Supplementary Material, section “Additional Description of Topic 

Modeling and Report Characterization Techniques”). We summed the tf-idf value of each word 

across the documents to capture the word’s overall importance across the reports and utilized a 

word cloud algorithm to display the relative importance of the top words. 

 

After constructing count matrices, we sought to characterize and cluster pathology documents 

as they relate to each other and ascribe themes to the clusters. UMAP 33 dimensionality 

reduction was used to project the higher dimensional word frequency data into lower 

dimensions while preserving important functional relationships. Each document could then be 

represented by a 3D point in the Cartesian coordinate system; these points were clustered 

using a density-based clustering algorithm called HDBSCAN 34 to simultaneously estimate 
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characteristic groupings of documents while filtering out noisy documents which did not explicitly 

fit in these larger clusters. To understand which topics were generally present in each cluster we 

deployed Latent Dirichlet Allocation (LDA)13, which identifies topics characterized by a set of 

words, then derives the distribution of topics over all clusters. This is accomplished via a 

generative model which attempts to recapitulate the original count matrix, further outlined in 

greater detail in the Supplementary Material, section “Additional Description of Topic Modeling 

and Report Characterization Techniques”. The individual topics estimated using LDA may be 

conceptualized as a Dirichlet/multinomial distribution (“weight” per each word/phrase) over all 

unigrams and bigrams, where a higher weight indicates membership in the topic. The 

characteristic words pertaining to each topic were visualized using a word cloud algorithm. 

Finally, we correlated the CPT codes with clusters, topics, and select pathologists using Point-

Biserial and Spearman correlation measures 35 to further characterize the overall cohort. 

 

Machine Learning Models 

We implemented the following three machine learning algorithms in our study as a basis for our 

text classification pipeline (Figure 1): 

SVM 

We trained a Support Vector Machine model (SVM) 36,37 to make predictions using the UMAP 

embeddings formed from the tf-idf matrix. SVM operates by learning a hyperplane that obtains 

maximal distance (margin) to datapoints of a particular class (Figure 1A). However, because 

datapoints/texts from different classes may not be separable in the original embedding space, 

the SVM model projects data to a higher dimensional space where data can be linearly 

separated. We utilized GPU resources via the ThunderSVM package 38 to train the model in 

reasonable compute time. 

Bag of Words with XGBoost 
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XGBoost algorithms 39 operate on the entire word by report count matrix and ensemble or 

average predictions across individual Classification and Regression Tree (CART) models 40. 

Individual CART models devise splitting rules that partition instances of the pathology notes 

based on whether the count of a particular word or phrase in a pathology note exceeds an 

algorithmically derived threshold. Important words and thresholds (i.e. partition rules) are 

selected from the corpus based on their ability to partition the data, based on the purity of a 

decision leaf through calculation of an entropy measure. Each successive splitting rule serves to 

further minimize the entropy or maximize the information gained. While Random Forest models 

41 bootstrap which subsets of predictors/words and samples are selected for a given splitting 

rule of individual trees and aggregate the predictions from many such trees, Extreme Gradient 

Boosting Trees (XGBoost) fits trees (structure and the conditional means of the terminal nodes) 

sequentially based on the residual (in the binary classification setting, misclassification is 

estimated using a Bernoulli likelihood) between the outcome and the sum of bot conditional 

means of the previous trees (which are set) and the conditional mean of the current tree (which 

is optimized). This gradient-based optimization technique prioritizes samples with a large 

residual/gradient from the previous model fit to account for the previous “weak learners” (Figure 

1B). In both scenarios, random forest (a bagging technique) and XGBoost (a boosting 

technique), individual trees may exhibit bias but together cover a larger predictor space. Our 

XGBoost classifier models were trained using the XGBoost library, which utilizes GPUs to 

speed up calculation.  

