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SUMMARY 

COVID-19 pathology involves dysregulation of diverse molecular, cellular, and physiological processes. 

In order to expedite integrated and collaborative COVID-19 research, we completed multi-omics 

analysis of hospitalized COVID-19 patients including matched analysis of the whole blood 

transcriptome, plasma proteomics with two complementary platforms, cytokine profiling, plasma and 

red blood cell metabolomics, deep immune cell phenotyping by mass cytometry, and clinical data 

annotation. We refer to this multidimensional dataset as the COVIDome. We then created the 

COVIDome Explorer, an online researcher portal where the data can be analyzed and visualized in real 

time. We illustrate here the use of the COVIDome dataset through a multi-omics analysis of 

biosignatures associated with C-reactive protein (CRP), an established marker of poor prognosis in 

COVID-19, revealing associations between CRP levels and damage-associated molecular patterns, 

depletion of protective serpins, and mitochondrial metabolism dysregulation. We expect that the 

COVIDome Explorer will rapidly accelerate data sharing, hypothesis testing, and discoveries worldwide. 
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INTRODUCTION 

Throughout the course of the COVID-19 pandemic, researchers around the world have made 

significant progress in the understanding of diverse aspects of the condition, including the epidemiology 

of SARS-CoV-2 infection and the underlying molecular, cellular, and physiological processes 

dysregulated in COVID-19 patients. This included completion of sophisticated genetic, molecular, and 

cellular analyses, as well as launching of myriad clinical trials. In many instances the rapid pace of 

discoveries has been facilitated by the assembly of large collaborations. Another factor accelerating the 

pace of research is the widespread use of pre-print collections where papers under peer-review can be 

accessed freely ahead of publication. However, we posit that the speed of research is being hampered 

by the lack of widely accessible, analysis-ready public datasets that could be analyzed in real time by 

experts and non-experts alike. Although great progress has been made in publication policy in terms of 

ensuring that the data fueling published discoveries are made accessible through public data 

repositories, most datasets remain inaccessible to broad audiences and can be downloaded and re-

analyzed only by experts. In order to further accelerate research at a global scale, we created a 

multidimensional dataset derived from hospitalized COVID-19 patients versus COVID-19-negative 

controls, known as the COVIDome dataset, and made it readily accessible through a user-friendly 

platform, the COVIDome Explorer researcher portal. 

The COVIDome dataset includes demographics and clinical data, along with matched analysis of the 

whole blood transcriptome via RNAseq (measuring 16,000+ RNAs), analysis of the plasma proteome 

by complementary SOMAscan® assays (measuring 5000+ epitopes), mass-spectrometry (400+ 

abundant proteins), and multiplexed cytokine profiling (80+ immune modulatory factors), analysis of the 

plasma and red blood cell metabolomes by mass-spectrometry, deep immune phenotyping by mass 

cytometry (measuring 50+ immune cell types), and seroconversion assays. All datasets are publicly 

accessible through a user-friendly, analysis-ready researcher portal dubbed the COVIDome Explorer 

(www.covidome.org). In this manuscript, we describe how the datasets were generated and analyzed, 

and explain how to use the COVIDome Explorer for rapid hypotheses testing, hypothesis generation, 

and real-time discoveries by experts and non-experts. We illustrate the prowess of the COVIDome 
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dataset by completing a multi-omics analysis of biosignatures associated with varying levels of C-

reactive protein (CRP), a clinical marker of poor prognosis in COVID-19 (Liu et al., 2020; Xu et al., 

2020). This analysis revealed that high CRP levels associate with damage-associated molecular 

patterns (DAMPs), depletion of key members of the serpin family of serine protease inhibitors, and 

metabolic changes indicative of mitochondrial dysfunction.  
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RESULTS. 

The COVIDome: a multi-omics dataset for the study of COVID-19.  

In order to investigate variations in the endotype of COVID-19 patients, we completed a multi-omics 

assessment of 105 research participants, including 73 hospitalized COVID-19 patients versus 32 

COVID-19-negative controls (Figure 1A). The demographics and clinical characteristics of this cohort 

are described in Supp. File 1. All COVID-19-positive participants were hospitalized due to moderate 

symptoms, but none had developed severe clinical disease requiring ICU admission at the time of 

blood collection. COVID-19 positivity was defined from results of PCR and/or antibody testing within 14 

days of the research blood draw. Blood samples were analyzed by a matched multi-omics assessment 

of the transcriptome via RNAseq of whole blood, plasma proteomics using two alternative platforms 

[mass spectrometry (MS) and SOMAscan®], cytokine profiling using multiplexed immunoassays for 

80+ immune factors using Meso Scale Discovery (MSD) assays, plasma and red blood cell (RBC) 

metabolomics via mass spectrometry, immune cell phenotyping via mass cytometry (MC), and 

seroconversion assays for detection of antibodies against SARS-CoV-2 nucleocapsid and spike 

polypeptides (Figure 1A). Importantly, all datasets were generated from different fractions of the exact 

same blood draw from each research participant, which enables effective cross-platform analyses. 

To generate the transcriptome dataset, whole blood was collected in PAXgene RNA tubes, RNA 

extracted and subjected to next generation sequencing (see Methods). Analysis of the transcriptome 

dataset using DeSeq2 (Love et al., 2014) identified 2299 differentially expressed genes (DEGs) in the 

bloodstream of the COVID-19 patients (Figure 1B). Examples of significantly upregulated DEGs 

include specific immunoglobulin sequences (e.g. IGHV1-24), indicative of seroconversion, as well as 

interferon-stimulated genes (e.g. Interferon-stimulated gene 15, ISG15), indicative of an antiviral 

transcriptional response. An interactive volcano plot similar to that in Figure 1B enabling real time data 

visualization can be found in the Transcriptome dashboard of the COVIDome Explorer at 

https://covidome.shinyapps.io/Transcriptome/. DeSeq2 results can be found in Supp. File 2. 

To generate the SOMAscan® proteomics dataset, plasma was analyzed with SOMAmer® technology 

to measure the abundance of 5000+ epitopes corresponding to 3000+ unique proteins (see Methods). 
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Using a linear model adjusting for age and sex, we identified 970 differentially abundant epitopes in the 

plasma of COVID-19 patients (Figure 1C). Examples of significantly upregulated proteins include many 

ISGs, such as ISG15 and IFIT3 (Interferon Induced Protein with Tetratricopeptide Repeats 3) (Figure 

1C). To generate the MS proteomics dataset, the same plasma aliquot used for SOMAscan® 

proteomics was analyzed by MS (see Methods). This approach enabled the quantification of 412 

abundant proteins in plasma (Figure 1D). The MS proteomics dataset is highly complementary to the 

SOMAscan® proteomics dataset, as it enables detection of many abundant proteins for which 

SOMAmer® reagents are not available. For example, analysis of the MS proteomics dataset using a 

linear model adjusting for age and sex identified 74 differentially abundant proteins, including clear 

upregulation of immunoglobulin sequences not detected by the SOMAscan® but which were also 

detected as upregulated in the transcriptome dataset (e.g. IGHV1-24, IGLV3-1) (Figure 1D). Interactive 

volcano plots and box and whisker plots for the two proteomics datasets can be generated in the 

Proteome dashboard of the COVIDome Explorer at: https://covidome.shinyapps.io/Proteome/. Results 

of the mix linear models described here can be found in Supp. File 3 (SOMAscan® proteomics) and 

Supp. File 4 (MS proteomics). 

To generate the cytokine profile dataset, the same aliquot of plasma used for the proteomics analyses 

was employed to measure the levels of a select list of immune modulatory factors via multiplexed 

immunoassays using MSD assays. A linear model adjusting for age and sex revealed many cytokines 

differentially abundant in the bloodstream of COVID-19 patients, such as CXCL10 (C-X-C motif 

chemokine ligand 10, interferon-inducible protein 10, IP10) and IL10 (Interleukin 10) (Figure 1E). 

Interactive volcano plots and box and whisker plots for this dataset can be generated in the Cytokine 

dashboard of the COVIDome Explorer at: https://covidome.shinyapps.io/Cytokines/. Results of the  

linear model for MSD data can be found in Supp. File 5. 

To investigate metabolic dysregulation in COVID-19, we completed parallel targeted analyses of the 

RBC and plasma metabolomes using ultra-high pressure liquid chromatography coupled to mass 

spectrometry (UHPLC-MS) (see Methods). RBC and plasma metabolomic signatures inform about 

different metabolic and physiological processes, with both common and unique metabolites measured 
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in each matrix. Analysis of the RBC metabolome revealed 35 differentially abundant metabolites in the 

COVID-19 patients, such as upregulation of kynurenine, a sign of activation of the IFN-inducible 

kynurenine pathway of tryptophan catabolism (Thomas et al., 2020), and xanthine, a sign of 

dysregulated purine metabolism (Figure 1F). Identical analysis of the plasma metabolome revealed 

many differentially abundant metabolites in COVID-19 patients, including kynurenine and xanthine as 

well (Figure S1). Interactive volcano plots and box and whisker plots for the two metabolomics datasets 

can be generated in the Metabolome dashboard of the COVIDome Explorer at: 

https://covidome.shinyapps.io/Metabolome/. Results of the linear models for metabolomics can be 

found in Supp. File 6 (RBC metabolomics) and Supp. File 7 (Plasma metabolomics). 

Lastly, we completed a comprehensive map of peripheral immune cell lineages using MC, which 

enabled the identification and curation of 100+ immune cell subsets (see Methods).  Toward this end, 

we utilized peripheral blood mononuclear cells (PBMCs) purified by Ficoll gradient from the same blood 

draw used for all other datasets and stained them with a panel of 40 metal-couple antibodies designed 

to quantify many major and minor lymphoid and myeloid subsets (see Methods). In order to quantify  

differences in immune cell subsets within their parent lineage, we created 7 different immune maps, 

stemming from: 1) all live cells, 2) CD3+ T cells (all T cells), 3) CD4+ T cells, 4) CD8+ T cells, 5) CD19+ 

B cells, 6) CD11c+ monocytes (CD3-CD19-CD56-), and 7) CD1c+ myeloid dendritic cells (mDCs) 

(CD3-CD19-CD56-) (Supp. File 8).  Using a linear model adjusting for age and sex, we identified many 

immune cell types with significantly different frequency among all live cells in COVID-19-positive 

patients, such as increased frequencies of plasmablasts and decreased frequencies of CD1c+ mDCs 

(Figure 1G).  Interactive volcano plots and box and whisker plots for the 7 immune maps can be 

generated in the Immune Maps dashboard of the COVIDome Explorer at: 

https://covidome.shinyapps.io/ImmuneMaps/. Results of the mix linear models for each immune lineage 

can be found in Supp. File 8. 

In sum, the COVIDome dataset includes major data types for the study of diverse biological processes 

dysregulated in hospitalized COVID-19 patients. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.04.21252945doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.04.21252945
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9

The COVIDome Explorer: an online portal for real-time data analysis, visualization, and sharing. 

In order to facilitate quick and broad access to the COVIDome dataset, we created a user-friendly 

online portal, dubbed the COVIDome Explorer, which can be accessed online at covidome.org (see 

overview in Figure 2). 

