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Computer-aided-diagnosis for COVID-19 based on chest X-ray suffers from weak
bias assessment and limited quality-control. Undetected bias induced by inappropriate
use of datasets, and improper consideration of confounders prevents the translation of
prediction models into clinical practice. This study provides a systematic evaluation of
publicly available COVID-19 chest X-ray datasets, determining their potential use and
evaluating potential sources of bias.

Only 5 out of 256 identified datasets met at least the criteria for proper assessment
of risk of bias and could be analysed in detail. Remarkably almost all of the datasets
utilised in 78 papers published in peer-reviewed journals, are not among these 5 datasets,
thus leading to models with high risk of bias. This raises concerns about the suitability

of such models for clinical use.
This systematic review highlights the limited description of datasets employed for
modelling and aids researchers to select the most suitable datasets for their task.

1. Introduction

Less than a year has passed since the novel corona virus
SARS-CoV-2 gained world wide attention and eventually devel-
oped to the global COVID-19 pandemic (Sohrabi et al.| (2020)).
Diagnosis plays a vital role in the management of cases and
the allocation of potentially limited resources, like hospital/ICU
beds. Hence, there is an urgent necessity to create trustwor-
thy tools for diagnosis and prognosis of the disease. While
most of the people with COVID-19 infection do not develop
pneumonia (Cleverley et al.| (2020)), the early identification of
COVID-19 induced pneumonia cases is essential. To this end,
imaging studies such as planar X-ray and computed tomography
(CT) are employed. Chest X-ray (CXR) is a widely available,
fast, non-invasive, and relatively cheap tool to diagnose and
monitor COVID-19 induced pneumonia (Aljondi and Alghamdi
(2020)). In contrast to CT, CXR yields lower diagnostic sensitiv-
ity, however this is outweighed by the ease of application, even
in patients in intensive care treatment using portable scanners.

Currently, no distinct feature specific for COVID-19 pneu-
monia is known in chest imaging. However, a combination of
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multi-focal peripheral lung changes, mainly ground glass opaci-
ties and/or consolidations, often in a bilateral arrangement, has
been demonstrated (Cleverley et al.| (2020)).

1.1. Motivation

Machine learning, and in particular deep learning methods,
promise to assist medical staff in coherent diagnosis and inter-
pretation of images (Choy et al.|(2018); McBee et al.| (2018))). A
remarkable amount of machine learning models has been pro-
posed in a very short amount of time to tackle the problems of
COVID-19 diagnosis, quantification and prognosis from X-Ray
imaging (Shoeibi et al.| (2020); [Islam et al.| (2020); Ilyas et al.
(2020)).

However, there is growing awareness in the community that
the presence of different sources of bias significantly decreases
the overall generalisation ability of the models, leading to over-
estimated model performance reported in internal validation
compared to evaluation on independent test data (Soneson et al.
(2014); Cohen et al.| (2020b)); Zech et al.|(2018); Maguolo and
Nanni (2020)). In addition, numerous journal editorials are call-
ing for better development, evaluation and reporting practices of
machine learning models aimed for clinical application (Mateen
et al.| (2020); Nagendran et al.| (2020); [Campbell et al.| (2020);
The Lancet Digital Health| (2020);|O’Reilly-Shah et al.| (2020);

garciasantw:.hg%tgrje%(?ﬁ]l%]ré%gr@%:g&zrggzgg}él@ﬁ%? ﬁ:%]zr?ot been certified by peer review and should not be used to guide clinical practice.


https://doi.org/10.1101/2021.02.15.21251775
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.02.15.21251775; this version posted February 19, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

2 Beatriz Garcia Santa Cruz et al./ (2021)

The Lancet Digital Healthl (2019); [Stevens et al.| (2020)). Un-
derneath these caveats are the growing concerns about ethics
and risk of harmful outcomes of using Al in medical applica-
tions (Campolo et al.| (2018)); Geis et al.|(2019); Brady and Neri
(2020)).

In order to avoid or at least be able to detect potential bias,
it is important that datasets and models are well documented.
Some aspects of dataset building, such as criteria for subject
inclusion and exclusion, recruitment method, patterns in miss-
ing data, and many more, may influence model accuracy and
introduce bias in prediction models. Among the most com-
mon sources of bias are unknown confounders and selection
bias. (Steyerberg| (2009); Griffith et al.| (2020); |Greenland et al.
(1999); [Heckman| (1979)). In both cases, the presence of spu-
rious association between predictors and outcomes might be
learned by the model, leading to undetected overfitting resulting
in models not capable of generalizing and eventually failing in
clinical application (Wolff et al.| (2019), [T.T).

1.1.1. State-of-the-Art

In a recent review and critical appraisal of prediction mod-
els for diagnosis and prognosis of COVID-19 (Wynants et al.
(2020)) all evaluated models were rated at high risk of bias. The
authors arrived to the conclusion that they “do not recommend
any of these reported prediction models for use in current prac-
tice”. For the subset of diagnostic models based on medical
imaging two main causes for high risk of bias were identified:
1) a lack of information to assess selection bias (such as how
controls were selected or which subset of patients underwent
imaging) and 2) a lack of clear reporting of image annotation pro-
cedures and quality control measures. Similar conclusions were

Target population: Set of people with certain common
characteristics (disease, age, localisation) for whom the
model is aimed to be applied.

Predictors: Independent variables or inputs of the predic-
tion system. It is assumed that they are always available at
the time of prediction.

Outcome: The dependent variable or output of the predic-
tion system.

Bias: Systematic error that leads to distorted estimates of
the model’s predictive performance.

Selection bias: A.k.a. collider bias, happens when some
samples are more likely to be selected than others, making
the sample not representative of the population.
Generalizability: Capacity of a model to correctly predict
unseen data from the same population as the training sample.
Can be determined with internal validation.
Transportability: Measure of the extent to which a predic-
tive model performs well across different populations. Can
be determined with external validation.

Confounder: Variable that has an influence in both, the
predictor and the outcome. The presence of uncontrolled
confounders leads to spurious associations hampering gen-
eralizability and transportability.

Table 1. Key definitions

obtained in another publication specifically addressing machine
learning models using chest X-ray and CT images (Roberts et al.
(2021))). They found high or unclear risk of bias in all studies
and that the reported results were extremely optimistic, mainly
due to limitation in the datasets or combination of datasets used.

1.2. Aim & Hypothesis

Given the previously described disappointing state-of-the-art,
we hypothesise that the current main obstacle towards building
clinically applicable machine learning models for COVID-19 is
not the machine learning techniques per se, but instead access to
reliable training data that on the one hand captures the problem
complexity, but on the other does not induce undetected bias to
the models.

Therefore, there is a need to raise awareness of such prob-
lems and to aid modellers to efficiently find the right dataset
for their particular problem supporting efficient creating of ro-
bust models. This paper gives an overview on current publicly
available chest X-ray datasets, identifying strengths as well as
limitations, including most evident potential sources of bias.

