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Abstract 

The COVID-19 pandemic has resulted in over two million deaths globally. There is an urgent need for robust, 

scalable monitoring tools supporting resource allocation and stratification of high-risk patients. This research 

aims to develop and validate prediction models, using the UK Biobank to estimate COVID-19 mortality risk in 

confirmed cases. We developed a random forest classification model using baseline characteristics, pre-existing 

conditions, symptoms, and vital signs, such that the score could dynamically assess risk of mortality with 

disease deterioration (AUC: 0.92). The design and feature selection of the framework lends itself to deployment 

in remote settings. Possible applications include supporting individual-level risk profiling and monitoring 

disease progression across high volumes of patients with COVID-19, especially in hospital-at-home settings. 
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The COVID-19 pandemic has precipitated over 100 million confirmed cases and 2.3 million deaths globally1. 

The impact of the pandemic has not been limited to healthcare systems: a ripple effect has resulted in wide-

ranging economic and social disruption2. Interventions to reduce transmission, such as lockdowns, travel 

restrictions, and re-allocation of health resources, are critical to limiting the impact3. Although large-scale 

vaccination programmes have begun, many countries globally will not have widespread access to vaccines until 

2023, meaning that non-pharmaceutical interventions are likely to remain indispensable national strategies for 

some time4. 

COVID-19 shows highly varied clinical presentation. A significant proportion (17-45%) of cases are 

asymptomatic and require no specific care5,6. Conversely, reviews of severe complications have found that up to 

32% of hospitalized COVID-19 patients are admitted to ICU7. Between these two extremes, typical symptoms 

include fever, continuous cough, anosmia, and dyspnoea, which may range from requiring only self-

management at home to inpatient care. Understanding which individuals are most vulnerable to severe disease, 

and thereby in most need of resources, is critical to limit the impact of the virus. 

Decision-making at all levels requires an understanding of individuals’ risk of severe disease. Various patient 

characteristics, comorbidities, and lifestyle factors have been linked to greater risk of death and/or severe illness 

following infection8–10. Furthermore, socioeconomic factors have also been linked as risk factors for COVID-19 

mortality 11,12. Once patients are infected with SARS-CoV-2, additional physiological parameters, such as 

symptoms and vital signs, can inform real-time prognostication13. Laboratory testing and imaging can also 

inform risk stratification for early, aggressive intervention, though this data is only accessible to hospital 

inpatients, who are likely to be already severely affected14,15. 

Robust, predictive models for acquisition and prognosis of COVID-1916–18 and resource management19,20 have 

been developed to support risk stratification and population management at-scale, offering important insights for 

organizational decision-making. However, the individual is currently overlooked, and granular, patient-specific 

risk-scoring could potentially unify decision-making at all levels. Existing individualized risk scores, however, 

often conflate risk of COVID-19 acquisition with risk of mortality following infection16,17, which can limit their 

utility in patient management. 

For prediction models to achieve impact at scale, assessment of risk factors should be inexpensive and 

accessible to the general population, ideally without the need for specialized testing or hospital visits. Such risk 

prediction tools, enabling improved patient triage, could be used to further increase the efficiency of, and 

confidence in, hospital-at-home solutions, which have shown promise in reducing hospital burden throughout 

the pandemic21. Risk scores in these circumstances need to be dynamic and contemporaneous, ideally 

incorporating symptoms and vital sign data to maximise utility to clinical and research teams. Therefore, the 

primary aim of this study is to develop and validate a population-based prediction model, using a large, rich 

dataset and a selective, clinically informed approach, which dynamically estimates the COVID-19 mortality risk 

in confirmed diagnoses. 
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Results 

Summary population 

There were 7,536 adults (aged 51–85 yrs, mean: 67.4, SD: 8.8) from the UK Biobank (UKB) included in the 

analysis, of whom 496 (6.6%) had died as a result of COVID-19. The mean age of survivors was 66.8 years 

(SD: 8.7), compared to 75.9 years (SD: 8.7) for those that died. The most common pre-existing conditions in 

patients were hypertension (37.6%), osteoarthritis (24.3%), and chronic ischemic heart disease (13.2%) (Table 