After data curation and quality control, each of the COVIDome datasets was linked at the sample level 

with a unique identifier, enabling cross-referencing among platforms. Then, each of the datasets were 

imported into applications developed using R, R Studio, and the R-based web application framework 

Shiny. Each application includes custom-developed features that enable rapid query, visualization, and 

download of data, in an interactive environment (see Methods). The COVIDome Explorer hosts six 

dashboards: Cohort, Transcriptome, Proteome, Cytokines, Metabolome, and Immune Maps. Each 

dashboard runs within its own isolated and protected environment, hosted on the cloud-based Platform-

as-a-Service (PaaS) environment “shinyapps.io.” When a user navigates to a specific dashboard via 

URL, individual instances of the Shiny application are instantly deployed to the shinyapps.io hosting 

platform, allowing for interaction and analysis throughout the duration of the user’s session. The Cohort 

dashboard is a simple description of the research cohort involved. The other dashboards are organized 

in a similar fashion and present similar options for analysis. This similarity allows users to become 

familiar with one dashboard, and then rapidly adapt to the use of the other dashboards. Each the five 

analytical dashboards contains three tabs: Overview, Effect of COVID-19 status, and Effect of 

Seroconversion. The Overview tab provides a summary of the approach, a brief explanation on how to 

use the dashboards, and in some instances, links to data files that would guide users, such as catalogs 

of proteins, metabolites, cytokines and immune cells present in each dataset. The Overview tab also 

points to publications that provide further detail about the methodology employed. The ‘Effect of 

COVID-19 status’ tab enables users to investigate differences between the COVID-19-negative control 

cohort and COVID-19-positive patients. The ‘Effect of Seroconversion’ tab enables users to investigate 

differences among COVID-19 patients with low versus high titers of anti-SARS-CoV-2 antibodies. A 

detailed description of the metrics of seroconversion employed and the definition of ‘sero-low’ versus 

‘sero-high’ groups can be found in (Galbraith et al., 2020).  
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Upon entry into a given dashboard, users must select from a menu of options before data can be 

displayed. For the Proteome and Metabolome dashboards the first option is the choice of Platform: 

Mass spectrometry versus SOMAscan® for the Proteome, Plasma versus Red Blood Cells for the 

Metabolome. For the Immune Maps dashboard, the first choice is to select one of 7 parent lineages: 

Live Cells, CD3+ T, CD4+ T, CD8+ T, CD19+ B cells, Monocytes, Myeloid DCs. Next, users can 

choose a statistical test (linear model with age and sex adjustment; Kolmogorov-Smirnov test, 

Student’s T test, or Wilcoxon Test) and an Adjustment Method for multiple hypotheses correction 

[None, Bonferroni, Benjamini-Hochberg (false discovery rate, FDR)]. Users with a pre-formed 

hypothesis in mind interested in searching for a specific feature of interest (e.g. specific mRNA, protein 

or immune cell type) may opt out of a multiple hypothesis adjustment method. In contrast, users 

exploring the data in an unbiased fashion should select an adjustment method to account for multiple 

hypotheses testing. Two other filters are sex (both, Male, Female) and Age (All, 21 & Over), which 

enable users to visualize all or a fraction of the dataset. At this stage, users can ‘Apply filters and 

generate plot’, which would then lead to the appearance of an interactive Volcano plot displaying the 

results. Users can then ‘mouse over and click’ individual features in the Volcano plot to display a box 

and whisker plot for that specific feature. Alternatively, users can use the searchable menus to find a 

feature of interest. Once an individual feature has been selected, live links to external databases 

become available, including Pubmed, GeneCards, GTEx, NCBI and Wikipedia, thus allowing users to 

navigate away from the COVIDome Explorer and learn more about a gene, protein, cytokine, 

metabolite, or immune cell type of interest. Of note, both Volcano Plots and Box and Whisker Plots can 

be downloaded as scalable vector graphics (.svg) files. 

In each dashboard, the data being visualized can be accessed through the ‘Aggregated Data’ or 

‘Sample Level Data’ tabs, two distinct interactive spreadsheets. In these tabs, users can filter by fold 

change and p value, sort by any of the columns visible (e.g. gene/protein name, fold change, p value), 

and search for individual features. Users can then download the data as comma separated values file 

(.csv), Microsoft Excel spreadsheet (.xlsx), or pdf files. 
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Altogether, the COVIDome Explorer dashboards enable data access and analysis by a broad range of 

users with different degrees of bioinformatics and biostatistics literacy, from those simply interested in a 

group comparison for a single protein, to those interested in sophisticated off-line analyses of the 

downloaded datasets. 

 

CRP levels associate with damage-associated molecular patterns. 

To illustrate the utility of the matched multidimensional COVIDome datasets, we analyzed multi-omics 

biosignatures associated with varying levels of CRP, an acute phase protein whose elevation in 

circulation has been consistently associated with poor prognosis in COVID-19. Repeatedly, higher CRP 

levels at the time to hospitalization and/or rapid rise in CRP levels during hospitalization have been 

associated with increased probability of developing severe COVID-19 pathophysiology (Mousavi-Nasab 

et al., 2020; Mueller et al., 2020; Sharifpour et al., 2020). As expected, CRP is also elevated in our 

cohort of COVID-19 patients as measured by MS proteomics, as well as other acute phase proteins 

such as ferritin (FTL) (Figure 3A). In order to identify biosignatures associated with CRP levels among 

COVID-19-positive patients, we calculated Spearman correlations between CRP values measured by 

MS and all features in all COVIDome datasets, which revealed myriad mRNAs, proteins, and 

metabolites significantly associated with CRP levels (Figure S2A-F, Supp. Files 9-15). This analysis 

exercise confirmed known associations, such as positive correlations between CRP levels and the 

levels of serum amyloid proteins SAA1 and SAA2, the acute phase protein LBP (Lipopolysaccharide 

Binding Protein), and the cytokines IL6 and IL10 (Figure 3B, Figure S2B) (Jain et al., 2011). Notably, 

there were no significant associations between CRP levels and frequencies of immune cell types, 

neither among all live cells or within major lymphoid and myeloid lineages, with the sole exception of 

increase frequencies of inflammatory subsets of monocytes (Figure S2G-H, Supp. File 15). 

In order to investigate associations between CRP levels and underlying pathophysiological processes, 

we first performed Metascape pathway enrichment analysis of the positively correlated proteins 

measured by SOMAscan®. Somewhat expectedly, this analysis revealed enrichment of several groups 

of proteins associated with immune activation, such as signatures associated with Systemic Lupus 
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Erythematosus (SLE, e.g. CXCL10), Positive Regulation of Th2 Cytokines (e.g. IL6), Acute 

Inflammatory Response, Cytolysis (composed mostly of complement subunits), and IFN-γ-mediated 

Signaling Pathway (Figure 3C-D). Interestingly, this analysis also identified protein signatures 

associated with DNA Methylation and Response to Heat. The DNA methylation group is comprised of 

19 features including chromatin-associated factors (e.g., DNMT3L, DPY30, SUDS3, RBBP4, RBBP5) 

and several histones (e.g., HIST1H3A, H2AFZ, HIST2HA, HIST2H2BB) (Figure 3E). For example, 

H2AFZ (H2AZ) is significantly correlated with CRP and elevated in the plasma of COVID-19 patients 

(Figure 3F). The Response to Heat signature has 12 features, four of which are heat shock proteins 

(HSPA1A, HSPA1B, HSP90AA1, HSPH1) including HSPA1A (HSP72) which is both significantly 

correlated with CRP and elevated in COVID-19 (Figure 3G-H). Interestingly, both histones and heat 

shock proteins can function as Damage Associated Molecular Patterns (DAMP) molecules whose 

presence in the bloodstream is consistently associated with tissue damage and trauma, and which in 

turn function as ligands for amplification of innate immune signaling (Huang et al., 2011). Circulating 

histones can be released from dying cells in the liver and they have been shown to drive downstream 

damage to both pulmonary and hepatic endothelial cells (Kawai et al., 2016). Histones in the 

bloodstream could also be interpreted as a sign of netosis and formation of neutrophil extracellular 

traps (NETS) (Papayannopoulos, 2018). HSPs have also been identified as DAMPs produced by a 

number of tissues upon injury, including liver (Martin-Murphy et al., 2010) and kidney (Sabapathy et al., 

2020), further exacerbating inflammation at the damaged tissue.  

Notably, analysis of the correlations between CRP levels and mRNAs measured in the whole blood 

transcriptome identifies several histone mRNAs among the top correlations (Figure S2A, Supp. File 9). 

In fact, the most positively correlated mRNA is H2BC12, one of the H2B-encoding genes, and the fifth 

most correlated gene is H2AC19, one of the H2A-encoding genes, both elevated in the whole blood 

transcriptome of COVID-19-positive patients (Figure S2I). Given that the mRNAs captured in this 

transcriptome analysis are derived from circulating immune cells and that histone mRNAs are 

transcribed during the S phase of the cell cycle, this could be interpreted as a sign of immune cell 

activation and proliferation (and potentially cytolysis) in patients with higher CRP levels. 
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Altogether, these results indicate that high CRP levels in COVID-19 associate not only with activation of 

inflammatory pathways, but also with elevated DAMPs, indicative of tissue damage.  

 

CRP levels associate with depletion of key protective serpins. 

Analysis of the proteins negatively correlated with CRP levels revealed that in both proteomics datasets 

the most anti-correlated proteins are SERPINA5 (Protein C Inhibitor, PCI, Plasminogen Activator 

Inhibitor 3, PAI3) and SERPINA4 (Kallistatin), two members of the serpin family of serine protease 

inhibitors (Figure 4A-B, Figure S2B-C, Figure S3, Supp. Files 10-11). Both SERPINA5 and 

SERPINA4 play protective roles during vascular and organ injury (Chao et al., 2016; Suzuki, 2008), but 

the mechanisms driving these protective effects remain to be elucidated. SERPINA5 is a multifunctional 

serpin that can act as both a procoagulant via inhibition of activated protein C and thrombin, but also as 

an anticoagulant by inhibiting several coagulation factors including plasma kallikrein (KLKB1, kallikrein 

B1) (Meijers et al., 1988), tissue kallikreins (Ecke et al., 1992), prothrombin, and factors XI and Xa, 

among others (Suzuki, 2008). SERPINA4/Kallistatin is a potent inhibitor of tissue-specific kallikreins 

(KLKs) (Chao et al., 2016). Notably, both of these serpins converge on inhibition of KLKs, a family of 

serine proteases involved not only in control of coagulation and fibrinolysis, but also production of 

vasoactive kinin peptides, such as bradykinin, as well as activation of the complement cascade 

(Irmscher et al., 2018; Ricklin and Lambris, 2007). Therefore, we investigated if CRP levels correlated 

significantly with dysregulation of components of the interconnected coagulation and complement 

cascades (Supp. File 16). Indeed, CRP correlated negatively with circulating levels of both the plasma 

kallikrein KLKB1 and the tissue kallikrein KLK13, which are depleted in COVID-19 (Figure 4D,E),  and 

positively with numerous complement subunits upregulated in COVID-19 including C9, C5, C3 and C2, 

among others (Figure 4C,F,G).  

Altogether, these results indicated that the prognostic value of high CRP levels in COVID-19 could be 

potentially tied to the accompanying depletion of important protective serpins and consequent 

dysregulation of the coagulation, fibrinolysis, and complement cascades, both of which have been 

involved in the etiology of severe COVID-19 pathology (Lo et al., 2020). 
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CRP associates with dysregulated mitochondrial metabolism in peripheral blood cells. 

Next, we investigated associations between CRP levels and metabolic changes detected in the plasma 

and RBC metabolomics datasets. CRP correlated significantly with 25 plasma metabolites and 13 RBC 

metabolites (Figure S2E-F, Supp. Files 13-14). The tryptophan catabolite kynurenine is significantly 

positively correlated with CRP levels in both metabolomics datasets (Figure S2E-F, Supp. Files 13-

14). Activation of the kynurenine pathway is often associated with inflammation and has been 

demonstrated in COVID-19 (Thomas et al., 2020). Further analysis of the top positive correlations in the 

plasma metabolome revealed multiple associations indicative of dysregulated mitochondrial metabolism 

in patients with elevated CRP. Three different carbon sources for the tricarboxylic acid (TCA) cycle 

were positively correlated with CRP, including the branched chain amino acids leucine (the most 

positively correlated metabolite) and isoleucine; pyruvate; and several acyl-carnitines (e.g. O-

dodecenoyl-carnitine, tetradecenoyl carnitine, O-dodecanoyl-carnitine) (Figure 5A-B, Supp. File 13). 

Lactate, which can be oxidized to pyruvate by lactate dehydrogenase, was also significantly positively 

correlated with CRP (Figure 5A). Increases in lactate and pyruvate can be interpreted as increased 

glycolysis in patients with high CRP, perhaps driven by hypoxia of carbon flow from pyruvate to acetyl-

CoA. Increased glycolysis is a metabolic consequence of both immune cell activation and hypoxemia 

(Frauwirth et al., 2002; Jellusova, 2020; Makowski et al., 2020; Michalek et al., 2011; van Teijlingen 

Bakker and Pearce, 2020). Importantly, each of these three classes of metabolites represent entry 

points to the TCA cycle and elevated levels of these features are consistent with mitochondrial 

dysfunction and decreased activity in the TCA cycle and the electron transport chain (ETC). 