1.3. Paper structure

We systematically evaluated the quality of COVID-19 chest
X-ray datasets and their utility for training prediction models us-
ing an adapted version of the CHARMS tool (Critical Appraisal
and Data Extraction for Systematic Reviews of Prediction Mod-
elling Studies, Moons et al.| (2014)). Dataset quality is measured
by the amount and the detail in the description of the dataset
variables and of the dataset building process. Model designers
needs this information to evaluate the risk of bias and the general-
izability, for example, using tools such as PROBAST (Prediction
model Risk Of Bias ASsessment Tool, Wolff et al.|(2019)). The
utility is determined by the structure and amount of information,
for example, only those datasets including information about
patient survival can be used for training prognosis models of risk
of death. Thus this paper provides a more in depth description of
datasets than previous works (Shuja et al.| (2020); |Sohan| (2020);
Shoeibi et al.| (2020); Islam et al.| (2020); [llyas et al.| (2020)),
that have focused on surveying papers describing methods, and
on identifying the datasets used to train these methods, without
assessing the datasets quality or utility.

In Section 2] the methodology used to systematic search for
datasets and evaluate their potential for clinical prediction mod-
els is given. Next, in Section@ the datasets selected for review
are analysed, describing their information content. A general
overview of some of the datasets most commonly used in pub-
lished paper is also presented in order to put this review in the
context of the current model development scenario. The land-
scape of interrelated datasets is complex. The most frequently
used datasets are compositions of many individual sources and
thus also the ones that are most difficult to assess for the risk of
bias. In Section[d]the insight extracted from this analysis is com-
mented. Finally, some recommendations for researchers aiming
at clinical prediction model building are given in Section[5]
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Fig. 1. Importance of identified meta-information during model development. (a) Given a dataset with unidentified composition of the dataset population,
there is a high risk of bias, i.e. a model is systematically prejudiced to faulty assumptions. (b) For example in an extreme case almost all of the control
cases form a special sub-population of young age. With knowledge on the dataset age composition one is at least aware that any model developed with this
dataset has a high risk of being biased by age (Model 1) or can even choose a model mitigating the age influence (Model 2). (c) Biased models are very
likely to lead to impaired performance in the target population hampering generalizability.

2. Methods

In this section, the main tools to address prediction model
quality (PROBAST, TRIPOD and TREE) are briefly introduced
and most relevant aspects concerning datasets are highlighted.
Subsequently, the search strategy (based on PRISMA) adopted
to find datasets with available information required to assess
quality is presented. The inclusion and exclusion criteria are
defined according to the prediction model quality guidelines.
Next, a data extraction tool (CHARMS) is adapted to evaluate
eligible datasets, verifying that all relevant information needed
for assessing model quality is present. Finally, and also fol-
lowing PRISMA recommendations, published paper presenting
Machine Learning models using COVID-19 X-ray images were
analysed to extract dataset usage statistics.

2.1. Tools for model evaluation

There are several tools to evaluate prediction model quality,
risk of bias and transparency, depending on model characteristics.
The elements of these tools specifically addressing aspects of
the data are considered in this work.

PROBAST tool (Wolff et al.|(2019)) was developed to evalu-
ate the risk of bias and the applicability to the intended popula-
tion and setting of diagnostic and prognostic prediction model
studies. It requires to answer specific questions about participant
selection criteria and setting, its numbers, information about
predictors and outcomes, and whether all of these choices were
appropriate for the model intended use. Whenever this appropri-
ateness can not be answered, for example, because some aspect
of the datasets is not properly or sufficiently described, the model
is rated as having a high risk of bias.

TRIPOD (Transparent Reporting of a Multivariable Predic-
tion Model for Individual Prognosis or Diagnosis, Moons et al.

(2015)) aims to improve reporting and understanding of predic-
tion model studies. Similarly to the PROBAST tool, it requires
a clear definition of predictors and outcomes and a description
of participant eligibility criteria, plus many more items.

A third example of quality assessment tool, in this case
specifically designed for machine learning and artificial intelli-
gence research, is given by a set of 20 critical questions proposed
in |Vollmer et al| (2020), to account for transparency, repro-
ducibility, ethics, and effectiveness (TREE). Among the ques-
tions is the following: “Are the data suitable to answer the
clinical question—that is, do they capture the relevant real world
heterogeneity, and are they of sufficient detail and quality?”. To
answer this question it is required to evaluate data quality and
detail, including “accuracy of data collection methods, sampling
of participants, eligibility criteria, and missing data”.

2.2. Dataset search, eligibility & selection

The search strategy for publicly available COVID-19 chest
X-ray datasets consisted of two complementary approaches: a
direct search for datasets using a dataset search engine, known
compilation websites as well as direct extraction of data sources
from reviews, and an indirect search for papers that describe
prediction models for COVID-19. The papers from the indi-
rect search were subsequently analysed to extract the employed
datasets yielding additional dataset records. PRISMA (Moher
et al[(2015)) (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) statement was adapted to this special situ-
ation, where the final object of interest are datasets instead of
studies.

Many datasets provided online are combinations of pri-
mary datasets, or even super-aggregations of other compila-
tions. Moreover, the employ of such compilation datasets is
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very widespread in COVID-19 X-ray models. The aggregated
datasets have complex inter-dependencies (Garcia Santa Cruz
et al.|(2020)) that can be dangerous (DeGrave et al.| (2020)) when
the users do not consider the origin of the data and the potential
limitations. For example, some compilations merged COVID-19
positive cases from adults with healthy controls from children,
which imposes a high risk of fitting to this confounder when not
addressed in the modelling (Garcia Santa Cruz et al.| (2020)).
In addition, there is little or no benefit over adding each of the
needed primary datasets individually by the researchers building
the model.

Therefore, all compilation datasets, including all datasets
from Kaggle, were discarded from the detailed analysis for po-
tential bias. Instead the primary datasets included in the compi-
lations were analysed for eligibility in a later step individually.
For completeness, an overview of the most frequently used com-
pilation, primary datasets, and their relations, is presented in
Fig.[3]

For the identification step of the direct search entries the
google research dataset searc}ﬂ was employed using the query
"COVID-19" & "X-ray" & "dataset". Additionally four com-
pilation website were examined E]E]ﬂ Finally, review papers
on the topic (Shuja et al.| (2020); [Ilyas et al.| (2020); Islam et al.
(2020); |Shoeibi et al.[(2020); [Wynants et al.| (2020); Pham et al.
(2020); [Roberts et al.| (2021)); (Garcia Santa Cruz et al.| (2020))
were screened for dataset candidates. For the indirect search,
PubMed and preprint services (medRxiv, bioRxiv and arXiv)
were queried with the search terms "COVID-19" & "X-ray" &
"dataset". All queries were restricted to the time interval between
1st of January 2020 to 1st of October 2020.