BERT 

Artificial neural networks (ANN) 42 are a class of algorithms that use highly interconnected 

computational nodes to capture relationships between predictors in complex data. The 

information is passed from the nodes of an input layer to individual nodes of subsequent layers 

that capture additional interactions and nonlinearities between predictors while forming 

abstractions of the data in the form of intermediate embeddings. The BERT (Bidirectional 
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Encoder Representations from Transformers) 18 model first maps each word in a sentence to its 

own embedding and positional vectors, which captures key semantic/syntactic and contextual 

information that is largely absent from the Bag of Words approaches. These word level 

embeddings are passed to a series of self-attention layers (the Transformer component of the 

BERT model) which contextualizes the information of a single word in a sentence based on 

short- and long-term dependencies between all words from the sentence. The individual word 

embeddings are combined with the positional/contextual information, obtained via the self-

attention mechanism, to create embeddings that represent the totality of a sentence. Finally, this 

information is passed to a series of fully connected layers that produce the final classification. 

With BERT, we are also able to analyze the relative importance and dependency between 

words in a document by extracting “attention matrices”. We are also able to retrieve sentence 

level embeddings encoded by the network by extracting vectors from the intermediate layers 

before it passes to final classification.  

 

We trained the BERT models using the HuggingFace Transformers package 43, which utilizes 

GPU resources through the PyTorch framework. We used a collection of models that have 

already been pretrained on a large medical corpus 44 in order to both improve the predictive 

accuracy of our model and significantly reduce the computational load compared to training a 

model from scratch. Because significant compute resources are still required to train the model, 

most BERT models limit the document characterization length to 512 words. To address this, 

we split pathology reports into document subsections when training BERT models.  

 

In training a BERT model, we updated the word embeddings through finetuning a pretrained 

model on our diagnostic corpus. This model, which had been trained solely on diagnostic text, 

could be used to predict the target of interest (Dx Model). However, we then used this fine-tuned 

model to extracted embeddings that were specific to the diagnosis subfield to serve as input for 
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a model that could utilize text from other document subfields. We separately utilized the original 

pretrained model to extract embeddings from the other report subfields which are less biased by 

diagnostic code and thus more likely to provide contextual information (All Fields Model). We 

developed a global/gating attention mechanism procedure that serves to dynamically prune 

unimportant, missing, or low-quality document subsections for classification (Figure 1C). 

Predictions may be obtained when some/all report subfields are supplied via the following 

method: 

𝑦 = 𝑓$%%&'()%*+(𝑥⃗) = 𝑓01234𝑧'(6)&786)*	:);7,*= 		,			∑ α+)@7(A6+)@7(A6 𝑧B;)7;$(6)*	:);7,+)@7(A6CD  

αEE⃗ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥({𝑊𝑧+)@7MA6EEEEEEEEEEEEEE⃗ 	∀	𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠}) ∈ [0,1], ‖αEE⃗ ‖ = 1  

Where 𝑧 represents embeddings extracted from the pretrained and fine-tuned BERT 

embeddings on respective report subsections and αEE⃗  is a vector of attention scores between 0 

and 1 that dictates the importance of particular subsections. Finally, 𝑊 is a 768-dimension 

(dimensionality of BERT embeddings) by 1-dimensional matrix that generates the attention 

scores, while 𝑓012 are a set of fully connected layers that operate on the concatenation between 

the BERT embeddings that were finetuned on the diagnosis-specific section and those 

extracted using the pre-trained BERT model on the other document subfields. 

 
Figure 1: Model Descriptions: Graphics depicting: A) SVM, where hyperplane linearly 
separates pathology reports, which are represented by individual datapoints; B) XGBoost, which 
sequentially fits decision trees based on residuals from sum of conditional means of previous 
trees and outcomes; C) All-Fields BERT model, where a diagnosis-specific neural network 
extracts relevant features from the diagnostic field, while a neural network trained on a separate 
clinical corpus extracts features for the remaining subfields; subfields are weighted and summed 
via the attention mechanism, indicated in red; subfields are combined with diagnostic features 
and finetuned with a multi-layer perceptron for the final prediction   
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Prediction of CPT Codes 