Given that these metabolic associations between CRP and plasma metabolites could be due to 

metabolic dysregulation in peripheral blood cells and/or various host tissues, we asked if these 

associations could be explained by gene expression changes in circulating blood cells by analyzing the 

whole blood transcriptome dataset.  We used the Ingenuity Pathway Analysis (IPA) software to identify 

gene sets enriched among the RNAs positively and negatively correlated with CRP, with a focus on 

metabolic pathways. Strikingly, the most significantly enriched metabolic pathway among negatively 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.04.21252945doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.04.21252945
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15

correlated mRNAs is Oxidative Phosphorylation (OXPHOS) (Figure 5B, see Figure S4A for positively 

correlated gene sets). The Oxidative Phosphorylation gene signature is comprised of 54 genes 

including many components of the ETC, such as NADH:ubiquinone oxidoreductase subunits, 

cytochrome C complex subunits, and ATP synthase subunits, among others (Figure 5C). For example, 

expression of NDUFV3 (NADH:Ubiquinone Oxidoreductase Subunit V3, Complex I, Mitochondrial 

Respiratory Chain, 10-KD Subunit) and COX4I1 (Cytochrome C Oxidase Subunit 4I1) are both 

negatively correlated with CRP levels and significantly decreased in COVID-19 patients, as is the 

Mitochondrially Encoded Cytochrome C Oxidase III (MT-CO3) (Figure 5D). Therefore, accumulation of 

TCA carbon sources in plasma could be linked to decreased gene expression of ETC components in 

circulating blood cells. Interestingly, we noticed that the mRNAs encoding the glucose transporter 

SLC2A3 (GLUT3) and the monocarboxylate transporter SLC16A3 (monocarboxylate transporter 4, 

MCT4), were both positively and significantly correlated with CRP in the whole blood transcriptome of 

COVID-19 patients (Figure S4B). Increases in surface expression of SLC2A3 have been noted during 

activation of diverse lymphocytes, neutrophils and platelets, and thought to mediate increased glucose 

uptake to fuel cell activation (Simpson et al., 2008). SLC16A3 catalyzes the bidirectional transport 

across the plasma membrane of many monocarboxylates such as lactate, pyruvate, as well as 

branched-chain oxo-acids derived from leucine, valine and isoleucine. In innate immune cells, lactate is 

produced and exported in large amounts via SLC16A3 during pro-inflammatory responses and its 

expression is upregulated in activated macrophages (Weiss and Angiari, 2020). Furthermore, SLC16A3 

expression is necessary for macrophage activation, as its deletion results in intracellular accumulation 

of lactate and decreased glycolysis (Weiss and Angiari, 2020). 

Altogether, the metabolic changes associated with CRP could be understood, in part, as the byproduct 

of metabolic remodeling of circulating blood cells, whereby decreased expression of OXPHOS genes 

and increased expression of glucose and monocarboxylate transporters would lead to increased 

glucose uptake, decreased OXPHOS, and consequent accumulation of glycolysis end products 

(lactate, pyruvate) and other carbon sources for the TCA cycle (branched chain amino acids, acyl 

carnitines). 
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DISCUSSION. 

The global health crisis imposed by the COVID-19 pandemic has inspired new approaches for rapid 

collaboration, open access to manuscripts under review, and data sharing. Here, we describe the rapid 

creation of a user-friendly researcher portal enabling easy access and real-time analysis of matched 

multi-omics datasets for COVID-19. The first batch of biospecimens for the COVIDome project was 

received by this team in July 2020, and the COVIDome Explorer was publicly launched in November 

2020, thus spanning only five months from sample processing to portal launch. Between November 

2020 and February 2021, more than 500 unique users had utilized the portal according to session data 

gathered from Google Analytics. Currently, the second batch of samples is being subjected to identical 

multi-omics analyses. Importantly, the COVIDome Explorer can easily ingest datasets from other teams 

to be displayed in its dashboards, which would then enable the comparison of results across different 

studies. 

With the advent of multi-omics platforms, it is now possible to rapidly investigate hundreds of molecular, 

cellular, and physiological processes from a single biospecimen. Such a systems biology approach 

enables the integration of findings across different methodologies and layers of biological information to 

expedite the pace of discovery into the etiology of a medical condition. In this report, we illustrate the 

power of this approach by exploring biosignatures associated with CRP, a well characterized marker of 

inflammation across a numerous medical conditions, including COVID-19. Although it is well 

established that CRP levels and trajectory have prognostic value in COVID-19 (Mousavi-Nasab et al., 

2020; Mueller et al., 2020; Sharifpour et al., 2020), the exact pathophysiological processes associated 

with this clinical biomarker of inflammation remain to be fully elucidated. What exactly is being revealed 

by high baseline levels and/or rapidly elevation of CRP in COVID-19? Our analysis demonstrates that, 

in addition to the well-established links between CRP and other markers of inflammation and immune 

activity, CRP levels associate with DAMPs, depletion of protective serpins, and dysregulation of 

mitochondrial metabolism in blood cells in COVID-19.  
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The association between CRP and DAMPs reveals that CRP levels inform about the extent of tissue 

damage in COVID-19. High levels of CRP associate with increased circulating levels of intracellular 

proteins released into the bloodstream during organ damage (e.g. histones, HSPs), and which in turn 

can further exacerbate the inflammatory phenotype. In turn, increased tissue damage could be 

conceptually tied to the clear depletion of the protective serpins SERPINA4 and SERPINA5, the most 

anti-correlated proteins with CRP in our proteomics datasets. SERPINA4/5 depletion could lead to 

exacerbated, harmful levels of activity within the coagulation system, kallikrein-kinin system, and 

complement cascade, all of which can contribute to COVID-19 pathology.  Depletion of SERPINA5 

could unleash a protease storm within the coagulation cascade, leading to coagulopathies and 

thromboembolism in COVID-19 (Becker, 2020). Given that both SERPINA4 and SERPINA5 inhibit 

KLKs, the serine proteases driving production of the vasoactive peptide bradykinin, their depletion 

could contribute to the so called ‘bradykinin storm’ in COVID-19 linked to accumulation of fluids in the 

lungs and respiratory failure (Garvin et al., 2020). Lastly, since KLKs also activate the complement 

cascade, SERPINA4/5 depletion could lead to harmfully high levels of complement activity and 

consequent tissue damage by the membrane attack complex (MAC). Of note, all these processes are 

suitable to pharmacological modulation and the focus of many ongoing clinical trials testing the efficacy 

of blood thinners (Rentsch et al., 2021), kinin receptor antagonists (van de Veerdonk et al., 2020), and 

complement inhibitors (Mastellos et al., 2021) in COVID-19.  Therefore, we posit that CRP could serve 

as a biomarker to stratify the patient cohorts in these clinical trials to assess potential differences 

between individuals with varying CRP levels. We also hypothesize that SERPINA4 and/or SERPINA5 

administration could be a valid therapeutic strategy in COVID-19 to reduce organ damage, especially in 

patients with high CRP levels (Rau et al., 2007; Suzuki, 2008). 

Interpretation of the association between CRP levels and markers of dysregulated mitochondrial 

metabolism must consider a combination of metabolic effects on circulating blood cells and host 

tissues. Plasma metabolomics can inform about metabolic alterations in the peripheral immune cell 

repertoire, platelets and RBCs, but also about dysregulated metabolism in various organs. CRP levels 

correlated with increased levels of three different carbon sources for the TCA cycle: branched chain 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.04.21252945doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.04.21252945
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18

amino acids (leucine, isoleucine), end products of glycolysis (lactate, pyruvate), and acyl carnitines, all 

of which could be explained by decreased activity in the TCA cycle and electron transport chain (ETC). 

Indeed, when analyzing the transcriptome of circulating immune cells, the top gene signature negatively 

associated with CRP was Oxidative Phosphorylation, with expression of many components of the ETC 

being downregulated in patients with high CRP. Furthermore, these changes were accompanied by 

increase mRNA expression of the glucose transporter SLC2A3 and the monocarboxylate transporter 

SLC16A3, which can be associated to activation of different immune cell subsets (Simpson et al., 2008; 

Weiss and Angiari, 2020). Dysregulation of mitochondrial metabolism is increasingly appreciated in 

COVID-19 (Burtscher et al., 2020). Notably, disruption of the TCA cycle has been reported downstream 

of inflammatory stimulation via a mechanism shunting citrate to succinate driving additional 

inflammation, largely in myeloid cells (Makowski et al., 2020; Mills et al., 2016; Tannahill et al., 2013). 

Importantly, downregulation of oxidative phosphorylation and ETC genes has been demonstrated in the 

liver in the case of hepatitis C infection (Gerresheim et al., 2019), and in the diaphragm, liver, and 

peripheral blood during sepsis (Callahan and Supinski, 2005; Eyenga et al., 2014; Weiss et al., 2014). 

In sum, the COVIDome datasets and the COVIDome Explorer facilitate rapid hypothesis generation 

and testing, revealing unexpected associations between diverse molecular, cellular, and 

pathophysiological processes in COVID-19, even for well-studied factors such as CRP. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.04.21252945doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.04.21252945
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19

ACKNOWLEDGMENTS. 

We are grateful to Dr. Thomas Flaig and the Office of the Vice Chancellor For Research at the 

University of Colorado Anschutz Medical Campus for their leadership in setting up the COVID-19 

Biobank at the University of Colorado and also to the COVID-19 Biobank Steering Committee for 

overall support of this project. We thank members of the Biorepository Shared Resource, especially Dr. 

Adrie Van Bokhoven, Zachary Grasmick, and Hannah Schumman; members of the Human Immune 

Monitoring Shared Resource, especially Dr. Jill Slansky, Jodi Livesay, Troy Schedin, and Dr. Jennifer 

McWilliams; members of the Flow Cytometry Shared Resource of the University of Colorado Cancer 

Center, specially Dr. Eric Clambey, Alistair Acosta, Christine Childs, and Kristina Terrell; as well as Dr. 

Aaron Issaian for assistance with MS proteomics data analysis. We also thank the SomaLogic team for 

their support and the Meso Scale Discovery team for generous support with seroconversion assays. 

We are grateful to Dr. Ian Brooks, Dr. Michelle Edelman and the Health Data Compass Data 

Warehouse project (healthdatacompass.org) for the clinical data. 

AUTHOR CONTRIBUTIONS. JME designed the project and organized the multiple collaborations 

required for creation of the COVIDome dataset and the COVIDome Explorer. KB, NL, and MGM built 

the COVIDome database and Researcher Portal. KDS, MDG, KTK, PA, KPS, REG, RB, KRJ, SR, MD, 

JAR, RC, TC, AAM, TDB, EWYH, AD, KCH, and JME, designed experiments and analyzed data. KDS 

and JME wrote the manuscript. All authors reviewed the manuscript. 

FUNDING STATEMENT 

This work was supported by NIH grants R01AI150305, 3R01AI150305-01S1, R01AI145988, 

UL1TR002535, 3UL1TR002535-03S2, R01HL146442, R01HL149714, R01HL148151, R21HL150032, 

P30CA046934, R35GM124939 and RM1GM131968, as well as grants from the Boettcher Foundation 

and Fast Grants. Additional support was received from Chancellor’s Discovery Innovation Fund at the 

CU Anschutz Medical Campus, the Global Down Syndrome Foundation, the Anna and John J. Sie 

Foundation, and Lyda Hill Philanthropies.  

DECLARATION OF INTERESTS 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.04.21252945doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.04.21252945
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20

KDS and JME are co-inventors on two patents related to JAK inhibition in COVID-19; JME serves in the 

COVID Development Advisory Board for Elly Lilly and has provided consulting services to Gilead 

Sciences Inc. JME serves on the Cell Reports Advisory Board. 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.04.21252945doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.04.21252945
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

FIGURES AND FIGURE LEGENDS.