During the screening step of the direct search for datasets,
all the entries that were duplicates, the aggregated datasets and
the non-open datasets were removed. In the parallel indirect
search to yield datasets from papers, all papers with less than
10 citations based on google scholar where filtered out and the
remaining papers were analysed to extract the datasets employed.
As in the direct search, datasets that were non-open, non-COVID-
19, or not based on chest X-ray were discarded. Next, all datasets
from the direct and indirect search were merged, and those that
were not sufficiently documented either in a paper or project
website (e.g. GitHub repositories) to assess potential bias where
discarded.

Final eligibility for inclusion was limited to datasets that
include COVID-19 cases and that were collected under the same
protocol. Hence, datasets including only controls and collections
of case reports were discarded. Such information is essential
to assess model applicability, generalizability and to determine
the risk of bias, according to PROBAST, TRIPOD or TREE
guidelines.

Ihttps://datasetsearch.research.google.com

“http://open-source-covid-19.weileizeng.com/tags

3https://github.com/HzFu/COVID19_imaging_AI_paper_list#
dataset

“https://aimi.stanford.edu/resources/covid19

2.3. Dataset information extraction

CHARMS checklist (Moons et al|(2014)) was designed
as a data extraction tool for systematic review of prediction
modelling studies, including machine learning models. It is not
specifically designed to evaluate datasets, however a large part of
its items are devoted to extract information from data used in the
studies. Up to our knowledge, there are no other tools, protocols
or statements, exclusively designed for dataset evaluation. There-
fore, a simplified version of CHARMS checklist is proposed in
this work (Supplementary material, Appendix 1), where sections
regarding model characteristics (model type, evaluation metrics,
performance and results) were discarded. Specifically, the fol-
lowing domains were kept: Data source, Participant description,
Outcomes, Predictors, Sample size and Missing data. The do-
mains about model (development, performance and evaluation),
Results and interpretation were omitted.

Participant description, including recruitment method, in-
clusion and exclusion criteria, are needed to determine the ap-
plicability and generalizability of the model, whether the study
population is representative of the target population, and to dis-
card the presence of selection mechanisms that can introduce
bias. Information about received treatments could be relevant if
they affect the outcome of prognostic models.

Outcomes to be predicted will depend on the purpose of the
model, i.e. whether it is a prognostic or a diagnostic models.
Radiological findings, lesion segmentation and disease differen-
tial diagnosis could be suitable outcomes for diagnostic models,
when they are measured close in time to the image acquisition.
When there are multiple images from the same subject acquired
at different time-points, a prognostic model could be trained,
where the diagnosis from the later image is predicted from the
earlier one. Time to death or discharge, or whether ICU, supple-
mentary oxygen or other life support treatments were needed,
can be used also in prognostic models.

Although outcomes based on image findings could some-
times be determined a posteriori (e.g. with a post-hoc annotation
by a radiologist), a precise definition of them is essential to de-
scribe model applicability. It is also important to specify whether
outcomes where obtained blinded to predictors and/or the other
way round, because this affects the causal model assumption and
the strategies to mitigate bias (Castro et al.| (2020)).

The main predictor of any model considered here is the
X-ray lung image, however other measurements could be also
used in the model. Details of the image acquisition protocol and
acquisition device description are important as they could be a
significant source of confounding when merging images from
different sources. In addition, the model performance could be
reduced if applied to images acquired using a different setting
than in the training set.

Finally, a large enough sample size and the amount and
treatment of missing data are highly relevant to avoid overfitting
and confounding, respectively.

The full list of items used in this work are in Table S1 and
detailed explanation of each item can be found in|Moons et al.
(2014).
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Fig. 2. Adapted PRISMA workflow for the analysis of COVID-19 X-ray datasets. Boxes in blue indicate papers from the additional indirect search for
papers using datasets, from which datasets (yellow/green) were extracted.


https://doi.org/10.1101/2021.02.15.21251775
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2021.02.15.21251775; this version posted February 19, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

6 Beatriz Garcia Santa Cruz et al./ (2021)

2.4. Current landscape of COVID-19 X-ray datasets

As only few datasets met appropriate conditions for our
final analysis, and for the sake of completeness, a collection
of the most frequently used COVID-19 and non-COVID-19
datasets were included. Non-COVID-19 datasets are commonly
employed to both, pre-train networks (Cohen et al. (2020a)),
and as control cases in diagnosis models. A short description
of each dataset was included as well as a diagram with their
relationships. Additionally, we assessed the usage frequency of
the selected datasets to depict the general trend.

2.5. Analysis of the dataset use frequency

Finally, in order to illustrate how little attention data quality
has received by researchers so far, a temporal analysis of the
dataset frequency use in published papers was conducted. Dur-
ing the identification step, published papers based on Machine
Learning using publicly available datasets indexed in PudMed
from May 2020 to December 2020 using the query (COVID-19,
x-ray, deep learning) OR (COVID-19, x-ray, machine learning)
OR (sars-cov-2 ,x-ray, deep learning) were included. Since we
restricted our research to publications indexed on Pudmed, the
record identification thought other sources as well as the removal
step for duplication do not apply. Next, during the screening
step, all the published manuscript which do not cover our initial
research question, i.e. been an original research manuscripts
using machine learning techniques X-ray modality, were re-
moved. Subsequently, the datasets employed in each work were
extracted. Those paper that not employed publicity available
datasets or the datasets were not identifiable were removed dur-
ing the eligibility step. Lastly, the temporal patters of dataset set
use was analyse. PRISMA workflow of the process is depicted
in supplementary material, Appendix 2.

3. Results

This sections consists of four parts. First, the results of
the adapted PRISMA search are presented, next the eligible 5
datasets are analysed in detail. Afterwards, the most popular
datasets, including the interactions of the aggregated datasets
are described. Finally, the results of the frequency of datasets
use are presented.

3.1. Dataset search & selection

During the direct search a total of 256 entries were identi-
fied; in particular, 175 from the google dataset search, 53 from
compilations websites and 37 from review papers of COVID-
19 datasets. In the indirect search a total of 415 papers were
identified; specifically, 58 papers found in PubMed and the rest
on pre-print services (195 in MedRviv, 93 in bioRxiv and 69 in
arXiv).

The screening step of the direct search consisted on the
removal of all duplicate entries (221) and non-open datasets
(4). Duplicate datasets are remixes of previously published
datasets and mainly found on kaggle (179). For the indirect
research, pre-print with less that 10 publications (284) were
filtered out, followed by 71 papers removed for the following
reasons: duplicate papers (4), out-of-topic (42), not including

any open dataset (20) and dataset information not accessible
(5). Finally, a total of 60 papers that employed public datasets
were kept and 31 public dataset were extracted. The adapted
PRISMA protocol is represented in Fig. (2), where yellow boxes
denote papers from the indirect search and yellow boxes denote
datasets.