Using these machine learning techniques, we sought to predict each of the 38 different CPT 

codes (38 codes remained after removing codes that occurred less than 150 times across all 

sign-outs) using BERT, XGBoost and SVM. Given the characterization of the aforementioned 

deep learning framework, we utilized a BERT model that was pretrained first on a large corpus 

of biomedical research articles from PubMed, then pretrained using a medical corpus of free 

text notes from an intensive care unit (MIMIC3 database; Clinical-BioBERT) 44–46. Finally, the 

model was fine-tuned on our DHMC pathology report corpus (to capture institution-specific 

idiosyncrasies) for the task of classifying particular CPT codes from diagnostic text. XGBoost 

was trained on the original count matrix, while SVM was trained on a 6-dimensional UMAP 

projection; a UMAP projection was utilized for computational considerations. The models were 

evaluated using 5-fold cross validation for each CPT code. For each approach, we separately fit 

a model considering only the Diagnosis text (Dx Models) and all of the text (All Fields Models) to 

provide additional contextual information. We calculated the Area Under the Receiver Operating 

Curve (AUC-Score; considers sensitivity/specificity of the model at a variety of probability 

cutoffs; anything above a 0.5 AUC is better than random) for each CPT code to further explore 

reasons that some codes yielded lower scores than others. We also compared different 

algorithms via the sensitivity/specificity reported via their Youden’s index (the optimal tradeoff 

possible between sensitivity/specificity from the receiver operating curve), averaged across 

validation folds. Finally, we used Shapley Additive Explanations (SHAP; a model interpretation 

technique that estimates contributions of predictors to the prediction through credit allocation) 47 

to estimate which words were important for classification of each of these codes, visualized 

using a word cloud. For the BERT model, we utilized the Captum 48 framework to visualize 

backpropagation from the outcome to predictors/words via IntegratedGradients 49 and attention 

matrices. Additional extraction of attention weights also revealed not only which words and their 
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relationships contributed to prediction of the CPT code (i.e. self-attention denotes word-to-word 

relationships), but also which document subfields other than the diagnosis field were important 

for assignment of procedure code (i.e. global/gating attention prunes document subfields by 

learning to ignore irrelevant information; the degree of pruning can be extracted during 

inference). Further description of these model interpretability techniques (SHAP, Integrated 

Gradients, Self-Attention / “word-to-word”, Attention) may be found in the supplementary 

material (section “Additional Description of Explanation Techniques: SHAP, Integrated 

Gradients, Self-Attention, Attention Over Pathology Report Subfields”). 

 

Predictions of Physician Specific Language 

We similarly trained all models to recognize the texts of the twenty pathologists with the most 

sign-outs to see whether the models could reveal pathologist-specific text. We retained reports 

from the twenty pathologists with the most sign-outs, reducing our document corpus from 

93,039 documents to 64,583 documents, and utilized all three classification techniques to 

predict each sign-out pathologist simultaneously. The selected pathologists represented a 

variety of specialties. Choosing only the most prolific pathologists allowed us to test our 

hypothesis of pathologist-specific language without being subject to spurious associations by a 

rare outcome in the multi-class setting. Pathologist specific word choice was extracted using 

SHAP/Captum from the resulting model fit and visualized using word clouds and attention 

matrices. 

 

Results 

Corpus Preprocessing and UMAP Results 

After initial filtering, we amassed a total of 93,039 pathology reports, which were broken into the 

following subsections: Diagnosis, Clinical Information, Specimen Processing, Discussion, 

Additional Studies, Results, and Interpretation. The median word length per document was 119 
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words (Interquartile Range; IQR=90). Very few reports contained subfields that exceeded the 

length acceptable by the BERT algorithm (2% of reports containing a Results section exceeded 

this threshold; Supplementary Table 1; Supplementary Figure 1).  