Figure 1. The COVIDome Dataset. A. Schematic of experimental approach. Blood samples were 

collected and processed for multi-omic analysis. Created with graphic elements from BioRender.com

B-G. Left, volcano plot indicating the impact of COVID-19, and Right, sina plots with boxes indicatin

median and interquartile range of representative features for (B) whole blood transcriptome, (C) plas

SOMAscan® proteomics, (D) plasma mass spectrometry (MS) proteomics, (E) plasma cytokine 

profiling, (F) red blood cell mass spectrometry metabolomics, and (G) mass cytometry of peripheral 

blood mononuclear cells (PBMCs). In the volcano plots, the vertical dashed midlines indicate no 

change in COVID-19 patients versus controls and the horizontal dashed lines indicate the statistical 
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off of q<0.1 (FDR10). The numbers at the top left and right of each volcano indicate the number of 

features passing the statistical cut-off. In the sina plots, q values were calculated with DeSeq2 

(transcriptome, adjusted for age and sex) or mixed linear models adjusting for age and sex (all other 

datasets). 

Figure 2. The COVIDome Researcher Portal. Schematic illustrating the design of the COVIDome 

Explorer researcher portal and its various functionalities. Created with graphic elements from 

BioRender.com. 
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Figure 3. CRP levels correlate with damage associated molecular patterns. A. Sina plots showi

values for immune factors correlated CRP levels comparing COVID-19-negative (-) to COVID-19-

positive (+) patients. Data are presented as modified Sina plots with boxes indicating median and 

interquartile range. B. Scatter plots displaying correlations between CRP levels SAA1, LBP, and IL10

MS: mass spectrometry; MSD: Meso Scale Discovery assay. Points are colored by density; lines 
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represent linear model fit with 95% confidence interval. C. Metascape pathway enrichment analysis of 

proteins detected by SOMAscan® proteomics that are significantly and positively correlated with CRP. 

D. Scatter plot displaying correlations between CRP levels and representative factors from the 

Systemic Lupus Erythematosus (CXCL10) and Positive Regulation of Th2 Cytokines (IL6) signatures. 

Points are colored by density as in B; lines represent linear model fit with 95% confidence interval. E. 

Heatmap displaying changes in circulating levels of proteins in the DNA Methylation signature that are 

significantly positively correlated with CRP levels. The left column represents Spearman rho values for 

correlation with CRP values, while the right columns display median Z-scores for each feature for 

COVID-19-negative (-) versus COVID19-positive patients (+). Z-scores were calculated from the 

adjusted values for each SOMAmer in each sample, based on the mean and standard deviation of 

COVID-19-negative samples. Asterisks indicate a significant difference between COVID-19 patients 

and the control group. F. Top, scatter plot for correlation of CRP with H2AFZ. Points are colored by 

density as in B; lines represent linear model fit with 95% confidence interval. Bottom, Sina plot for 

H2AFZ with boxes indicating median and interquartile range. G. Heatmap displaying changes in 

circulating levels of proteins in the Response to Heat group as described for C. H. Data for HSPA1A as 

described for F. q-values in F and H are derived from mix linear models.  
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Figure 4. CRP levels correlate with depletion of protective serpins. A-B. Correlation analysis of 

CRP with SERPINA5 (A) and SERPINA4 (B) Left, scatter plot for correlation of CRP with the indicat
25
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SOMAmer® reagent. Points are colored by density; lines represent linear model fit with 95% confidence 

interval. Right, Sina plot for indicated SOMAmer® reagent with boxes indicating median and 

interquartile range. C. Heatmap displaying changes in circulating levels of complement and coagulation 

proteins significantly correlated with CRP levels with an absolute rho value greater than 0.3. The left 

column represents Spearman rho values, while the right columns display median Z-scores for each 

feature for COVID-19-negative controls (-) versus COVID-19-positive patients (+). Z-scores were 

calculated from the adjusted values for each SOMAmer® in each sample, based on the mean and 

standard deviation of COVID-19-negative samples. Asterisks indicate a significant difference COVID-19 

patients and the control group. D-G. Scatter and sina plots as in A for KLKB1, KLK13, C9, and C3, 

respectively. q-values in each are derived from linear models.  
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Figure 5. CRP levels correlate with dysregulated mitochondrial metabolism in blood cells. A. 

Scatter plot dislpaying correlations between CRP levels and indicated metabolites. Points are colore

by density; lines represent linear model fit with 95% confidence interval.  B. Histogram displaying the

results of Ingenuity Pathway Analysis (IPA) of metabolic pathways for mRNAs measured in the whol

blood transcriptome analysis that are significantly and negatively correlated with CRP. C. Heatmap 

displaying expression changes in mRNAs in the Oxidative Phosphorylation (OXPHOS) IPA signature
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from B. The left column represents Spearman rho values for correlations with CRP, while the right 

columns display median Z-scores for each feature for COVID-19-negative controls (-) versus COVID-

19-positive patients (+). Z-scores were calculated from the adjusted RPKM values for each mRNA in 

each sample, based on the mean and standard deviation of COVID-19-negative samples. Asterisks 

indicate a significant difference between COVID-19 patients and the control group. D. Left, scatter plots 

for correlations between CRP and the indicated mRNAs. Points are colored by density as in A; lines 

represent linear model fit with 95% confidence interval. Right, Sina plots for indicated mRNAs with 

boxes indicating median and interquartile range. q-values in each sina plot are from DESeq2. E. 

Summary of findings indicating dysregulation of mitochondrial metabolism in the bloodstream of 

COVID-19 paients. Created with graphic elements from BioRender.com. 
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Supplementary Figure, 1 related to Figure 1. COVIDome plasma metabolomics. A. Volcano plot 

indicating the impact of COVID-19 on plasma metabolites. B. Sina plots with boxes indicating median 

and interquartile range of representative features for Kynurenine and Xanthine. q-values in each are 

from linear models. 
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Supplementary Figure 2, related to Figures 3-5. CRP correlations across the COVIDome datas

Volcano plots for Spearman correlations between CRP levels detected by mass spectrometry (MS) a

(A) whole blood transcriptome by RNAseq, (B) MS plasma proteomics, (C) plasma SOMAscan® 
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proteomics, (D) plasma cytokines, (E) plasma metabolomics, (F) red blood cell (RBC) metabolomics, 

(G), all live cell subsets detected by mass cytometry, and (H) monocyte subsets. The horizontal dashed 

lines indicated the statistical cut off of q<0.1 (FDR10). Numbers in the left and right quadrants indicate 

the number of features passing the statistical cut off. I. Top, scatter plot for correlations of CRP with 

indicated RNAs detected in the whole blood transcriptome. Points are colored by density; lines 

represent linear model fit with 95% confidence interval. Bottom, sina plots with boxes indicating 

median and interquartile range for the indicated gene. p and q values in each are from DESeq2 

analysis. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.04.21252945doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.04.21252945
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Supplementary Figure 3, related to Figure 4. Correlation analysis of CRP with MS proteomics 

measurements of SERPINA4 and SERPINA5. Left, scatter plot for correlation of CRP with indicate

protein. Points are colored by density; lines represent linear model fit with 95% confidence interval. q

values in each are from linear models. Sina plots with boxes indicating median and interquartile rang

for the indicated protein. q-values in each are from linear models.  
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Supplementary Figure 4, related to Figure 5. CRP positively correlates with expression of 

glucose and monocarboxylate transporters. A. Histogram displaying the results of Ingenuity 

Pathway Analysis (IPA) of the whole blood transcriptome for metabolic pathways enriched among 

mRNAs positively correlated with CRP levels. B. Correlation analysis of CRP with SLC2A3 and 

SLC16A3. Left, scatter plot for correlation of CRP with indicated mRNA. Points are colored by densi

lines represent linear model fit with 95% confidence interval. Right, sina plots with boxes indicating 

median and interquartile range for the indicated gene. q-values in each are from DESeq2. 
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Supplementary File 1. Cohort Characteristics. Table summarizing cohort characteristics. Information 

pertaining less than 10% of the cohort is indicated as <10% to prevent potential reidentification. 

Information pertaining to less than 10 participants is indicated as <10 to prevent potential 

reidentification. For clinical labs, values represent the mean -/+ standard deviation from the mean. 

Acronyms for clinical laboratory measurements are as follows: BUN: blood urea nitrogen; CRP: C-

reactive protein; ALT: alanine aminotransferase; ALP: alkaline phosphatase; AST: aspartate 

aminotransferase; BNP: brain natriuretic peptide. Comorbidities affecting each group are listed based 

on two different annotations: Carlson and Elixhauser. Acronyms for comorbidities are as follows: CHF: 

chronic heart failure; DM: diabetes mellitus; DMCX: diabetes with complications; METS: metastatic 

cancer; MI: myocardial infarction; PUD: peptic ulcer disease; PVD: peripheral vascular disease; HTN: 

hypertension; PHTN: pulmonary hypertension. Fisher’s exact test was used to calculate p values for 

differences in % among groups, and the Mann-Whitney test was used to calculate p values for 

differences in clinical lab values. 

Supplementary File 2. Transcriptome. Differential expression analysis of COVID-19-positive versus 

COVID-19-negative patients using DESeq2. Columns include: (A) gene name, (B) chromosome, (C) 

Ensemble gene ID, (D) baseMean of all samples, (E) baseMean of COVID-19-negative samples, (F) 

baseMean of COVID-19-positive samples, (G) adjusted fold change, (H) adjusted log2 fold change, (I) 

p-value, (J) adjusted p-value, (K) gene start coordinate, (L) gene end coordinate, (M) gene type, and 

(N) HGNC ID. 

Supplementary File 3. SOMAscan® Proteomics. Differential abundance analysis of SOMAscan® 

proteomics from COVID-19-positive versus COVID-19-negative patients using a linear model. Columns 

include (A) aptamer name, (B) analyte, (C) analyte description, (D) Entrez gene symbol, (E) Entrez 

gene ID, (F) Average value of COVID-19-negative samples, (G) Average value of COVID-19-positive 

samples, (H) fold change, (I) log2 fold change, (J) p-value, and (K) adjusted p-value (q-value) via 

Bonferroni-Hochberg (BH) method. 

Supplementary File 4. Mass Spectrometry Plasma Proteomics. Differential abundance analysis of 

MS proteomics from COVID-19-positive versus COVID-19-negative patients using a linear model 
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adjusting for age and sex. Columns include (A) analyte, (B) analyte description, (C) SwissProt ID, (D) 

average value of COVID-19-negative samples, (E) average value of COVID-19-positive samples, (F) 

fold change, (G) log2 fold change, (H) p-value, and (I) adjusted p-value (q-value) via Bonferroni-

Hochberg (BH) method. 

Supplementary File 5. Meso Scale Discovery (MSD) Cytokine Profiling. Differential abundance 

analysis of cytokines from COVID-19-positive versus COVID-19-negative patients using a linear model 

adjusting for age and sex. Columns include (A) Analyte, (B) average value of COVID-19-negative 

samples, (C) average value of COVID-19-positive samples, (D) fold change, (E) log2 fold change, (F) p-

value, and  (G) adjusted p-value (q-value) via Bonferroni-Hochberg (BH) method. 

Supplementary File 6. Red Blood Cell (RBC) Metabolomics. Differential abundance analysis of MS 

RBC Metabolomics from COVID-19-positive versus COVID-19-negative patients using a linear model 

adjusting for age and sex. Columns include (A) analyte, (B) average value of COVID-19-negative 

samples, (C) average value of COVID-19-positive samples, (D) fold change, (E) log2 fold change, (F) p-

value, and (G) adjusted p-value (q-value) via Bonferroni-Hochberg (BH) method. 

Supplementary File 7. Plasma Metabolomics. Differential abundance analysis of MS plasma 

Metabolomics from COVID-19-positive versus COVID-19-negative patients using a linear model. 

Columns include A) analyte, (B) average value of COVID-19-negative samples, (C) average value of 

COVID-19-positive samples, (D) fold change, (E) log2 fold change, (F) p-value, and (G) adjusted p-

value (q-value) via Bonferroni-Hochberg (BH) method. 