During the eligibility step, dataset not well documented from
the direct (9) and indirect (16) search were removed. Next, all
the selected dataset from both the direct and indirect strategy
were merged and the duplicate removed.

Finally, in the inclusion step, datasets that do not contain
COVID-19 cases were removed (10) as well as COVID-19
datasets that do not meet the inclusion criteria: case studies
(4) or not collected under some prespecified protocol (3).

The selected 5 datasets included for the qualitative analy-
sis were: Brixia dataset, from the ASST Spedali Civili (Civil
Hospital) of Brescia, Italy; the Cancer Imagine Archive dataset
from the University of Arkansas for Medical Sciences (USA),
that is focused on underrepresented rural populations in the
USA; ML Hannover (Winther et al.| (2020)) from the Insti-
tute for Diagnostic and Interventional Radiology (Hannover,
Germany); HM Hospitals dataset includes patients from the
same Hospital Group in different cities in Spain and is focused
on interactions between diagnosis, treatment and outcomes;
and BIMCV-COVIDI9 from the Medical Imaging Databank
of the Valencia Region (Banco digital de Imagen Medica de
la Comunidad Valenciana). This last one comprises of differ-
ent subsets: BIMCV-COVID19+ with two subsequent releases
(iteration 1 and iteration 2), BIMCV-COVIDI19- and BIMCV-
COVID19-Padchest. BIMCV-COVID19+ and BIMCV-COVID19-
are collected from the same hospitals in the first half of 2020
and distinguished by either a positive or negative diagnostic test
(PCR and/or Antigen). Because BIMCV-COVID19-Padchest
contains cases collected at pre-COVID19 times and different
hospitals, we do not include it for further analysis.

3.2. Dataset metadata availability for risk of biases assessment

For most of the datasets it was difficult or impossible to
assess most of the information items. None of the datasets in-
cluded an accompanying paper with a comprehensive description
or study protocols. At the moment of writing this manuscript,
BIMCYV provided a description of the first iteration of the data
(BIMCV-COVID19+|Vaya et al.[(2020)) while further informa-
tion, especially about the collection of the non-COVID-19 cases,
is claimed to be coming soon. For the Brixia data, there is a
detailed description of the radiological annotation process (Sig+
noroni et al.| (2020)).

Participants

There was limited information about participant eligibility
and recruitment method, see Table[2]for details. All the datasets
included participant sex, four of them included participant age,
two of them included also subject height and weight, and only
one included information about comorbidities, which is partic-
ular relevant in this disease because of the strong evidence of
interactions between comorbidities and death risk (Yang et al.
(2020)). In general, the participant description is too scarce to


https://doi.org/10.1101/2021.02.15.21251775
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2021.02.15.21251775; this version posted February 19, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in

perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

Beatriz Garcia Santa Cruz et al./ (2021)

sssscscsssssssssssssssesssassssase

Openl

BRIXIA

BIMCV-COVID19+

Shenzen

images + findings

images + severity

images + findings + diagnosis

images + diagnosis
+ lung segmentation

MIMIC

Cancer Image Archive

BIMCV-COVID19- .

images + findings

Montgomery

images + diagnosis

images + diagnosis
+ lung segmentation

ChexPert

HM Hospitales

images + findings + diagnosis

BIMCV—COVIDlQ-Padchest.

images + findings

images + outcome

images + diagnosis

COVID-19 Radiography
Database

General Blockchain

esesesecsesessessnssesresressse e
R R P TR TR

ssesescssssssssssfessccecsssncssnse

[ COVIDx

¢

[ images + diagnosis

&

e

images + diagnosis

images + diagnosis
+ segmented findings
+ segmented anatomy

J—COVIDlQ-? T

J

V7 Darwin

images + diagnosis

+ segmented lungs and
image artefacts

IEEE8023

Q

| images + diagnosis

7

ROR

UCSD-Guangzhou
(Kaggle Mooney)

[ images + diagnosis

J

BIMCV-Padchest

images + findings + diagnosis

NIH Google

images + finding

| RSNAKaggle ?

|

images + findings
+ bounding box

agchung/ agchung/ |
Figurel Acutalmed L
_ _ | NIH-ChestXray8|14
images images
l + diagnosis + diagnosis ‘ images + finding J

R

manuscripts| ‘ sirm.org ] ‘radiopedia.org| [ eurorad.org | Hannover

ML
Figurel.com

{ Images + case

| N S

Images + case Images + case Images + case Images Images + case
description description description description + outcome description
Legend
[ super dataset ’ [ super dataset | 9
L ’ re-annotation of labels | Fraction of only | mainly ?
R COVID-19 | J

I

‘ source dataset }

|

[ many 'P

( J

Fig. 3. Overview of the relationships of popular COVID-19 and related non-COVID-19 datasets. Grey boxes represent datasets which can be downloaded
as one entity. Green boxes indicate primary COVID-19 datasets meeting the inclusion criteria for review. Transparent boxes indicate data sources not
directly available as downloadable datasets. Diamond shaped symbols indicate that the attached source dataset is (partially) included in an aggregated
dataset. Dotted lines describe the case when images of a source dataset are included in an aggregated dataset but labels have been re-annotated. The
colouring of the circle in the upper right corner of each datasets indicates the approximate proportion of COVID-19 patients (yellow) and control subjects

(gray).


https://doi.org/10.1101/2021.02.15.21251775
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2021.02.15.21251775; this version posted February 19, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

8 Beatriz Garcia Santa Cruz et al./ (2021)

asses if the training population is representative of the target
population, hampering the applicability of the models. It is also
difficult to determine if there are selection mechanisms, includ-
ing inclusion and exclusion criteria, that could be a source of
strong confounding and limit generalizability and transportabil-
ity of developed models. Only one dataset provides information
about treatment, which is another serious limitation taking into
account that this is a new disease and there are no prespecified
treatment protocols and different experimental treatment were
applied in each country or hospital unit.

Potential outcomes

Outcomes were divided in two main categories, outcomes
suitable for diagnostic models and for prognostic models, de-
pending on whether the variable can be assessed at the time of
image acquisition or if we must wait some time for the variable
to change. A typical diagnostic outcome is the radiological re-
port or annotation, which is available in three of the datasets,
with different level of detail on each. Prognostic variables such
as ICU admission and survival or discharge time were present
in three datasets (see Table[3). It’s worth noting that the Brixia
dataset contains severity diagnosis for some of the participants
at multiple dates, and thus it can be used to build prognostic
models of disease progression.

Regarding outcome definition and methods, lack of image
annotations is not a critical issue because they can be assessed
later by independent radiologists. However, if researchers are
going to use the image annotations provided with the dataset, a
precise definition and method description is needed, which are
provided only for two datasets. Definition and method for ICU
admission and survival were not considered necessary.