 

Displayed first are word clouds of the top twenty-five words in only the diagnostic document 

subsection (Figure 2A) and across all document subsections (Figure 2B), with their size 

reflecting their tf-idf scores (Figure 2A-B). As expected, the diagnostic-field cloud contains 

words that are pertinent to the main diagnosis, while the all-field cloud contains words that are 

more procedural, suggesting that other pathology document subfields yield distinct and specific 

clinical information that may lend complementary information versus analysis solely on 

diagnostic fields. We clustered and visualized the diagnostic subsection and also all document 

subsections after running UMAP, which yielded 8 and 15 distinct clusters respectively (Figure 

2C-D). Number of words per report correlated poorly with the number of total procedural codes 

assigned (spearman 𝑟 = 0.066, 𝑝 < 0.01). However, when these correlations were assessed 

within the HDBSCAN report clusters (subset to reports within a particular cluster for cluster-

specific trends), 33% of the all-fields report clusters reported moderate correlations 

(Supplementary Table 2). Interestingly, one of the eight report clusters from the diagnostic 

fields experienced a moderate negative correlation with number of codes assigned. 
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Figure 2: Pathology report corpus characterization: A-B) Word cloud depicting words with 
highest aggregated tf-idf scores across the corpus of: A) diagnostic text only, B) all report 
subfields (all-fields); important words across the corpus indicated by relative size of the word in 
the word cloud; C-D) UMAP projection of the tf-idf matrix, clustered and noise removal via 
HDBSCAN for: C) diagnostic texts only, D) all report subfields (all-fields) 
 
 
Topic Modeling with LDA and Additional Topic Associations 

From our LDA analysis on all document subsections, we discovered 10 topics (Figure 3; 

Supplementary Table 3). Correlations between these topics with clusters, pathologists, and 

CPT codes are displayed in the supplementary material (Supplementary Figures 2-4). We 

discovered additional associations between CPT codes, clusters and pathologists 

(Supplementary Table 5, Supplementary Figure 6A), suggesting a specialty bias in document 

characterization. We clustered pathologists using co-occurrence of procedural code 

assignments in order to establish “subspecialties” (eg. pathologist who signs out multiple 
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specialties) which could be used to help interpret sources of bias in evaluation of downstream 

modeling approaches. 

 
 
 

 
Figure 3: LDA Topic Words: Important words found for three select LDA Topics from: A) 
diagnostic text only, B) all report subfields (all-fields); important words across the corpus 
indicated by relative size of the word in the word cloud 
 
CPT Code Classification 

We were able to accurately assign a CPT code to each document, regardless of which machine 

learning algorithm was utilized (Table 1; Figure 4A; Supplementary Table 4). We found that 

XGBoost (median AUC=0.985) performed comparably to BERT (median AUC=0.990; p=0.64) 

when predicting CPT codes based on the diagnostic subfield alone, while SVM performed 

worse (median AUC=0.990) than both approaches, per cross-validated AUC statistics (Table 1; 
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Figure 4A; Supplementary Tables 4-5; Supplementary Figure 7). We also discovered that 

classifying by including all of the document sub-elements performed better than just classifying 

based on the diagnostic subsection (p<0.001 for both BERT and XGBoost approaches; 

Supplementary Table 5; Supplementary Figure 7), suggesting that these other more 

procedural / descriptive elements contribute meaningful contextual information for the 

assignment of CPT codes. XGBoost (median AUC=0.997) outperformed BERT (median 

AUC=0.995) statistically (p<0.001) when utilizing all of the report subfields but given the high 

predictive performance these differences were not meaningful. Plots and tabulated statistics of 

the Youden Index derived from sensitivity/specificity of these algorithms across all of the 

validation folds confirm that utilizing information from all report subfields is better than utilizing 

information from the diagnostic text (Supplementary Table 6; Supplementary Figure 8). 

Averaging Youden’s J statistic across all XGBoost and deep learning models, codes for 

immunohistochemistry/cytochemistry (CPT 88341, 88342, 88344, 88360), surgical pathology 

(CPT 88305) and flow cytometry (CPT 88188, 88189) performed worse versus other procedural 

codes; however, the performance improved considerably when including all report subfields for 

these codes (Supplementary Tables 6-7). Interestingly, the code for cytogenetic testing (CPT 

88271) also experienced large improvements in sensitivity and specificity by incorporating other 

report subfields (Supplementary Table 7). 