Supplementary File 8. Mass Cytometry.  Differential abundance analysis of immune cell types from 

COVID-19-positive versus COVID-19-negative patients using a linear model. Columns include (A) 

population, (B) definition of population, (C) average value of COVID-19-negative samples, (D) average 

value of COVID-19-positive samples, (E) fold change, (F) log2 fold change, (G) p-value, and (H) 

adjusted p-value using Benjamini-Hochberg method. Tabs include analysis of all live cells, CD3+ T 

cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, Monocytes, and Myeloid DCs.  

Supplementary File 9. CRP-Transcriptome Correlations. Results of Spearman correlation analysis 

between mass spectrometry CRP levels and transcripts detected by whole blood RNAseq analysis. 
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Columns include: (A) Ensembl gene ID, (B) gene name, (C) Spearman rho value, (D) p-value, and (E) 

adjusted p-value (q-value) via Bonferroni-Hochberg (BH) method. 

Supplementary File 10. CRP-MS Plasma Proteomics Correlations. Results of Spearman correlation 

analysis between mass spectrometry CRP levels and proteins identified by mass spectrometry. 

Columns include: (A) protein ID, (B) SwissProt ID, (C) Spearman rho value, (D) p-value, and (E) 

adjusted p-value (q-value) via Bonferroni-Hochberg (BH) method. 

Supplementary File 11. CRP-SOMAscan®Proteomics Correlations. Results of Spearman 

correlation analysis between mass spectrometry CRP levels and proteins identified by SOMAscan® 

technology. Columns include: (A) aptamer name, (B) analyte, (C) SwissProt ID, (D) Gene symbol, (E) 

Spearman rho value, (F) p-value, and (G) adjusted p-value (q-value) via Bonferroni-Hochberg (BH) 

method. 

Supplementary File 12. CRP-MSD Cytokine Correlations. Results of Spearman correlation analysis 

between mass spectrometry CRP levels and cytokine, chemokines, and immune factors identified by 

Meso Scale Discovery technology. Columns include: (A) analyte, (B) Spearman rho value, (C) p-value,  

and (D) adjusted p-value (q-value) via Bonferroni-Hochberg (BH) method. 

Supplementary File 13. CRP-Plasma Metabolomics Correlations. Results of Spearman correlation 

analysis between mass spectrometry CRP levels and plasma metabolites. Columns include: (A) 

analyte, (B) Spearman rho value, (C) pvalue, and (D) adjusted p-value (q-value) via Bonferroni-

Hochberg (BH) method. 

Supplementary File 14. CRP-RBC Metabolomics Correlations. Results of Spearman correlation 

analysis between mass spectrometry CRP levels and red blood cell metabolites. Columns include: (A) 

analyte, (B) Spearman rho value, (C) p value, and (D) adjusted p-value (q-value) via Bonferroni-

Hochberg (BH) method. 

Supplementary File 15. CRP-Mass Cytometry Correlations. Results of Spearman correlation 

analysis between mass spectrometry CRP levels and immune cell populations detected by Mass 

Cytometry. Columns include: (A) population, (B) lineage, (C) Spearman rho value, (D) p value, and (E) 
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adjusted p-value (q-value) via Bonferroni-Hochberg (BH) method. Tabs include analysis of all live cells, 

CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, Monocytes, and Myeloid DCs.  

Supplementary File 16. CRP-Complement-Coagulation SOMAscan. Results of Spearman 

correlation analysis between mass spectrometry CRP levels and complement and coagulation proteins 

identified by SOMAscan® technology. (A) Aptamer name, (B) Spearman rho value, (C) p value, and (D) 

adjusted p-value (q-value) via Bonferroni-Hochberg (BH) method. 

Supplementary File 17. Mass Cytometry Antibody Table.  List of antibodies used in mass cytometry. 

Columns include: (A) antibody target, (B) element conjugated to antibody, (C) mass of element, (D) 

manufacturer, (E) catalog number, (F) clone number, and (G) staining protocol (fixed, live or fixed with 

permeabilization). 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.04.21252945doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.04.21252945
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38

REFERENCES. 

Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq--a Python framework to work with high-throughput 

sequencing data. Bioinformatics 31, 166-169. 

Becker, R.C. (2020). COVID-19 update: Covid-19-associated coagulopathy. J Thromb Thrombolysis 

50, 54-67. 

Burtscher, J., Cappellano, G., Omori, A., Koshiba, T., and Millet, G.P. (2020). Mitochondria: In the 

Cross Fire of SARS-CoV-2 and Immunity. iScience 23, 101631. 

Bushnell, B., Rood, J., and Singer, E. (2017). BBMerge - Accurate paired shotgun read merging via 

overlap. PLoS ONE 12, e0185056. 

Callahan, L.A., and Supinski, G.S. (2005). Downregulation of diaphragm electron transport chain and 

glycolytic enzyme gene expression in sepsis. J Appl Physiol (1985) 99, 1120-1126. 

Chao, J., Bledsoe, G., and Chao, L. (2016). Protective Role of Kallistatin in Vascular and Organ Injury. 

Hypertension 68, 533-541. 

De Livera, A.M., Dias, D.A., De Souza, D., Rupasinghe, T., Pyke, J., Tull, D., Roessner, U., McConville, 

M., and Speed, T.P. (2012). Normalizing and integrating metabolomics data. Anal Chem 84, 10768-

10776. 

Ecke, S., Geiger, M., Resch, I., Jerabek, I., Sting, L., Maier, M., and Binder, B.R. (1992). Inhibition of 

tissue kallikrein by protein C inhibitor. Evidence for identity of protein C inhibitor with the kallikrein 

binding protein. J Biol Chem 267, 7048-7052. 

Eyenga, P., Roussel, D., Morel, J., Rey, B., Romestaing, C., Teulier, L., Sheu, S.S., Goudable, J., 

Negrier, C., and Viale, J.P. (2014). Early septic shock induces loss of oxidative phosphorylation yield 

plasticity in liver mitochondria. J Physiol Biochem 70, 285-296. 

Finck, R., Simonds, E.F., Jager, A., Krishnaswamy, S., Sachs, K., Fantl, W., Pe'er, D., Nolan, G.P., and 

Bendall, S.C. (2013). Normalization of mass cytometry data with bead standards. Cytometry A 83, 483-

494. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.04.21252945doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.04.21252945
http://creativecommons.org/licenses/by-nc-nd/4.0/


 39

Frauwirth, K.A., Riley, J.L., Harris, M.H., Parry, R.V., Rathmell, J.C., Plas, D.R., Elstrom, R.L., June, 

C.H., and Thompson, C.B. (2002). The CD28 signaling pathway regulates glucose metabolism. 

Immunity 16, 769-777. 

Galbraith, M.D., Kinning, K.T., Sullivan, K.D., Baxter, R., Araya, P., Jordan, K.R., Russell, S., Smith, 

K.P., Granrath, R.E., Shaw, J., et al. (2020). Seroconversion stages COVID19 into distinct 

pathophysiological states. medRxiv. 

Garvin, M.R., Alvarez, C., Miller, J.I., Prates, E.T., Walker, A.M., Amos, B.K., Mast, A.E., Justice, A., 

Aronow, B., and Jacobson, D. (2020). A mechanistic model and therapeutic interventions for COVID-19 

involving a RAS-mediated bradykinin storm. Elife 9. 

Gerresheim, G.K., Roeb, E., Michel, A.M., and Niepmann, M. (2019). Hepatitis C Virus Downregulates 

Core Subunits of Oxidative Phosphorylation, Reminiscent of the Warburg Effect in Cancer Cells. Cells 

8. 

Gold, L., Walker, J.J., Wilcox, S.K., and Williams, S. (2012). Advances in human proteomics at high 

scale with the SOMAscan proteomics platform. N Biotechnol 29, 543-549. 

Gu, Z., Eils, R., and Schlesner, M. (2016). Complex heatmaps reveal patterns and correlations in 

multidimensional genomic data. Bioinformatics 32, 2847-2849. 

Huang, H., Evankovich, J., Yan, W., Nace, G., Zhang, L., Ross, M., Liao, X., Billiar, T., Xu, J., Esmon, 

C.T., et al. (2011). Endogenous histones function as alarmins in sterile inflammatory liver injury through 

Toll-like receptor 9 in mice. Hepatology 54, 999-1008. 

Huber, W., Carey, V.J., Gentleman, R., Anders, S., Carlson, M., Carvalho, B.S., Bravo, H.C., Davis, S., 

Gatto, L., Girke, T., et al. (2015). Orchestrating high-throughput genomic analysis with Bioconductor. 

Nature methods 12, 115-121. 

Irmscher, S., Doring, N., Halder, L.D., Jo, E.A.H., Kopka, I., Dunker, C., Jacobsen, I.D., Luo, S., 

Slevogt, H., Lorkowski, S., et al. (2018). Kallikrein Cleaves C3 and Activates Complement. J Innate 

Immun 10, 94-105. 

Jain, S., Gautam, V., and Naseem, S. (2011). Acute-phase proteins: As diagnostic tool. J Pharm 

Bioallied Sci 3, 118-127. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.04.21252945doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.04.21252945
http://creativecommons.org/licenses/by-nc-nd/4.0/


 40

Jellusova, J. (2020). The role of metabolic checkpoint regulators in B cell survival and transformation. 

Immunological reviews 295, 39-53. 

Johnson, M., Wagstaffe, H.R., Gilmour, K.C., Mai, A.L., Lewis, J., Hunt, A., Sirr, J., Bengt, C., 

Grandjean, L., and Goldblatt, D. (2020). Evaluation of a novel multiplexed assay for determining IgG 

levels and functional activity to SARS-CoV-2. J Clin Virol 130, 104572. 

Jr, F.E.H., and with contributions from Charles Dupont and many others (2020). Hmisc: Harrell 

Miscellaneous. 

Kawai, C., Kotani, H., Miyao, M., Ishida, T., Jemail, L., Abiru, H., and Tamaki, K. (2016). Circulating 

Extracellular Histones Are Clinically Relevant Mediators of Multiple Organ Injury. The American journal 

of pathology 186, 829-843. 

Kim, D., Paggi, J.M., Park, C., Bennett, C., and Salzberg, S.L. (2019). Graph-based genome alignment 

and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37, 907-915. 

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, 

R., and Genome Project Data Processing Subgroup (2009). The Sequence Alignment/Map format and 

SAMtools. Bioinformatics 25, 2078-2079. 

Liu, F., Li, L., Xu, M., Wu, J., Luo, D., Zhu, Y., Li, B., Song, X., and Zhou, X. (2020). Prognostic value of 

interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J Clin Virol 127, 104370. 

Lo, M.W., Kemper, C., and Woodruff, T.M. (2020). COVID-19: Complement, Coagulation, and 

Collateral Damage. Journal of immunology 205, 1488-1495. 

Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for 

RNA-seq data with DESeq2. Genome biology 15, 550. 

Makowski, L., Chaib, M., and Rathmell, J.C. (2020). Immunometabolism: From basic mechanisms to 

translation. Immunological reviews 295, 5-14. 

Martin-Murphy, B.V., Holt, M.P., and Ju, C. (2010). The role of damage associated molecular pattern 

molecules in acetaminophen-induced liver injury in mice. Toxicol Lett 192, 387-394. 

Mastellos, D.C., Skendros, P., Calado, R.T., Risitano, A.M., and Lambris, J.D. (2021). Efficacy matters: 

broadening complement inhibition in COVID-19. Lancet Rheumatol 3, e95. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.04.21252945doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.04.21252945
http://creativecommons.org/licenses/by-nc-nd/4.0/


 41

Meijers, J.C., Kanters, D.H., Vlooswijk, R.A., van Erp, H.E., Hessing, M., and Bouma, B.N. (1988). 

Inactivation of human plasma kallikrein and factor XIa by protein C inhibitor. Biochemistry 27, 4231-

4237. 

Michalek, R.D., Gerriets, V.A., Jacobs, S.R., Macintyre, A.N., MacIver, N.J., Mason, E.F., Sullivan, 

S.A., Nichols, A.G., and Rathmell, J.C. (2011). Cutting edge: distinct glycolytic and lipid oxidative 

metabolic programs are essential for effector and regulatory CD4+ T cell subsets. Journal of 

immunology 186, 3299-3303. 