The only outcomes considered for diagnosis were features
extracted from the images, and the image is necessary among the
predictors. Therefore, for the diagnostic models considered in
this work, the outcome can never be blinded to the predictor, and
the predictor is always blinded to the outcome. As said previ-
ously, this could be useful for the analysis of the causal structure
of the model. Regarding prognostic models, all predictors are
blinded to future events determination unless a selection process
is present, which can not be determined with the available data.

Candidate predictors

The amount of predictors, in addition to X-ray scans and
demographic variables, vary widely between the datasets (see
Table [d). Two datasets have no additional potential predictors,
apart from image and demographics. All datasets include images
in DICOM format, except for ML Hannover, that used NIfTI
format for privacy reasons.

Sample size and missing data

Sample size is critical for Deep Learning prediction models,
in particular when images are used as predictors, because of the
high risk of overfitting due to the high dimensionality of the
input. Lack of large enough sample sizes is a common issue in
all medical applications, but COVID-19 data is specially scarce.
Two of the reviewed datasets (Brixia and BIMCV) included a
few thousand X-ray images, and the rest of them a few hundreds.
See Table 2] for details.

Missing data was particular prominent in some potential pre-
dictors (laboratory data) of ML Hanover, however these variables
are not widely used in image based Deep Learning models.

3.3. Frequently used COVID-19 datasets not included in the
analysis

Several datasets that are frequently used in model building
where deemed not eligible for the review, mostly because they
are datasets aggregating primary sources (compilations) or they
are collections of case studies. In the following, a brief overview
is given. See to Fig. 3| for an overview of the composition and
relation between these datasets and the primary sources of the
data.

3.3.1. Compilations and other datasets

Different radiological associations are making efforts to col-
lect and provide images and reports on the internet to facilitate
knowledge transfer of radiologist. These datasets are made pub-
lic for educational reasons, and not for training prediction mod-
els. Among those, www.eurorad.org, www.sirm.org, www!
radiopedia.org,|www.figurel.comandwww.bsti.org.uk
provide images which are usually accompanied by a radiological
description and varying depth of clinical information. Several
initiatives such as Cohen/IEEE 8023 dataset collect and present
this information in a structured dataset format.

The Cohen/IEEE 8023 dataset ("COVID-19 Image Data Col-
lection", |Cohen et al.| (2020c)) is a collection of cases “extracted
from online publications, websites, or directly from the PDF”,
including the aforementioned case sharing websites. Addition-
ally, it incorporates the ML Hannover dataset. It provides a
well curated tabular view on the image meta-data containing
the source document of the image, the imaging origin (hospi-
tal, city or country) and information about scanning view for
most images, as well as gender, age and a variety of clinical
features and outcomes for some cases. The dataset strongly
focuses on different kinds of pneumonia (826 out 950 images)
and therein especially on COVID-19 (584 out of 950 images)
but provides very little cases of no finding (22). Additionally
the dataset contains global severity scores for about 100 images
created in a post-hoc analysis of images according to a severity
scheme (Cohen et al.| (2020al)). The Cohen/IEEE 8023 dataset
was used to feed many other datasets. In the General Blockchain
COVID-19 segmentations dataset two radiologist created, in a
post-hoc annotation process, segmentation masks for anatomical
parts, medical devices (e.g. tubes and probes) and radiological
findings (Ground glass opacities and Consolidations).

The agchung/Figurel dataset contains images of 48 patients
extracted from the case sharing website www.figurel. com. For
some patients, it contains additional information about sex, tem-
perature, pO2 saturation, the scanning view as well as some
clinical notes. Most of images are assigned one of the labels
COVID-19, pneumonia or no finding.

The Kaggle COVID-19 radiography database (Chowdhury
et al.| (2020)) aggregates COVID-19 cases from the Cohen/IEEE
8023, cases extracted from the sirm.org website and from 43
publications. Furthermore it incorporates control cases and cases
of viral pneumonia from the UCSD-Guangzhou pediatric dataset.
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Table 2. Participant data. According to the available information, the data source type that best fits all the considered datasets is ""cohort study'.

Dataset Eligibility & Participant description Treatment  Study Number of Country
recruitment information dates subjects/images

Brixia ! Yes © Age, sex, location and study setting '! No Yes 2351 /4703 Italy

ML Hannover > Unclear ’ Sex No No 71 /243 Germany

CIA3 Unclear 8 Age, sex, race, location No No 105 /256 UsS

weight, height and comorbidities

HM Hospitales * Yes ° Age, sex and comorbidities Yes Yes 2310 '2/419 Spain
BIMCV-COVID19+ 3 Yes 10 Age and sex No Yes 4706 / 16840 Spain
BIMCV-COVID19- 3238 /6540

! Brixia score COVID-19 dataset (Signoroni et al.|(2020)) (https://brixia.github.io/).

2 COVID-19 Image Repository (https://github.com/ml-workgroup/covid-19-image-repository).

3 Cancer Imaging Archive, chest imaging with clinical and genomic correlates representing a rural COVID-19 positive population
(COVID-19-AR) (https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageld=70226443).

4 Covid Data Save Lives (https://www.hmhospitales.com/coronavirus/covid-data-save-1lives/english-version).

5 BIMCV-COVIDI9, Valencian Region Medical ImageBank (Vaya et al.| (2020)) (https://bimcv.cipf.es/bimcv-projects/
bimcv-covid19/)

6 All images from triage and patient monitoring in sub-intensive and intensive care units between March 4th and April 4th 2020 at the ASST
Spedali Civili di Brescia.

7 All data from the Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.

8 Patients who tested positive for COVID-19 from rural areas.

9 Patients admitted with a diagnosis of COVID POSITIVE or COVID PENDING.

10 All consecutive studies of patients with at least one positive PCR test or positive immunological tests for SARS-Cov-2. The the first
iteration of the dataset was obtained from 11 hospitals in the Valencian Region (Spain) in the period of time between February 26th and
April 18th, 2020.

! Sub-intensive and intensive care units. Age is given in 5 year intervals.

12 From which only 189 subjects had accompanying X-ray images.

Table 3. Outcome information

Dataset Potential Definition Blinded to  Diagnostic or  Times '
outcomes and methods  predictors prognostic
Brixia Brixia score > Yes No Diag./Prog. Yes
ML Hannover ICU, survival - Yes Prog. Yes
CIA ICU, survival - Yes Prog. Yes
Radiological findings No No Diag.
HM Hospitales ICU, survival, discharge - Probably not Prog. Yes
BIMCV-COVIDI19+ Radiological reports + findings Yes No Diag.
PCR, IgG, IgM Yes Yes Diag.

! Time between predictor and outcome is particularly relevant for potential prognostic outcomes, and was reported
only for these outcomes.
2 Brixia score is a severity index of regional lung compromise (Signoroni et al.| (2020)).


https://brixia.github.io/
https://github.com/ml-workgroup/covid-19-image-repository
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70226443
https://www.hmhospitales.com/coronavirus/covid-data-save-lives/english-version
https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/
https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/
https://doi.org/10.1101/2021.02.15.21251775
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2021.02.15.21251775; this version posted February 19, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

10 Beatriz Garcia Santa Cruz et al./ (2021)

Table 4. Predictor information other than demographic variables.