 
Table 1: Summary of distribution of AUCs across CPT codes for BERT, XGBoost and SVM 
prediction models for diagnostic and all-fields text 

Model Report Subfields Median 1st Quartile 3rd Quartile 

BERT Diagnosis 0.990 0.973 0.995 
 

All-Fields 0.995 0.985 0.999 

XGBoost Diagnosis 0.985 0.974 0.994 
 

All-Fields 0.997 0.994 0.999 

SVM Diagnosis 0.966 0.954 0.984 
 

All-Fields 0.977 0.957 0.992 
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Figure 4: CPT Code Model Performance: Grouped boxenplots demonstrating performance of 
machine learning models (BERT, XGBoost, SVM) across CPT codes (distribution of AUCs 
reported for each CPT code), given analysis of either the diagnostic text (blue) or all report 
subfields (orange) 
 
We also visualized which words were found to be important for a subsample of diagnostic codes 

using the XGBoost algorithm (Figure 5). Reports that were assigned the same CPT code 

clustered together in select low dimensional representations learned by some of the All Fields 

BERT models (Figure 6A,C,E). Model-based interpretations of a few sample sentences for CPT 

codes using the Diagnosis BERT approach revealed important phrases that aligned with 

assignment of the respective CPT code (Figure 6C,D,F). Finally, we included a few examples of 

the attention mechanism used in the BERT approach, which highlights some of the many 

semantic/syntactic dependencies that the model is finding within text subsections (Figure 7). 

These attention matrices were plotted along with importance assigned to subsections of 

pathology reports using the All-Fields model (Figure 8), all with their respective textual content. 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 13, 2021. ; https://doi.org/10.1101/2021.03.13.21253502doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.13.21253502


 
Figure 5: SHAP interpretation of XGBoost predictions: Word clouds demonstrating words 
found to be important using the XGBoost algorithm for prediction of specific CPT codes, found 
via shapley attribution; important words pertinent to each CPT code indicated by relative size of 
the word in the word cloud; word clouds visualized for three example CPT codes: A-B) CPT 
code 88189; C-D) CPT code 88313; E-F) CPT code 88360; visualizations performed for A,C,E) 
diagnostic text only, B,D,F) all report subfields (all-fields) 
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Figure 6: Embedding and Interpretation of BERT Predictions: A,C,E) UMAP projection of 
All-Fields BERT embedding vectors after applying attention mechanism across report subfields; 
each point is report with information aggregated from all report subfields; B,D,F) Select 
diagnostic text from individual reports interpreted by Integrated Gradients to elucidate words 
positively and negatively associated with calling the CPT code; Integrated Gradients was 
performed on the diagnostic text BERT models; Utilized CPT codes: A-B) CPT code 88307, C-
D) CPT code 88342, E-F) CPT code 88360 
 

Figure 7: BERT Diagnostic Model Self-Attention: Output of self-attention maps for select 
self-attention heads/layers from the BERT diagnostic text model visualizes various layers of 
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complex word-to-word relationships for assessment of a select pathology report that was found 
to report CPT code 88307   

 
Figure 8: BERT All-Fields Model Interpretation: Visualization of importance scores assigned 
to pathology report subfields outside of the diagnostic section for three separate pathology 
reports (A-C) that were assigned by raters CPT code 88360; information from report subfields 
that appear more red were utilized more by the model for the final prediction of the code; 
attention scores listed below the text from the subfields and title of each subfield supplied  
 
Pathologist Specific Language 

After subsetting to 64,583 documents that are correspondent to the twenty pathologists with the 

most sign-outs, prediction of the pathologist who had written each pathology report was done 

with reasonably high accuracy for the XGBoost and BERT approaches. BERT (macro-f1=0.72) 

performed comparably to XGBoost (macro-f1=0.71) for prediction of pathologist on the 

diagnostic text; BERT (macro-f1=0.77) and XGBoost (macro-f1=0.78) also performed 

comparably when considering all report subfields (all-fields) (Supplementary Figure 9). Model 

performance improved when incorporating all report subsections. Interestingly, these 

pathologist-specific subtleties could not be distinguished via the SVM approach 

(Supplementary Table 4,8). Comparisons between the embeddings formed by the All-Fields 

model and that using UMAP (Figure 9A-B) shows how the BERT methodology is able to extract 

features that are more pathologist specific as compared to utilizing a Bag-of-Words approach. 