1). 

 n (%) [count] 
Characteristic All Participants Survived Died 

Total 7,536 7,040 (93.4) 496 (6.6) 

Demographic    

  Male sex 3,664 3,327 (90.8) 337 (9.2) 
  Age (yrs), mean (SD) 67.4 (8.8) [7,536] 66.8 (8.7) [7,040] 75.9 (5.6) [496] 

Lifestyle and anthropometrics    

  Body mass index, mean (SD) 28.5 (5.1) [7,471] 28.4 (5.0) [6,986] 30.0 (5.6) [485] 
  Waist circumference (cm), mean (SD) 92.9 (14.1) [7,485] 92.4 (13.9) [6,999] 100.3 (14.8) [489] 

  Hip circumference (cm), mean (SD) 104.8 (9.7) [7,482] 104.6 (9.6) [6,996] 106.6 (11.2) [489] 
  Body weight (kg), mean (SD) 81.2 (16. 9) [7,484] 80.9 (16.7) [6,996] 86.1 (18.2) [488] 

  Obesity (BMI > 30) 908 802 (88.3) 106 (11.7) 
  Standing height (cm), mean (SD) 168.6 (9.2) [7,478] 168.6 (9.2) [6,991] 169.1 (9.3) [487] 
  Blood group    
       Unknown 22 21 (95.5) 1 (4.5) 
       AA 613 571 (93.1) 42 (6.9) 
       AB 294 279 (94.9) 15 (5.1) 
       AO 2,711 2,548 (94) 163 (6) 
       BB 51 46 (90.2) 5 (9.8) 
       BO 701 664 (94.7) 37 (5.3) 

       OO 2,913 2,704 (92.8) 209 (7.2) 
  Sleep duration (hrs), mean (SD) 7.0 (1.4) [7,522] 7.0 (1.4) [7,027] 7.2 (1.7) [495] 

  Alcohol intake    
       Unknown 22 21 (95.5) 1 (4.5) 
       Daily or almost daily 1,120 1,041 (92.9) 79 (7.1) 
       Three or four times a week 1,494 1,414 (94.6) 80 (5.4) 
       Once or twice a week 2,030 1,911 (94.1) 119 (5.9) 
       One to three times a month 853 813 (95.3) 40 (4.7) 
       Special occasions only 881 811 (92.1) 70 (7.9) 
       Never 1,135 1,029 (90.7) 106 (9.3) 
  Smoking status    

       Unknown 22 21 (95.5) 1 (4.5) 
       Never 1,135 1,029 (90.7) 106 (9.3) 
       Previous 2,695 2,467 (91.5) 228 (8.5) 
       Current 4,091 3,878 (94.8) 213 (5.2) 
  Gait and mobility issues 729 552 (75.7) 177 (24.3) 

Medication and treatment    
  Allergy to antibiotics 781 713 (91.3) 68 (8.7) 
  Long-term use of anticoagulants 739 611 (82.7) 128 (17.3) 
  Radiation therapy 191 163 (85.3) 28 (14.7) 
  Maintenance chemotherapy 347 302 (87) 45 (13) 
  Chemotherapy 187 157 (84) 30 (16) 