Dataset Candidate Definition Timing Blinded to
predictors ' and methods outcomes
Brixia modality, scanner manufacturer Yes Yes Yes
ML Hannover view, modality No Yes Yes
laboratory data, vital signs
CIA comorbidities No No Yes
HM Hospitales comorbidities, medications, Yes Yes Yes
laboratory data, vital signs
BIMCV-COVIDI19+ modality Yes Yes Yes

I All datasets except ML Hannover included the DICOM headers, which contain further informa-
tion about scanning setting, like view and scanner model, and could contain more information

about the patient characteristics.

It does not include any meta-information, except the image
dataset source.

The V7 Darwin covid-19-chest-x-ray-dataset also includes
non-COVID-19 from the UCSD-Guangzhou pediatric dataset
and COVID-19 cases from Cohen/IEEE 8023.

The COVIDx dataset (Linda Wang and Wong|(2020)) is com-
piled from different sub-datasets. It contains the Cohen/IEEE
8023, the angchung/Actualmed and angchung/Figurel datasets.
It also includes COVID-19 cases from the COVID-19 radioag-
raphy database as well as Pneunomia and Normal cases from
the RSNA Kaggle Pneumonia dataset. Each image is assigned
one of the labels COVID-19, Pneunomia or Normal. As these
sub-datasets contain common sources, there is the risk of case
duplication due to incoherent source descriptions.

The Actualmed dataset contains images (CR, DX) of 215
patients. Each image is assigned a radiological diagnosis of
"COVID19", "inconclusive" or "No finding". In addition it
contains metadata of date and scanning view (AP vs PA). For the
Actualmed dataset it was not possible to reliably determine the
source (primary or secondary) of data due to lack of descriptive
information.

3.4. Non-COVID-19 datasets

Some datasets built before the COVID-19 pandemic are
frequently used for pre-training networks (Cohen et al.| (2020a);
Signoroni et al.| (2020)) or to enrich training data with non-
COVID-19 controls (Linda Wang and Wong| (2020)). In general,
these datasets are much larger and better curated than those for
COVID-19.

The Padchest dataset (Bustos et al.|(2020)) contains images
(CR, DX, CT) of about 67000 patients together with radiological
reports and thereof automatically extracted labels, “resulting
in 22 differential diagnoses, 122 anatomic locations and 189
different radiological findings”. The dataset was collected from
a single hospital (Hospital San Juan Hospital (Spain)) between

2009 and 2017 and contains DICOM meta-data. The afore-
mentioned BIMCV-COVID19-PADCHEST is a subset of this
dataset, reduced to samples of four classes ("Control", "Infiltra-
tion without Pneumonia", "Pneumonia without Infiltration" and
"Pneumonia with Infiltration").

CheXpert is a large dataset (Irvin et al.|(2019)) released at the
beginning of 2019 that includes 224,316 chest radiography from
65,240 patients collected from Stanford hospital. For fourteen
classes of radiological findings a rule-based processing of the
reports generated labels of presence, absence, or uncertainty
thereof. Additionally this dataset comprises a dedicated testset,
with 500 images annotated by consensus of eight radiologist.

The ChestXray-NIH dataset (Wang et al.| (2017)) contains
about 120k images of 30k patients from the clinical PACS
database at National Institutes of Health Clinical Center. In its
original version, all images were labelled with originally eight
(ChestXray8) and in the current version fourteen (ChestXray14)
different findings from thoracic pathology. The labels have been
extracted from the corresponding radiological reports by Natural
Language Processing. The underlying reports are not publicly
available, but the dataset contains meta-information about gen-
der, age and view position. Additionally there are annotated
bounding boxes for all findings in about 1000 images.

The RSNA Pneunomia Kaggle dataset (Shih et al.[(2019)) is
a subset of 30k images from the ChestXray-NIH dataset with an
enrichment of images with a Pneunomia related diagnosis. In a
well defined annotation process a team of radiologist annotated
areas of Lung Opacity with bounding boxes solely based on the
information present in the image.

ChestXray-NIH Google is another subset of about 18k im-
ages from the ChestXray-NIH dataset with extra labels (Ma+
jkowska et al.| (2020)). In another well designed annotation
process radiologist assigned each image only with “access to
the patient age and image view (PA/AP), but not to additional
clinical or patient data” the presence/absence of four findings:
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pneumothorax, opacity, nodule/mass and fracture.

Montgomery dataset built in 2014 contains 138 frontal chest
images collected in the department of health and human ser-
vices, Mongomery Country, Maryland, USA. To each image,
a short radiological report and a disease diagnosis is assigned
(58 images with tuberculosis manifestations and 80 controls),
as well as a lung segmentation annotation automatically gen-
erated under the supervision of a radiologist using anatomical
landmarks (Candemir et al.| (2013))). The images themselves
contain written markings of the scanning view (AP and PA) and
there is additional metadata about gender and age. The intended
used of the dataset is to boost of computer-aided diagnosis for
pulmonary diseases with focus on TB (Jaeger et al.| (2014)).

The Shenzhen dataset was released together with the Mont-
gomery dataset and contains images collected in collaboration
the Shenzhen Hospital in China. It contains 662 frontal X-ray,
of which 326 are normal and 336 contain TB manifestations.
Additionally metadata includes sex, age and a short radiological
description (Jaeger et al.|(2014)).

UCSD-Guangzhou pediatric dataset contains more than 5000
chest X-ray images from children (AP view) selected from ret-
rospective cohorts of pediatric patients of 1-5 year old from
Guangzhou Women and Children’s Medical Center, Guangzhou
(Kermany et al.|(2018))). All images were assigned a diagnosis of
viral/bacterial Pneumonia or Normal by two experts. No further
meta-data is available.

MIMIC-CXR-JPG v2.0.0is a large dataset comprising 377,110
chest x-rays associated with 227,827 de-identified imaging stud-
ies sourced from the Beth Israel Deaconess Medical Center.
Images are provided with 14 labels derived from two natural
language processing tools (NegBio and CheXpert) applied to the
corresponding free-text radiology reports (Johnson et al.|(2019)).

Indiana University Chest X-rays/Openl is a dataset from
the Indiana University created to provide a publicly available
searchable database and comprises about 7500 Chest X-rays
(Demner-Fushman et al.|(2016))). It includes view information
and radiological reports including main findings and impres-
sions. In a well documented post-hoc annotation process the
reports have been mapped to localised findings, e.g. "Cica-
trix/lung/base/left".