Mills, E.L., Kelly, B., Logan, A., Costa, A.S.H., Varma, M., Bryant, C.E., Tourlomousis, P., Dabritz, 

J.H.M., Gottlieb, E., Latorre, I., et al. (2016). Succinate Dehydrogenase Supports Metabolic 

Repurposing of Mitochondria to Drive Inflammatory Macrophages. Cell 167, 457-470 e413. 

Mousavi-Nasab, S.D., Mardani, R., Nasr Azadani, H., Zali, F., Ahmadi Vasmehjani, A., Sabeti, S., Alavi 

Darazam, I., and Ahmadi, N. (2020). Neutrophil to lymphocyte ratio and C-reactive protein level as 

prognostic markers in mild versus severe COVID-19 patients. Gastroenterol Hepatol Bed Bench 13, 

361-366. 

Mueller, A.A., Tamura, T., Crowley, C.P., DeGrado, J.R., Haider, H., Jezmir, J.L., Keras, G., Penn, 

E.H., Massaro, A.F., and Kim, E.Y. (2020). Inflammatory Biomarker Trends Predict Respiratory Decline 

in COVID-19 Patients. Cell Rep Med 1, 100144. 

Nemkov, T., Reisz, J.A., Gehrke, S., Hansen, K.C., and D'Alessandro, A. (2019). High-Throughput 

Metabolomics: Isocratic and Gradient Mass Spectrometry-Based Methods. Methods in molecular 

biology 1978, 13-26. 

Papayannopoulos, V. (2018). Neutrophil extracellular traps in immunity and disease. Nature reviews 

Immunology 18, 134-147. 

Pedersen, T.L. (2019). ggforce: Accelerating 'ggplot2'. 

Perez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathirana, S., Kundu, D.J., Inuganti, 

A., Griss, J., Mayer, G., Eisenacher, M., et al. (2019). The PRIDE database and related tools and 

resources in 2019: improving support for quantification data. Nucleic Acids Res 47, D442-D450. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.04.21252945doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.04.21252945
http://creativecommons.org/licenses/by-nc-nd/4.0/


 42

R Core Team (2020). R: A Language and Environment for Statistical Computing (Vienna, Austria: R 

Foundation for Statistical Computing). 

Rau, J.C., Beaulieu, L.M., Huntington, J.A., and Church, F.C. (2007). Serpins in thrombosis, 

hemostasis and fibrinolysis. J Thromb Haemost 5 Suppl 1, 102-115. 

Rentsch, C.T., Beckman, J.A., Tomlinson, L., Gellad, W.F., Alcorn, C., Kidwai-Khan, F., Skanderson, 

M., Brittain, E., King, J.T., Jr., Ho, Y.L., et al. (2021). Early initiation of prophylactic anticoagulation for 

prevention of coronavirus disease 2019 mortality in patients admitted to hospital in the United States: 

cohort study. BMJ 372, n311. 

Ricklin, D., and Lambris, J.D. (2007). Complement-targeted therapeutics. Nature biotechnology 25, 

1265-1275. 

RStudio Team (2020). RStudio: Integrated Development for R. (Boston, MA: RStudio, PBC). 

Sabapathy, V., Venkatadri, R., Dogan, M., and Sharma, R. (2020). The Yin and Yang of Alarmins in 

Regulation of Acute Kidney Injury. Front Med (Lausanne) 7, 441. 

Schuyler, R.P., Jackson, C., Garcia-Perez, J.E., Baxter, R.M., Ogolla, S., Rochford, R., Ghosh, D., 

Rudra, P., and Hsieh, E.W.Y. (2019). Minimizing Batch Effects in Mass Cytometry Data. Front Immunol 

10, 2367. 

Sharifpour, M., Rangaraju, S., Liu, M., Alabyad, D., Nahab, F.B., Creel-Bulos, C.M., Jabaley, C.S., 

Emory, C.-Q., and Clinical Research, C. (2020). C-Reactive protein as a prognostic indicator in 

hospitalized patients with COVID-19. PLoS One 15, e0242400. 

Simpson, I.A., Dwyer, D., Malide, D., Moley, K.H., Travis, A., and Vannucci, S.J. (2008). The facilitative 

glucose transporter GLUT3: 20 years of distinction. Am J Physiol Endocrinol Metab 295, E242-253. 

Suzuki, K. (2008). The multi-functional serpin, protein C inhibitor: beyond thrombosis and hemostasis. J 

Thromb Haemost 6, 2017-2026. 

Tannahill, G.M., Curtis, A.M., Adamik, J., Palsson-McDermott, E.M., McGettrick, A.F., Goel, G., Frezza, 

C., Bernard, N.J., Kelly, B., Foley, N.H., et al. (2013). Succinate is an inflammatory signal that induces 

IL-1beta through HIF-1alpha. Nature 496, 238-242. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.04.21252945doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.04.21252945
http://creativecommons.org/licenses/by-nc-nd/4.0/


 43

Thomas, T., Stefanoni, D., Reisz, J.A., Nemkov, T., Bertolone, L., Francis, R.O., Hudson, K.E., Zimring, 

J.C., Hansen, K.C., Hod, E.A., et al. (2020). COVID-19 infection alters kynurenine and fatty acid 

metabolism, correlating with IL-6 levels and renal status. JCI insight 5. 

van de Veerdonk, F.L., Kouijzer, I.J.E., de Nooijer, A.H., van der Hoeven, H.G., Maas, C., Netea, M.G., 

and Bruggemann, R.J.M. (2020). Outcomes Associated With Use of a Kinin B2 Receptor Antagonist 

Among Patients With COVID-19. JAMA Netw Open 3, e2017708. 

van Teijlingen Bakker, N., and Pearce, E.J. (2020). Cell-intrinsic metabolic regulation of mononuclear 

phagocyte activation: Findings from the tip of the iceberg. Immunological reviews 295, 54-67. 

Weiss, H.J., and Angiari, S. (2020). Metabolite Transporters as Regulators of Immunity. Metabolites 10. 

Weiss, S.L., Cvijanovich, N.Z., Allen, G.L., Thomas, N.J., Freishtat, R.J., Anas, N., Meyer, K., 

Checchia, P.A., Shanley, T.P., Bigham, M.T., et al. (2014). Differential expression of the nuclear-

encoded mitochondrial transcriptome in pediatric septic shock. Crit Care 18, 623. 

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag New York). 

Xu, J.B., Xu, C., Zhang, R.B., Wu, M., Pan, C.K., Li, X.J., Wang, Q., Zeng, F.F., and Zhu, S. (2020). 

Associations of procalcitonin, C-reaction protein and neutrophil-to-lymphocyte ratio with mortality in 

hospitalized COVID-19 patients in China. Sci Rep 10, 15058. 

Zunder, E.R., Finck, R., Behbehani, G.K., Amir el, A.D., Krishnaswamy, S., Gonzalez, V.D., Lorang, 

C.G., Bjornson, Z., Spitzer, M.H., Bodenmiller, B., et al. (2015). Palladium-based mass tag cell 

barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm. Nature protocols 10, 

316-333. 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.04.21252945doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.04.21252945
http://creativecommons.org/licenses/by-nc-nd/4.0/


 44

STAR METHODS. 

Key Resources Table. 

Reagent 
type 
(species) 
or 
resource 

Designation Source or 
reference Identifiers Additional information 

Antibody Anti-Human 
CD45  Fluidigm  Cat# 3089003B, 

RRID: AB_2661851 
Monoclonal-Clone: HI30 
Dilution: 1/200 

Antibody  Anti-Human 
CD57  Biolegend  Cat# 322302, RRID: 

AB_2661815 
Mouse-Monoclonal-Clone: 
HCD57 Dilution: 1/100 

Antibody  Anti-Human 
CD11c  

BD bioscience  Cat# 555390, RRID: 
AB_395791 

Mouse-Monoclonal-Clone: 
B-ly6 Dilution: 1/100 

Antibody  Anti-Human 
CD16  eBioscience  

Cat# 16-0167-85, 
RRID:  
AB_11040983 

Mouse-Monoclonal-Clone: 
B73.1 Dilution: 1/50 

Antibody  Anti-Human 
CD196 (CCR6)  

Biolegend  Cat# 353402, RRID:  
AB_10918625 

Mouse-Monoclonal-Clone: 
11a9 Dilution: 1/50 
Stain live 

Antibody Anti-Human 
CD19  Fluidigm  

Cat# 3142001B, 
RRID:  
AB_2651155 

Monoclonal-Clone: HIB19 
Dilution: 1/100 

Antibody  Anti-Human 
CD123  Fluidigm  

Cat# 3143014B, 
RRID:  
AB_2811081 

Mouse-Monoclonal-Clone: 
6H6 Dilution: 1/123 

Antibody Anti-Human 
CCR5  Fluidigm  Cat# 3144007A 

Monoclonal-Clone: 
NP6G4 Dilution: 1/25 
Stain live 

Antibody  Anti-Human IgD  Fluidigm  
Cat# 3146005B, 
RRID: 
 AB_2811082 

Mouse-Monoclonal-Clone: 
IA6-2 Dilution: 1/100 

Antibody  Anti-Human 
CD1c  Miltenyi  Cat# 130-108-032, 

RRID: AB_2661165 
Mouse-Monoclonal-Clone: 
AD5-8E7 Dilution: 1/30 

Antibody  Anti-Human 
CD38  Biolegend  Cat# 303502, RRID:  

AB_314354 
Mouse-Monoclonal-Clone: 
HIT2 Dilution: 1/50 

Antibody Anti-Human 
CD127  Fluidigm  

Cat# 3149011B, 
RRID:  
AB_2661792 

Monoclonal-Clone: 
A019D5 Dilution: 1/100 
Stain live 

Antibody Anti-Human 
CD86  Fluidigm  

Cat# 3150020B, 
RRID:  
AB_2687852 

Monoclonal-Clone: IT2.2 
Dilution: 1/100 

Antibody  Anti-Human 
ICOS  Biolegend  Cat# 313502, RRID:  

AB_416326 

Armenian hamster -
Monoclonal-Clone: DX29 
Dilution: 1/50 

Antibody  Anti-Human 
CD141  Biolegend  Cat# 344102, RRID:  

AB_2201808 
Mouse-Monoclonal-Clone: 
M80 Dilution: 1/50 

Antibody Anti-Human 
Tim3  Fluidigm  

Cat# 3153008B, 
RRID:  
AB_2687644 

Monoclonal-Clone: 
MBSA43 Dilution: 1/100 
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Antibody  Anti-Human 
TIGIT Fluidigm  

Cat# 3154016B, 
RRID:  
AB_2888926 

Mouse-Monoclonal-Clone: 
F38-2E2 Dilution: 1/50 
Stain live 

Antibody  Anti-Human 
CD27  Fluidigm  

Cat# 3155001B, 
RRID:  
AB_2687645 

Mouse-Monoclonal-Clone: 
L128 Dilution: 1/100 

Antibody Anti-Human 
CXCR3  Fluidigm  

Cat# 3156004B, 
RRID: 
AB_2687646 

Monoclonal-Clone: 
G025H7 Dilution: 1/100 
Stain live 

Antibody  Anti-Human 
CD45RA  Biolegend  Cat# 304102, RRID:  

AB_314406 
Mouse-Monoclonal-Clone: 
HI100 Dilution: 1/50 

Antibody  Anti-Human 
PD-1  Biolegend  Cat# 329941, RRID:  

AB_2563734 
Mouse-Monoclonal-Clone: 
EH12.2H7 Dilution: 1/50 

Antibody  Anti-Human 
PDL1  

Fluidigm  
Cat# 3159029B, 
RRID:  
AB_2861413 

Mouse-Monoclonal-Clone: 
29E.2A3 Dilution: 1/100 

Antibody Anti-Human 
CD14  Fluidigm  

Cat# 3160001B, 
RRID:  
AB_2687634 

Monoclonal-Clone: M5E2 
Dilution: 1/100 

Antibody Anti-Human 
Tbet  Fluidigm  

Cat# 3161014B, 
RRID:  
AB_2858233 

Monoclonal-Clone: 4b10 
Dilution: 1/100 

Antibody  Anti-Human 
Ki67  Fluidigm  

Cat# 3162012B, 
RRID:  
AB_2888928 

Mouse-Monoclonal-Clone: 
B56 Dilution: 1/100 

Antibody Anti-Human 
CD33  Fluidigm  

Cat# 3163023B, 
RRID:  
AB_2687857 

Monoclonal-Clone: WM53 
Dilution: 1/100 

Antibody Anti-Human 
CD95  

Fluidigm  
Cat# 3164008B, 
RRID:  
AB_2858235 

Monoclonal-Clone: DX2 
Dilution: 