Pre-existing medical conditions    
  General diseases of the circulatory system 882 740 (83.9) 142 (16.1) 
  Chronic ischemic heart disease 995 846 (85) 149 (15) 
  Atrial fibrillation 745 610 (81.9) 135 (18.1) 
  Hypertension 2,834 2,479 (87.5) 355 (12.5) 
  Hypotension 257 197 (76.7) 60 (23.3) 
  Stroke 574 467 (81.4) 107 (18.6) 
  General diseases of the respiratory system 118 100 (84.7) 18 (15.3) 
  Asthma 1,034 948 (91.7) 86 (8.3) 
  Chronic obstructive pulmonary disease 502 400 (79.7) 102 (20.3) 
  Interstitial lung disease 79 51 (64.6) 28 (35.4) 
  Respiratory failure    
       less than 1 month 252 149 (59.1) 103 (40.9) 
       between 1 and 12 months 136 88 (64.7) 48 (35.3) 
       more than 12 months 116 82 (70.7) 34 (29.3) 
  Non-bacterial pneumonia    
       less than 1 month 686 453 (66) 233 (34) 
       between 1 and 12 months 402 283 (70.4) 119 (29.6) 
       more than 12 months 470 376 (80) 94 (20) 
  Bacterial pneumonia    
       less than 1 month 624 409 (65.5) 215 (34.5) 
       between 1 and 12 months 275 185 (67.3) 90 (32.7) 
       more than 12 months 38 32 (84.2) 6 (15.8) 
  General diseases of the nervous system 455 387 (85.1) 68 (14.9) 
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  Parkinson's disease 119 87 (73.1) 32 (26.9) 
  MND, MS, or HD 15 13 (86.7) 2 (13.3) 
  Dementia 391 294 (75.2) 97 (24.8) 
  Haematological Cancer    
       less than 12 months 69 40 (58) 29 (42) 
       between 12 and 60 months 66 46 (69.7) 20 (30.3) 
       more than 60 months 80 59 (73.8) 21 (26.3) 
  Non-haematological Cancer    
       less than 12 months 137 113 (82.5) 24 (17.5) 
       between 12 and 60 months 412 381 (92.5) 31 (7.5) 
       more than 60 months 634 579 (91.3) 55 (8.7) 
  Diabetes (Type 1) 102 75 (73.5) 27 (26.5) 
  Diabetes (Type 2) 977 812 (83.1) 165 (16.9) 
  Osteoarthritis 1,831 1,655 (90.4) 176 (9.6) 
  Depression and anxiety disorder 1,001 891 (89) 110 (11) 
  Rheumatoid arthritis 228 191 (83.8) 37 (16.2) 
  Anemia 893 740 (82.9) 153 (17.1) 

  Urinary tract infection    
       less than 1 month 81 62 (76.5) 19 (23.5) 
       between 1 and 12 months 129 100 (77.5) 29 (22.5) 
       more than 12 months 629 512 (81.4) 117 (18.6) 
  Acute kidney failure    
       less than 1 month 224 135 (60.3) 89 (39.7) 
       between 1 and 12 months 208 139 (66.8) 69 (33.2) 
       more than 12 months 323 233 (72.1) 90 (27.9) 
  Any bacterial infection    
       less than 1 month 141 92 (65.2) 49 (34.8) 
       between 1 and 12 months 164 117 (71.3) 47 (28.7) 
       more than 12 months 355 286 (80.6) 69 (19.4) 
  Diverticulum 1,142 1,029 (90.1) 113 (9.9) 
  Haemorrhoids 721 682 (94.6) 39 (5.4) 
  Irritable bowel syndrome 295 270 (91.5) 25 (8.5) 
  Gastroenteritis    
       less than 1 month 133 114 (85.7) 19 (14.3) 
       between 1 and 12 months 121 99 (81.8) 22 (18.2) 
       more than 12 months 1,178 1,058 (89.8) 120 (10.2) 

Symptoms    
  Joint pain 823 725 (88.1) 98 (11.9) 
  Delirium 206 145 (70.4) 61 (29.6) 
  Hematemesis 379 339 (89.4) 40 (10.6) 
  Syncope and collapse 15 13 (86.7) 2 (13.3) 
  Dyspnea 193 164 (85) 29 (15) 
  Cough 62 52 (83.9) 10 (16.1) 
  Myalgia 172 155 (90.1) 17 (9.9) 

  Nausea and vomiting 33 24 (72.7) 9 (27.3) 
  Chest pain 587 530 (90.3) 57 (9.7) 
  Hematuria 35 30 (85.7) 5 (14.3) 
  Malaise and fatigue 40 33 (82.5) 7 (17.5) 

Vital signs    

  Diastolic blood pressure, mean (SD) 77.9 (12.2) [123] 77.2 (10.9) [104] 81.9 (17.4) [19] 
  Systolic blood pressure, mean (SD) 129.3 (19.2) [124] 128.2 (17.6) [104] 135.1 (25.7) [20] 