3.5. Analysis of dataset used on peer-reviewed papers

A total 151 papers indexed on Pudmed were identified. Next,
62 manuscripts were removed during the screening steps, due
to: the datasets was not an X-ray modality (n = 49); it was
an opinion paper, editorial, survey or review (n = 11); images
were not from the lungs (n = 1); or the technology employed
was not ML (n = 1). During the eligibility step, the 89 filtered
papers were analysed to extract the datasets employed and all
the paper that did not employ publicly available datasets (n =
8) or for which datasets could not be identified (n = 3) were
removed. Finally, with the selected 78 papers, the datasets
employed were extracted (Supplementary material, Appendix 3)
and the temporal analysis was conducted.

Despite expecting a change in the pattern of dataset usage,
as better resources became available, the contrary was observed,
the pattern of dataset use of datasets was uniform. This may

indicate that the dataset choices were made based on popularity
of previously frequently used ones, even when better options
had appeared. Shockingly, only one of those found during our
analysis was used, and only in one article.

It’s also highlighted that 18 out of 78 papers employed ex-
clusively the combination of "Cohen/IEEE 8023" and "UCSD -
Guangzhou". As we mention before, the combination of datasets
can be dangerous, but this highly frequent combination is par-
ticularly dangerous because the "UCSD - Guangzhou" dataset
was most probably employed for as a source of control cases,
being children from 1 to 5 years old, while all COVID-19 came
from adults, been this a clear source of confounding difficult to
handle.

4. Discussion

This work highlights a common problem in imaging pre-
diction models. While overfitting is commonly acknowledged
when dealing with a small number of images, other sources of
bias such as confounders and selection bias are not as frequently
considered. This is evidenced by the careless use of datasets,
where critical questions about populations, such as recruitment
procedures, inclusion and exclusion criteria, or outcome mea-
surement procedure, are not addressed. Some authors (Cohen
et al.| (2020c)) have already acknowledge that many datasets
do not represent the real world distribution of cases, that the
presence of selection bias is highly probable (particularly on
case study collections), and therefore that clinical claims must
take into account these limitations. However, the first step to
tackle these issues is to have a good description of datasets in
order to implement some strategy to reduce the bias. Or at least
to be fully aware of model limitations and range of applicability.

Unknown confounders and collider bias are not as problem-
atic in prediction models as they are in causal inference (Griffith
et al.|(2020); [Wynants et al.|(2020))). However, model general-
izability is compromised and its prediction power can only be
maintained when training and target population remain similar
and go through the same sampling mechanism. Even in this
particular case, specifying the optimal target population cannot
be done without knowing the training population characteristics.

Recently, there are some recent efforts to address the general
problem of bias in Al, and in particular regarding the use of
human data. In |Mitchell et al.| (2019), for example, authors
encourage transparent model reporting and propose a framework
to describe many aspect of model building, including dataset
description.

General considerations about clinical prediction model (Steyér-
berg|(2009)) are as relevant in AI models as in linear regression
models, although in the former case are much more difficult to
address. Protocols for AI model development are being devel-
oped, in the meantime the minimum requirements for dataset
description should be assessed (Collins and Moons|(2019); Liu
et al.|(2019); [Faes et al.| (2020); Stevens et al. (2020)).

4.1. Bias in medical imaging ML

Medical Imaging Models, especially Convolutional Neu-
ral Networks (CNNs), are known not only to learn underlying
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Fig. 4. Temporal analysis of the datasets employed in the selected 78 peer-review papers. Top-left: Number of papers indexed in Pubmed that report a
Machine Learning model for COVID-19 X-Ray imaging by month of their published date (from Pubmed database). Bottom-left: number of papers using
a given dataset per month. Bottom-right: total number of papers using each dataset. Note that only one dataset among the classified as recommended
were used (BIMCYV), and only in one paper. The number of papers using exclusively Cohen/IEEE 8023 and UCSD-Guangzhou is 18, a particularly risky

combination, as stated in Section[3.3]

diagnostic features, but also to exploit confounding image in-
formation. For example, it was shown that the acquisition site,
regarding both the hospital system and the specific department
within a hospital, can be predicted with very high accuracy
(> 99%) (Zech et al|(2018)). If disease prevalence is associated
with the acquisition site, as it is often the case, this can be a
strong confounder. Thus, in any composite dataset having sepa-
rated sub-datasets for COVID-19 and control cases, the dataset
is completely confounded with the group label and therefore it is
difficult to isolate the disease effect from dataset effect, making
learning almost impossible and posing a high risk of overesti-
mating prediction performance. Indeed it has been observed that,
by training on different COVID-19 and non-COVID-19 dataset
combinations, the “deep model specialises not in recognising
COVID features, but in learning the common features [of the
specific datasets]” (Tartaglione et al.|(2020)). Eventually, a CNN
model is able to identify the source dataset with a high accuracy
(> 90%) solely from the image border region containing no
pathology information at all (Maguolo and Nanni| (2020)).
Besides acquisition site, the demographic characteristics
of populations can also be a strong confounder. Datasets that
take cases from the UCSD-Guangzhou pediatric dataset as non-

COVID-19 examples (maximum age 5 years old) pose the risk
that models will associate anatomical features of age with the
diagnosis since, for example in the Cohen/IEEE 8023 dataset,
the minimum age is 20 years old (mean 54). Controlling for
confounders is already difficult in deep learning models, and
normalising the images in such a wide and disjoint range of ages
seems an impossible task.

But one not only has to be wary in composite datasets, also
single source datasets are not free of potential confounders and
other sources of bias. The classical example would be a different
imaging protocol depending on the patient’s health status. For
example, the PA erect view is the preferred imaging view in
general, but if the patient is not able to leave the bed it is much
more common to do an AP view image.

Another confounding factor might be the presence of med-
ical devices like ventilation equipment or ECG cables, which
allows a model to associate images with patient treatment in-
stead of disease status. For example, for the NIH ChestXray14
dataset, a critical evaluation has shown that “in the pneumoth-
orax class, [...] 80% of the positive cases have chest drains.
In these examples, there were often no other features of pneu-
mothorax” (Oakden-Rayner| (2020)). Datasets which provide
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additional annotations on the presence of medical devices (e.g.
BIMCYV, 7labs, General Blockchain) facilitate a risk analysis on
this confounding effect and also enable mitigation strategies in
training.

In general, one has to distinguish between labels which have
been annotated by taking only the image itself into account,
and labels which have been generated by a different source, i.e.
from another diagnostic method like CT or PCR. Unfortunately,
radilogical reports done in a in clinical routine are a mixture
of both. Radiologist are often aware of the patients clinical
context and this information is reflected in the reports, since they
are done with the aim of communicating information between
different doctors. For example, it has been shown for the NIH
ChestXray14 dataset that, in a substantial fraction of images,
the associated finding extracted from the reports can not be
confirmed by a post-hoc assessment of the the images (Oakden
Rayner (2020)).