Comparing which pathologists were misclassified via the confusion matrix (Supplementary 
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Figure 6B) and corroboration with cross tabulations with procedural codes (Supplementary 

Figure 6A) demonstrates that pathologists with similar subspecialties were less distinguishable, 

however individual patterns persist. We visualized some of the patterns that BERT was able to 

find in sample sentences via Integrated Gradients and important words via the XGBoost for 

select pathologists using SHAP (Figure 10). 

 
Figure 9: Pathology Reports Colored by Practicing Pathologist: UMAP embeddings of 
pathology reports, colored by the pathologist who had written the report; each point indicates a 
pathology report, projected from use of either: A) Bag-Of-Words / tf-idf count matrix; B) 
embeddings after integrating information from all report subsections via the BERT all-fields 
model   
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Figure 10: Interpretation of BERT and XGBoost Models for Pathologist Prediction: Word 
cloud output of top words (size of word indicates importance; importance determined using 
SHAP) for XGBoost model prediction of specific pathologist and Integrated Gradients 
highlighting of text via the BERT diagnostic model for select pathologists: A) Pathologist 5; B) 
Pathologist 20 
 
Discussion 

In this study, we characterized a large corpus of almost 100,000 pathology reports at a mid-

sized academic medical center. We demonstrated that the pathology report subfields contained 

pertinent diagnostic and procedural information that could adequately separate our text corpus 

based on CPT code and signing pathologist. . Our studies indicate that the XGBoost and BERT 

methodologies produce highly accurate predictions of CPT codes, which has the potential to 

save operating costs by first suggesting codes prior to manual inspection and flagging potential 

manual coding errors for review. Previous studies predicting CPT codes have largely been 

unable to characterize the importance of different subsections of a pathology report. Using the 

BERT method, we were also able to show that significant diagnostic / coding information is 

contained in non-diagnostic subsections of the pathology report, particularly the Clinical 

Information and Specimen Processing sections. This is expected, as many of the CPT codes 

are based on procedure type / specimen complexity. Furthermore, we were able to assess 

nuanced pathologist specific language, which was largely determined by specialty (e.g. 

subspecialities like cytology use highly regimented language making it more difficult to separate 

practitioners). While our prediction accuracy is comparable to previous reports of CPT prediction 

using machine learning methods, our work covers a wider range of codes than previously 

reported, compares the different algorithms through rigorous cross-validation, reports 

significantly higher sensitivity and specificity, and demonstrates the importance of utilizing other 

parts of the pathology report for procedural code prediction.  
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It was interesting to note how some of the clinical codes for acquisition and quantification of 

markers on specialized stains (CPT 88341, 88342, 88344, 88360) performed the worst overall. 

The revision of CPT codes 88342 and 88360, and addition of CPT codes 88341 and 88344 in 

2015 lay just outside of the range of the data collection period, which was from June 2015 to 

June 2020 50. Evolving coding/billing guidelines will always present challenges when developing 

NLP guidelines for clinical tests, though results did indicate that overall, temporal changes in 

coding did not significantly affect the ability to predict codes using a wide variety of machine 

learning techniques. Since major improvements were obtained through incorporating the other 

report subfields for the codes, non-diagnostic text may be more important for records of 

specialized stain processing and should be utilized as such.   