  Heart rate, mean (SD) 84.7 (17.5) [80] 84.0 (16.9) [71] 90.9 (22.0) [9] 
  Body temperature, mean (SD) * 37.5 (1.2) [41] 37.7 (1.1) [37] 36.1 (0.9) [4] 
  Oxygen saturation, mean (SD) * 94.7 (3.3) [20] 94.4 (3.6) [16] 95.8 (1.5) [4] 
  Respiratory rate, mean (SD) * 24.1 (7.4) [18] 24.8 (8.5) [11] 22.9 (5.8) [7] 

Table 1. Descriptive characteristics of the UK Biobank cohort with positive COVID-19 test results. Pre-
existing medical conditions included only when reported more than one week prior to COVID-19 positive 
test result. Symptoms and vitals included only from primary care (GP) records when reported within +/- two 
weeks of COVID-19 positive test result. MND = motor neurone disease; MS = multiple sclerosis; HD = 
Huntington’s disease. * Oxygen saturation, respiratory rate, and body temperature were included in the initial 
analysis, however, they were removed from the model due to low data availability. 

The evaluation of the model is organised into two parts: the machine learning data-driven approach; and the 

machine learning and clinically selective approach. From an optimisation perspective, the objective of the model 

is to reduce the full feature array to a minimal subgroup (Figure 1) while maintaining a high prediction 

accuracy for COVID-19 mortality. 
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Figure 1. Workflow for model development and feature selection. A) Conceptual diagram of the data 
ingestion pipeline and analysis methods. To combine databases, several data pre-processing steps were 
carried out, including: sanitisation (eliminating redacted records and nuanced entries); normalization (scaling 
values to ensure fitting with a reasonable range for further processing); time filtering; duration calculation 
(computing the time interval between testing positive and mortality); missing value substitution (replacing 
missing values or records with the mean value of the UK Biobank database); augmentation (bringing all data 
for each subject into a single unified record); and one-hot-encoding (codifying the presence of a pre-existing 
condition or symptom into a binary sequence for each subject). This data ingestion process standardized the 
input features and attributes for all subjects in this study regardless of their unique and variable conditions, 
symptoms, vital signs, and records. B) Illustration of the data-driven and clinically reviewed feature 
refinement process. AUC = area under the curve; GP = general practice; LOO = Leave-One-Out; ROC = 
receiver operating characteristic. 
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By reducing the feature array to the 100 top-ranked features out of ~12,000 features, the performance of the 

Random Forest (RF) model improved. The receiver operating characteristic (ROC) curves in Figure 2A 

demonstrate the model performance after shortlisting the features to 64 characteristics. The feature selection 

process (Figure 1B) ensured the combination of data-driven insights with clinical experience. The shortlisted 

features included: 3 vital signs; 11 symptoms; 32 pre-existing clinical conditions; 5 medications and treatments; 

and 13 patient characteristics (Table 1). 

 

Figure 2. Model performance evaluation showing: (A) the receiver operating characteristic (ROC) curve 
comparison shown for our Random Forest (RF) and Cox models against QCOVID; (B) the F-β score 

generated at β=1 (F1-score in bold), β=[ 0.5, 2, 3, 5], shown in decreasing size dashed line. AUC = area 
under the curve. 

Clinical refinement led to improved accuracy (AUC: 0.90). Furthermore, by reducing the number of features, 

the model overcomes the curse of dimensionality, where beforehand the full feature array was far greater in size 

than the available samples. While a Cox Proportional Hazard (CPH) model was trained using the final set of RF-

defined variables to maximize explainability of the RF, it reached a higher AUC of 0.92. The top risk factors 

were age, acute kidney failure (<1 month), and waist circumference (Figure 3). Detailed results can be found in 

Supplementary Table 3. To test for overfitting due to prominent features and limitations in the dataset, the 

model was re-processed without age, which had minimal effect on model performance (AUC: 0.89, 

Supplementary Figure 2). Figure 2A also shows the ROC curves for both the RF and CPH 22 models against 

the QCOVID model 16. 
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Figure 3. Plot of Cox model coefficients of COVID-19 mortality in UK Biobank cohort. Values show HR ± 
95%CI. AKF = acute kidney failure, MND = motor neurone disease, MS = multiple sclerosis, HD = 

Huntington’s disease, HR = hazard ratio, CI = confidence interval. 