Biases arise more easily when outcome labels and prediction
model intended application is not clearly defined. If the model
objective is to find radiological manifestation of the disease in
the images that are not necessarily apparent to the radiologist
naked eye, the labels should be the best possible diagnostic as-
sessment obtained by any diagnostic test that doesn’t include
image information from same modality. For example, a perfectly
righteous goal could be to determine whether a feature observed
in CT, but not visible in XR, could be detected by subtle sig-
nals that ML models can identify. In contrast, if the goal is to
reproduce radiological findings (for example, to save radiologist
time) the label should be radiological annotations assessed by
an independent clinician that has no information except for the
image. Otherwise the risk of bias increases sensibly and the
generalisation ability is compromised, because we can not really
understand where the key information is coming from, what the
model is learning, and what the possible sources of bias are. In
this sense, it’s worth noting that a couple of datasets do provide
such annotations solely derived from the images (RSNA Kaggle,
NIH Google, General Blockchain, 7labs).

4.2. Advice for modellers

To avoid risk of bias coming from dataset misuse is is impor-
tant that researchers follow transparent practices and adequate
reporting guidelines. For reviewers to assess whether the chosen
datasets are appropriate for the research question or intended
use, it is necessary that researchers address the following:

e Merging subjects from different datasets should be done
from original sources only, so that potential bias can be
easily evaluated from the study and is not hidden in the
data source. The selected images from each dataset should
be listed one by one (e.g. as supplementary material),
including all the patients available information. The rea-
sons behind the inclusion of subjects from these particular
datasets and with these specific characteristics should be
explained in the context of the intended use of the model.

e The strategy followed to mitigate the potential biases
should be explained. For example, datasets could be
re-balanced or re-weighted (Jiang and Nachum| (2019);

Amini et al.| (2019)) in terms of outcome prevalence for
each of the key demographic variables.

o Ask oneself which population is represented by the datasets,
i.e. which were the recruitment procedures, location and
setting, the inclusion and exclusion criteria, and subjects
demographics. They should also address how exactly the
outcome was obtained and how is related with the disease
and with the application.

e Explain how the model can be applied to a clinical setting,
which is the benefit for the patient or how it would help
medical personal to make decision.

5. Conclusion

This work present a first attempt to systematically evaluate
imaging datasets in terms of their utility to train predictions
models. We follow PRISMA guidelines to systematically search
for X-ray chest images databases of COVID-19 subjects, either
screening papers reporting models where these images are used
or directly searching for datasets in dataset search engines and
compilations of datasets. Inspired by PROBAST, TRIPOD and
TREE statements, this work aimed to answer whether the avail-
able COVID-19 X-ray datasets could be used to train or validate
clinical prediction models with low risk of bias. With this ob-
jective in mind, the CHARMS checklist was adapted to extract
the relevant information about participants, outcomes, predictors
and sample size.

The information provided in all the reviewed datasets is too
scarce to guaranty that a model can be built with low risk of bias.
For example, key questions regarding participant information
and their appropriateness for a given application can not be
answered. This finding is consistent with results presented in
a systematic methodological review of Machine learning for
COVID-19 prediction models using chest X-rays and CT scans
(Roberts et al. (2021))), where PROBAST assessment rated all
X-ray-based models as having a high or unclear risk of bias in
the Participant domain.

Larger datasets that include better study design and more
comprehensive descriptions are being built and are becoming
available to researchers (as a data collection). However, they are
provided under much stringent conditions and a larger project
evaluation process must be undergone. New and old models
should be developed and tested using these datasets. Up to our
knowledge, there are currently no prediction models reported
that have used these datasets.

It is urgently needed that more images from larger and better
datasets are made publicly available. Dataset owners should
make an effort to improve documentation about whole dataset
building process to increase significantly the dataset value and
the quality of models trained on them. For example: there should
be a clear statement of dataset intended use, and explicit warning
of common misuse cases; label definition and generating proce-
dure should be reported in detail, so that other researchers can
verify accuracy of label assignments and evaluate the utility and
adequacy to the problem at hand; finally, datasets should contain
cohort characteristics and subject selection criteria information,
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in order to evaluate the risk of selection bias and to check if the
training and target population has similar characteristic.

Contrary to classical statistical models or standard machine
learning methods, deep learning models are highly complex sys-
tems that may have several building steps. For reasons that range
from avoiding overfitting to reducing memory and computation
needs, some parts of the models are sometimes pre-trained, using
specific dataset, and then kept fixed as other parts of the model
are finetuned later. Quality standards of datasets used to pre-
train these building blocks may not necessarily be as high as the
ones for finetuning the final model, and some of these datasets
that are deemed close to useless for training a serious medical
diagnostic tool may be perfectly appropriate for pre-trainig steps.
One only has to be cautious not including those subjects in the
cross-validation loops of the final model.

Current open access datasets could be useful for pre-training
models, or to illustrate model features and potential applica-
tions. However, for models trained exclusively with these open
datasets, claims about efficacy could be highly biased, and gen-
eralizability and transportability are uncertain. Applicability
to clinical settings is therefore extremely risky and not recom-
mended.

All in all, both Brixia and BIMCYV provide a next level of
dataset quality and quantity for diagnostic models compared to
open datasets abailable in the beginning of the pandemic and
can serve as new grounds for modellers. From the reviewed
datasets, these two were the only ones with a sample size large
enough (thousand of images) to start training a DL model, while
the others have only a few hundreds. Furthermore, these were
the only two datasets among all the identified datasets (not only
the reviewed) that provided a description of the inclusion and
exclusion criteria, despite of falling short to fully describe the
population they are representing. Unfortunately, neither of the
two provided accompanying predictors (such as laboratory data
or other clinical reports), treatment or comorbidity information,
which was sometimes present in some of the other datasest.

This review should help modellers to choose the appropriate
dataset for their modelling needs and to raise awareness on
biases to look out while training models. It is also encouraged
that everyone validates their models and reports benchmarking
results on a possibly small but very well curated external dataset,
which is carefully selected to represent the real clinical use case
as close as possible.

Although dataset quality is the most important requirement
for a medical diagnostic system to be reliable, other aspects
of the model building are also prone to biases. Adherence
to transparent practices, such as the TRIPOD reporting guide-
line or TREE critical questions, and assessing risk of bias with
PROBAST tool, would be a starting point (Parikh et al.| (2019);
Sounderajah et al.| (2020)). However extensions of these guide-
lines are required in order to be fully applicable to deep learn-
ing systems (Wynants et al.|(2020)). Many efforts are already
being done in this direction: extension of TRIPOD and CON-
SORT/SPIRIT (TRIPOD-ML, [Collins and Moons| (2019)) and
CONSORT-AI/SPIRIT-AI (Liu et al.| (2019)) statements are be-
ing developed, focused on model validation and clinical trials,
respectively; considerations for critically appraising ML studies

are given in Faes et al.|(2020)); and reporting recommendations
are given in|Stevens et al.| (2020).
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