Antibody  Anti-Human 
Foxp3  Biolegend  

Cat# 14-4774-82, 
RRID:  
AB_467552 

Mouse-Monoclonal-Clone: 
150D/E4 Dilution: 1/50 

Antibody  
Anti-Human 
Eomes  Biolegend  

Cat# 14-4877-82, 
RRID:  
AB_2572882 

Mouse-Monoclonal-Clone: 
WD1928 Dilution: 1/100 

Antibody Anti-Human 
CCR7  Fluidigm  

Cat# 3167009A, 
RRID:  
AB_2858236 

Monoclonal-Clone: 
G043H7 Dilution: 
1/100Stain live 

Antibody Anti-Human 
CD8a  Fluidigm  Cat# 3168002B Monoclonal-Clone: SK1 

Dilution: 1/100 

Antibody Anti-Human 
CD25  Fluidigm  

Cat# 3169003B, 
RRID:  
AB_2661806 

Monoclonal-Clone: 2A3 
Dilution: 1/100 Stain live 

Antibody  Anti-Human 
CD3  Fluidigm  

Cat# 3170001B, 
RRID:  
AB_2811085 

Mouse-Monoclonal-Clone: 
UCHT1 Dilution: 1/100 

Antibody Anti-Human 
CXCR5  Fluidigm  

Cat# 3171014B, 
RRID:  
AB_2858239 

Monoclonal-Clone: 51505 
Dilution: 1/100 Stain live 
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Antibody  Anti-Human 
IgM  Fluidigm  

Cat# 3172004B, 
RRID:  
AB_2810858 

Mouse-Monoclonal-Clone: 
MHM-88 Dilution: 1/100 
Stain live 

Antibody Anti-Human 
HLA-DR  Fluidigm  

Cat# 3173005B, 
RRID:  
AB_2810248 

Monoclonal-Clone: L243 
Dilution: 1/100 

Antibody Anti-Human 
CD4  Fluidigm  

Cat# 3174004B, 
RRID:  
AB_2687862 

Monoclonal-Clone: SK3 
Dilution: 1/100 

Antibody  Anti-Human 
CCR4  R&D  Cat# MAB1567-500 

Mouse-Monoclonal-Clone: 
205410 Dilution: 1/50 
Stain live 

Antibody Anti-Human 
CD56  

Miltenyi  
Cat# 130-113-312, 
RRID:  
AB_2726090 

Monoclonal-Clone: 
HCD56 Dilution: 1/200 

Antibody Anti-Human 
CD11b  Fluidigm  

Cat# 3209003B, 
RRID:  
AB_2687654 

Monoclonal-Clone: 
ICRF44 Dilution: 1/200 

commercia
l assay or 
kit 

U-PLEX 
Biomarker 
Group 1 (hu) 
71-Plex 

Meso Scale 
Discovery 
(MSD) 

Cat# K15081K  

commercia
l assay or 
kit 

V-PLEX 
Vascular Injury 
Panel 2 Human 
Kit 

Meso Scale 
Discovery 
(MSD) 

Cat# K15198D  

commercia
l assay or 
kit 

V-PLEX 
Angiogenesis 
Panel 1 Human 
Kit 

Meso Scale 
Discovery 
(MSD) 

Cat# K15190D  

commercia
l assay or 
kit 

PAXgene Blood 
RNA Tubes 

PreAnalytiX/
Qiagen Cat# 762165  

commercia
l assay or 
kit 

PAXgene Blood 
RNA Kit Qiagen Cat# 762164  

commercia
l assay or 
kit 

Universal Plus 
mRNA-Seq with 
NuQuant, 
Human Globin 
AnyDeplete 

Tecan Cat# 0521-A01  

software, 
algorithm R 

R 
Foundation 
for 
Statistical 
Computing 

v4.0.1 
RRID:SCR_001905 https://www.R-project.org/ 
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software, 
algorithm 

RStudio RStudio, 
Inc. 

v1.3.959 
RRID:SCR_000432 

http://www.rstudio.com/ 

software, 
algorithm Bioconductor N/A v3.11 

RRID:SCR_006442 https://bioconductor.org/ 

software, 
algorithm 

Tidyverse 
collection of 
packages for R 

N/A N/A 
RRID:SCR_019186 https://www.tidyverse.org/ 

software, 
algorithm 

limma package 
for R N/A v3.44.3 

RRID:SCR_010943 

https://bioconductor.org/pac
kages/release/bioc/html/lim
ma.html 

software, 
algorithm CellEngine 

Primity Bio 
Inc. N/A 

https://primitybio.com/cellen
gine.html 

software, 
algorithm bcl2fastq Illumina, Inc. 

v2.20.0.422 
RRID:SCR_015058 

https://support.illumina.com/
sequencing/sequencing_sof
tware/bcl2fastq-conversion-
software.html 

software, 
algorithm FASTQC N/A 

v0.11.5 
RRID:SCR_014583 

https://www.bioinformatics.b
abraham.ac.uk/projects/fast
qc/ 

software, 
algorithm FastQ Screen N/A 

v0.11.0 
RRID:SCR_000141 

https://www.bioinformatics.b
abraham.ac.uk/projects/fast
q_screen/ 

software, 
algorithm bbduk/BBTools N/A v37.99 

RRID:SCR_016968 
https://jgi.doe.gov/data-and-
tools/bbtools/ 

software, 
algorithm 

fastq-mcf/ea-
utils N/A v1.05 

RRID:SCR_005553 
https://expressionanalysis.gi
thub.io/ea-utils/ 

software, 
algorithm HISAT2 N/A v2.1.0 

RRID:SCR_015530 
http://daehwankimlab.github
.io/hisat2/ 

other Human genome 
reference fasta N/A GRCh38 

RRID:SCR_014966 

ftp://ftp.ebi.ac.uk/pub/databa
ses/gencode/Gencode_hum
an/release_33/GRCh38.pri
mary_assembly.genome.fa.
gz 

other 
Human genome 
annotation GTF 
file 

Gencode v33 
RRID:SCR_014966 

ftp://ftp.ebi.ac.uk/pub/databa
ses/gencode/Gencode_hum
an/release_33/gencode.v33.
basic.annotation.gtf.gz 

software, 
algorithm Samtools N/A v1.5 http://www.htslib.org/ 
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software, 
algorithm 

HTSeq-count N/A v0.6.1 
RRID:SCR_005514 

https://htseq.readthedocs.io/
en/master/ 

software, 
algorithm 

DESeq2 
package for R N/A v1.28.1 

RRID:SCR_015687 

https://bioconductor.org/pac
kages/release/bioc/html/DE
Seq2.html 

software, 
algorithm 

Hmisc package 
for R N/A v4.4-0 

https://cran.r-
project.org/web/packages/H
misc/index.html 

software, 
algorithm 

ggplot2 
package for R N/A v3.3.1 

RRID:SCR_014601 https://ggplot2.tidyverse.org/ 

software, 
algorithm 

rstatix package 
for R N/A v0.6.0 

https://cran.r-
project.org/web/packages/rs
tatix/index.html 

software, 
algorithm 

ComplexHeatm
ap package for 
R 

N/A v2.4.2 
RRID:SCR_017270 

https://www.bioconductor.or
g/packages/release/bioc/ht
ml/ComplexHeatmap.html 

software, 
algorithm 

ggforce 
package for R N/A v0.3.1 

https://ggforce.data-
imaginist.com/reference/ind
ex.html 

 

RESOURCE AVAILABILITY. 

Lead Contact. 

Further information and requests for resources and reagents should be directed and will be fulfilled by 

the Lead Contact, Joaquin Espinosa (joaquin.espinosa@cuanschutz.edu). 

Materials Availability. 

This study did not generate new unique reagents. 

Data and Code Availability. 

All data generated for this manuscript is made available through the online researcher gateway of the 

COVIDome Project, known as the COVIDome Explorer, which can be accessed at covidome.org. The 

RNAseq data have been deposited in NCBI Gene Expression Omnibus, with series accession number 

GSE167000. The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium via the PRIDE partner repository (Perez-Riverol et al., 2019) with the dataset identifier 

PXD022817. The mass cytometry data has been deposited in Flow Repository under the link: 
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https://flowrepository.org/id/RvFrSYioKeUdYHXdkTD9TQPAXt4PqdkB5eie82h11JgAGSCQIneLKpcKd

81Nzgwq. The SOMAscan® Proteomics, MSD Cytokine Profiles, and Sample Metadata files have been 

deposited in Mendeley under entry doi:10.17632/2mc6rrc5j3.1. The metabolomics data have been 

deposited in the Metabolomics Workbench with a Study ID to be made available upon acceptance. All 

code required to run the COVIDome Explorer applications can be found at 

https://github.com/cusom/CUSOM.COVIDome.Shiny-Apps and 

https://github.com/cusom/CUSOM.ShinyHelpers.  

EXPERIMENTAL MODEL AND SUBJECT DETAILS. 

Study design, participant recruitment, and clinical data capture. Research participants were 

recruited and consented for participation in the COVID Biobank of the University of Colorado Anschutz 

Medical Campus [Colorado Multiple Institutional Review Board (COMIRB) Protocol # 20-0685]. Data 

was generated from deidentified biospecimens and linked to demographics and clinical metadata 

procured through the Health Data Compass of the University of Colorado under COMIRB Protocol # 

20-1700. Participants were hospitalized either at Children’s Hospital Colorado or the University of 

Colorado Hospital. COVID-19 status was defined by a positive PCR reaction and/or antibody test. 

Cohort characteristics can be found in Supp. File 1.  

METHOD DETAILS. 

Blood processing. Blood samples were collected into EDTA tubes, PAXgene RNA, and sodium 

heparin tubes. After centrifugation, EDTA plasma was used for MS proteomics, SOMAscan® 

proteomics, as well as multiplex immunoassays using MSD technology for both cytokine profiles and 

seroconversion assays. From sodium heparin tubes, PBMCs were obtained by the Ficoll gradient 

method before cryopreservation and assembly of batches for MC analysis (see below). 

Whole blood transcriptome. RNA was purified from PAXgene Blood RNA Tubes 

(PreAnalytiX/Qiagen) using a PAXgene Blood RNA Kit (Qiagen), according to the manufacturer’s 

instructions. RNA quality was assessed using an Agilent 2200 TapeStation and quantified by Qubit (Life 

Technologies). Globin RNA depletion, poly-A(+) RNA enrichment, and strand-specific library 

preparation were carried out using a Universal Plus mRNA-Seq with NuQuant, Human Globin 
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AnyDeplete (Tecan). Paired-end 150 bp sequencing was carried out on an Illumina NovaSeq 6000 

instrument by the Genomics Shared Resource at the University of Colorado Anschutz Medical Campus. 