 

Limitations 

There are a few limitations to our work. For instance, due to computational constraints, most 

BERT models can only take as input 512 words at a time. We utilized a pretrained BERT model 

that inherited knowledge from large existing biomedical data repositories at the expense of 

flexibility in sequence length size (i.e. we could not modify the word limit while utilizing this pre-

trained model). We noticed that in our text corpus, less than 2% of reports were longer than this 

limitation and thus had to be truncated when input into the deep learning model, which may 

impact results. Potentially, longer pathology reports describe more complicated cases, of which 

may utilize additional procedures. From our cluster analysis, we demonstrated that this 

appeared to be the case for a subset of report clusters, though for one cluster, the opposite was 

true. However, a vast majority of pathology reports fell within the BERT word limits, so we 

considered any word length based association with CPT code complexity to have negligible 

impact on the model results. The XGBoost model, alternatively, is able to operate on the entire 

report text. Thus, XGBoost may more directly capture interactions between words spanning 

across document subsections pertaining to complex cases, which may serve as one plausible 
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explanation of its apparent performance increase with respect to the deep learning approaches. 

Due to the significant compute time on many of these algorithms, we performed limited 

hyperparameter tuning.  

 

Future Directions 

While much of the patient’s narrative may be told separately through text, imaging, and omics 

modalities 51, there is tremendous potential to integrate semantic information contained in 

pathologist notes with imaging and omics modalities to capture a more holistic perspective of 

the patient’s health and integrate potentially useful information that could otherwise be 

overlooked. For instance, the semantic information contained in a report may highlight specific 

morphological and macro-architectural features in the correspondent  biopsy specimen that an 

image-based deep learning model might struggle to identify without additional information. 

Although XGBoost demonstrated equivalent performance with the deep learning methods used 

for CPT prediction, its usefulness in a multimodal model is limited because these machine 

learning approaches rely heavily on the feature extraction approach, where feature generation 

mechanisms using deep learning can be tweaked during optimization to complement the other 

modalities. Alternatively, the semantic information contained within the word embedding layers 

of the BERT model can be fine-tuned when used in conjunction with or directly predicting on 

imaging data allowing for more seamless integration of multi-omic data. There is also potentially 

useful information to be gained by working to identify text that can distinguish pathologists within 

subspecialties rather than identify pathologists across subspecialties. This information can be 

useful in helping to create more standardized lexicons / diagnostic rubrics (for instance, The 

Paris System for Urine Cytopathology 52). Research into creating a standard lexicon for 

particular specialties or converting raw free text into a standardized report could be very fruitful 

especially for the positive impact it would have in allowing non-pathologist physicians to more 

easily interpret pathology reports and make clinical decisions.  
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We are also interested in investigations of outlier text as a marker of uncertainty. For instance, if 

there is a text content outlier in a body of reports with the same CPT code then we can 

hypothesize that such text may be more prone to ambiguous phrases or hedging, from which 

pathologists may articulate their uncertainty for a definitive diagnosis. We would also like to 

assess the impact of hedging in the assignment of procedural codes, and furthermore its 

subsequent impact on patient care. To ameliorate these differences in reporting patterns, 

generative deep learning methods can be employed to summarize the text through generation 

of a standard lexicon. Other excellent applications of BERT-based text models include 

prediction of relative value units (RVU’s) via report complexity for pathologist compensation 

calculations and detection of cases that may have been mis-billed which can potentially save 

the hospital resources. We also plan to incorporate newer deep learning architectures, such as 

the Reformer or Albert, which do not suffer from the word length limitations of BERT, though 

training all possible language models was outside of the scope of our study. 

 

Conclusion 

In this study, we compare three cutting-edge machine learning techniques for the prediction of 

CPT codes from pathology text. Our results provide additional evidence for the utility of machine 

learning models to predict CPT codes in a large corpus of pathology reports acquired from a 

mid-sized academic medical center. Furthermore, we demonstrated that utilizing text from parts 

of the document other than the diagnostic section aids in the extraction of procedural 

information. While the XGBoost and BERT methodologies both yielded comparable results, 

either method can be used to improve the speed and accuracy of coding by suggestion of 

relevant CPT codes to coders, though deep learning approaches present the most viable 

methodology for incorporating text data with other pathology modalities.  
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