Plasma proteomics by mass spectrometry. Plasma samples were digested in S-Trap filters (Protifi, 

Huntington, NY) according to the manufacturer’s procedure. Briefly, a dried protein pellet prepared from 

organic extraction of patient plasma was solubilized in 400 µl of 5% (w/v) SDS. Samples were reduced 

with 10 mM DTT at 55°C for 30 min, cooled to room temperature, and then alkylated with 25 mM 

iodoacetamide in the dark for 30 min. Next, a final concentration of 1.2% phosphoric acid and then six 

volumes of binding buffer [90% methanol; 100 mM triethylammonium bicarbonate (TEAB); pH 7.1] were 

added to each sample. After gentle mixing, the protein solution was loaded into an S-Trap filter, spun at 

2000 rpm for 1 min, and the flow-through collected and reloaded onto the filter. This step was repeated 

three times, and then the filter was washed with 200 μL of binding buffer 3 times. Finally, 1 μg of 

sequencing-grade trypsin (Promega) and 150 μL of digestion buffer (50 mM TEAB) were added onto 

the filter and digestion carried out at 47 °C for 1 h. To elute peptides, three stepwise buffers were 

applied, 200 μL of each with one more repeat, including 50 mM TEAB, 0.2% formic acid in H2O, and 

50% acetonitrile and 0.2% formic acid in H2O. The peptide solutions were pooled, lyophilized and 

resuspended in 1 mL of 0.1 % FA. 20 µl of each sample was loaded onto individual Evotips for 

desalting and then washed with 20 μL 0.1% FA followed by the addition of 100 μL storage solvent 

(0.1% FA) to keep the Evotips wet until analysis. The Evosep One system (Evosep, Odense, Denmark) 

was used to separate peptides on a Pepsep column, (150 µm internal diameter, 15 cm) packed with 

ReproSil C18 1.9 µm, 120A resin.  The system was coupled to a timsTOF Pro mass spectrometer 

(Bruker Daltonics, Bremen, Germany) via a nano-electrospray ion source (Captive Spray, Bruker 

Daltonics). The mass spectrometer was operated in PASEF mode. The ramp time was set to 100�ms 

and 10 PASEF MS/MS scans per topN acquisition cycle were acquired. MS and MS/MS spectra were 

recorded from m/z 100 to 1700. The ion mobility was scanned from 0.7 to 1.50�Vs/cm2. Precursors for 

data-dependent acquisition were isolated within�±�1�Th and fragmented with an ion mobility-

dependent collision energy, which was linearly increased from 20 to 59�eV in positive mode. Low-

abundance precursor ions with an intensity above a threshold of 500 counts but below a target value of 
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20000 counts were repeatedly scheduled and otherwise dynamically excluded for 0.4�min. Raw data 

file conversion to peak lists in the MGF format, downstream identification, validation, filtering and 

quantification were managed using FragPipe version 13.0. MSFragger version 3.0 was used for 

database searches against a Human isoform-containing UniProt fasta file (version 08/11/2020) with 

decoys and common contaminants added. The identification settings were as follows: Trypsin, Specific, 

with a maximum of 2 missed cleavages, up to 2 isotope errors in precursor selection allowed for, 10.0 

ppm as MS1 and 20.0 ppm as MS2 tolerances; fixed modifications: Carbamidomethylation of C 

(+57.021464 Da), variable modifications: Oxidation of M (+15.994915 Da), Acetylation of protein N-term 

(+42.010565 Da), Pyrolidone from peptide N-term Q or C (-17.026549 Da). The Philosopher toolkit 

version 3.2.9 (build 1593192429) was used for filtering of results at the peptide and protein level at 0.01 

FDR. Label-free quantification was performed by AUC integration with matching between all runs using 

IonQuant.  

Plasma proteomics by SOMAscan® assays. 125 μL EDTA plasma was analyzed by SOMAscan® 

assays using previously established protocols (Gold et al., 2012). Briefly, each of the 5000+ SOMAmer 

reagents binds a target peptide and is quantified on a custom Agilent hybridization chip. Normalization 

and calibration were performed according to SOMAscan® Data Standardization and File Specification 

Technical Note (SSM-020) (Gold et al., 2012). The output of the SOMAscan® assay is reported in 

relative fluorescent units (RFU).  

Cytokine profiling and seroconversion by multiplex immunoassay. Multiplex immunoassays MSD 

assays were performed on EDTA plasma aliquots following manufacturer’s instructions (Meso Scale 

Discovery, MSD). A list of immune factors measured by MSD can be found in Supp. File 5. Values 

were extrapolated against a standard curve using provided calibrators. Seroconversion assays against 

SARS-CoV-2 proteins and the control protein from the Flu A Hong Kong H3 virus were performed in a 

multiplex  immunoassay using the IgG detection readout according to manufacturer’s instructions 

(MSD). Relative values were extrapolated against a standardized curve consisting of pooled COVID-19 

positive reference plasma (Johnson et al., 2020). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.04.21252945doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.04.21252945
http://creativecommons.org/licenses/by-nc-nd/4.0/


 52

Mass cytometry analysis of immune cell types. Cryopreserved PBMCs were thawed, washed twice 

with Cell Staining Buffer (CSB) (Fluidigm), and counted with an automated cell counter (Countess II - 

Thermo Fisher Scientific). Extracellular staining on live cells was done in CSB for 30 min at room 

temperature, in 3-5^106 cells per sample. Cells were washed with 1X PBS (Fluidigm) and stained with 

1 mL of 0.25 mM cisplatin (Fluidigm) for 1 min at room temperature for exclusion of dead cells. 

Samples were then washed with CSB and incubated with 1.6% PFA (Electron Microscopy Sciences) 

during 10 min at room temperature. Samples were washed with CBS and barcoded using a Cell-IDTM 

20- Plex Pd Barcoding Kit (Fluidigm) of lanthanide-tagged cell reactive metal chelators that will 

covalently label samples with a unique combination of palladium isotopes, then combined. Surface 

staining with antibodies that work on fixed epitopes was performed in CSB for 30 min at room 

temperature (see Supp. File 17 for antibody information). Cells were washed twice with CSB and fixed 

in Fix/Perm buffer (eBioscience) for 30 min, washed in permeabilization buffer (eBioscience) twice, then 

intracellular factors were stained in permeabilization buffer for 45 min at 4°C. Cells were washed twice 

with Fix/Perm Buffer and were labeled overnight at 4°C with Cell-ID Intercalator-Ir (Fluidigm) for DNA 

staining. Cells were then analyzed on a Helios instrument (Fluidigm). To make all samples comparable, 

pre-processing of mass cytometry data included normalization within and between batches via 

polystyrene beads embedded with lanthanides as previously described (Finck et al., 2013). Files were 

debarcoded using the Matlab DebarcoderTool (Zunder et al., 2015). Then normalization again between 

batches relative to a reference batch based on technical replicates (Schuyler et al., 2019). Gating was 

performed using CellEngine (Primitybio) as previously described (Galbraith et al., 2020).  

Mass Spectrometry based metabolomics of plasma and red blood cells.  

Sample extraction. Samples were thawed on ice and extracted via a modified Folch method 

(chloroform/methanol/water 8:4:3), which completely inactivates other coronaviruses, such as MERS-

CoV. Briefly, 20 μL of sample was diluted in 130 μL of LC-MS grade water, 600 μL of ice-cold 

chloroform/methanol (2:1) was added, and the samples were vortexed for 10 seconds. Samples were 

then incubated at 4°C for 5 minutes, quickly vortexed (5 seconds), and centrifuged at 14,000 g for 10 

minutes at 4°C. The top (i.e., aqueous) phase was transferred to a new tube for metabolomics analysis 
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and flash frozen. The bottom (i.e., organic) phase was transferred to a new tube for lipidomics analysis, 

then dried under N2 flow. 

UHPLC-MS metabolomics. Analyses were performed using a Vanquish UHPLC coupled online to a Q 

Exactive high resolution mass spectrometer (Thermo Fisher Scientific, Bremen, Germany). Samples 

(10 uL per injection) were randomized and analyzed in positive and negative electrospray ionization 

modes (separate runs) using a 5-minute C18 gradient on a Kinetex C18 column (Phenomenex) as 

described (Nemkov et al., 2019). Data were analyzed using Maven (Princeton University, Princeton, 

NJ, USA) in conjunction with the KEGG database and an in-house standard library.  

QUANTIFICATION AND STATISTICAL ANALYSIS. 

Preprocessing, statistical analysis, and plot generation for all datasets was carried out using R (R 4.0.1 

/ Rstudio 1.3.959 / Bioconductor v 3.11) (Huber et al., 2015; R Core Team, 2020; RStudio Team, 2020), 

as detailed below. 

Analysis of transcriptome data. RNA-seq data yield was ~40-80 x 106 raw reads and ~32-71 x 106 final 

mapped reads per sample. Reads were demultiplexed and converted to fastq format using bcl2fastq 

(bcl2fastq v2.20.0.422). Data quality was assessed using FASTQC (v0.11.5) 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and FastQ Screen (v0.11.0, 

https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/). Trimming and filtering of low-quality 

reads was performed using bbduk from BBTools (v37.99)(Bushnell et al., 2017) and fastq-mcf from ea-

utils (v1.05, https://expressionanalysis.github.io/ea-utils/). Alignment to the human reference genome 

(GRCh38) was carried out using HISAT2 (v2.1.0)(Kim et al., 2019) in paired, spliced-alignment mode 

with a GRCh38 index with a Gencode v33 annotation GTF, and alignments were sorted and filtered for 

mapping quality (MAPQ > 10) using Samtools (v1.5)(Li et al., 2009). Gene-level count data were 

quantified using HTSeq-count (v0.6.1)(Anders et al., 2015) with the following options (--

stranded=reverse –minaqual=10 –type=exon --mode=intersection-nonempty) using a Gencode v33 

GTF annotation file. Differential gene expression in COVID+ versus COVID- was evaluated using 

DESeq2 (version 1.28.1)(Love et al., 2014) in R (version 4.0.1), using q < 0.1 (FDR < 10%) as the 

threshold for differentially expressed genes. 
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Analysis of MS-proteomic data. Raw Razor intensity data were filtered for high abundance proteins by 

removing those with >70% zero values in both COVID-19-negative and COVID-19-positive groups. For 

the remaining 407 abundant proteins, 0 values (8,363 missing values of 44,363 total measurements) 

were replaced with a random value sampled from between 0 and 0.5x the minimum non-zero intensity 

value for that protein. Data was then normalized using a scaling factor derived from the global median 

intensity value across all proteins / sample median intensity across all proteins (De Livera et al., 2012)  

SOMAscan® data. Normalized data (RFU) was imported and converted from a SOMAscan® .adat file 

using a custom R package (SomaDataIO) for use in all subsequent analysis.   

Analysis of MSD cytokine profiling data. Plasma concentration values (pg/mL) for each of the cytokines 

and related immune factors measured across multiple MSD assay plates was imported to R, combined, 

and analytes with >10% of values outside of detection or fit curve range flagged. For each analyte, 

missing values were replaced with either the minimum (if below fit curve range) or maximum (if above 

fit curve range) calculated concentration and means of duplicate wells used in all further analysis.  

Analysis of LCMS-metabolomics data. Peak intensity data was imported to R. Across the 171 

metabolites, 0 values (486 missing values of 21,033 total measurements) were replaced with a random 

value sampled from between 0 and 0.5x the minimum non-zero intensity value for that metabolite. Data 

was then normalized using a scaling factor derived from the global median intensity value across all 

proteins / sample median intensity and used for downstream analysis.  

Analysis of mass cytometry data. Cell population frequencies were exported from CellEngine as 

percentages of various parental lineages and used for subsequent analysis. 

Differential abundance analysis. Differential abundance analysis for MS proteomics, SOMAscan® 

proteomics, MSD cytokine profiling, LCMS metabolomics, and CyTOF mass cytometry data was 

performed using linear models with log2 concentration as the outcome variable and age, sex, and 

COVID-19 status as independent variables. Multiple hypothesis correction was performed with the 

Benjamini-Hochberg method using a false discovery rate (FDR) threshold of 10% (q<0.1). 

Correlation analysis. To identify features in each dataset that correlate with CRP levels in COVID-19-

positive samples, Spearman rho values and p-values were calculated against values adjusted for Sex 
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and Age using the removeBatchEffect function from the limma package (v 3.44.3) (43) from each 

dataset using the rcorr function from the Hmisc package (v 4.4-0) (Jr and with contributions from 

Charles Dupont and many others, 2020), with Benjamini-Hochberg correction of p-values and an 

estimated false discovery fate threshold of 0.1. For visualization, XY scatter plots with points colored by 

local density were generated using a custom density function and the ggplot2 (v3.3.1) package 

(Wickham, 2016). 

Data Visualization.  To visualize differences between COVID-19-negative samples and COVID-19-

positive samples, Z-scores were calculated for each feature based on the mean and standard deviation 

of COVID-19-negative samples, and visualized as heatmaps and/or modified sina plots using the 

ComplexHeatmap (v2.4.2) (Gu et al., 2016), ggplot2 (v3.3.1), and ggforce (v0.3.1) packages 

(Pedersen, 2019). 
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