As shown, the ROC curves for the RF and CPH are very comparable with a slight advantage for the CPH. From 

Figure 2A, it can be seen that when QCOVID is applied to the UKB dataset it performs well and achieves an 

AUC of 0.83, showcasing robustness to unseen data. To explore the performance further, it is essential to look at 

the robustness of the generated models. Figure 2B illustrates the use of F-β statistical analysis to examine the 

performance of the various models. As expected, despite the CPH having a slightly greater AUC score, it is 

clear that the RF has much more stable performance. Moreover, it can be seen that both the CPH and QCOVID 

models achieve optimal F-β scores when β is small. However, for the RF model, the F-β scores are considerably 

larger than its comparators and are more consistent across the range of thresholds, thereby demonstrating greater 

stability and increased capabilities regarding recall (i.e. minimizing false-negatives). 

Discussion 

This study developed and validated machine learning models to predict mortality in patients with COVID-19 

using comprehensive data from 7,536 COVID-19 patients in the UKB. The results show that using easily 
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accessible patient characteristics, brief medical history, symptoms, and vital signs can predict mortality in 

patients with COVID-19 with excellent levels of accuracy (AUC: 0.92). 

The features selected in the presented model mirror much of the current clinical understanding regarding factors 

associated with severe COVID-19 outcomes. While research on COVID-19 is rapidly evolving, it is well 

established that age23 and obesity24 are significant variables. In the data-driven model, we found that age was the 

most critical factor in determining outcome, in line with meta-analyses on outcomes in COVID-19 patients10,23. 

Obesity is also well reflected in our model, with body mass index (BMI) and related measures featuring 

dominantly in the data-driven ranking. Potentially mediated by proinflammatory states induced by adiposity, the 

pathophysiological link between adiposity and severe COVID-19 outcomes is not fully understood, body 

composition may provide more granular risk profiling than BMI alone25,26. The highest ranking pre-existing 

conditions were found to be type 2 diabetes and hypertension. While both conditions are linked to obesity, 

diabetes has been reported to confer significant independent mortality risk27. Evidence for the role of 

hypertension as an independent risk factor, however, is not fully established, with meta-analyses finding 

hypertension non-significant after adjusting for other risk factors10,28,29. 

Alongside the specific COVID-19 data releases, the unique value of the UKB can be attributed to its well-

established, longitudinal background dataset. Encompassing non-traditional health data, including 

anthropometric measurements and lifestyle insights, allows for the assessment of commonly overlooked, yet 

easily collectable, variables to enrich the already-documented clinical factors. The ability to capture a deeper 

phenotype of the individual prior to infection has proved integral to our model’s performance, in line with the 

findings of other disease-specific prediction models developed on the UKB30–32. Notably, we identified baseline 

hip circumference, waist circumference, weight, and height to be valuable independent of BMI and obesity, 

accounting for four of the top-ten RF ranked features (Supplementary Figure 3). Moreover, while baseline sleep 

duration has been demonstrated to be highly predictive of all-cause mortality33, cardiovascular diseases34, and 

type 2 diabetes35, this marks the first instance of its significant predictive influence within COVID-19 prognosis. 

As a result of the data-driven approach, our most interesting findings concern the impact of prior urinary tract 

infection (UTI), respiratory failure, acute kidney failure, bacterial and non-bacterial pneumonias, and other 

bacterial infections. In the case of all but UTI, dividing each feature into time groupings by their proximity to 

the COVID-19 diagnosis highlights attenuated risk the more distant the event, returning to approximately 

baseline when >12 months for both the respiratory conditions and other infections. Interestingly, the outlying 

significance of acute kidney failure at >12 months suggests the impact of damage to this organ may be more 

integral to COVID-19 prognosis than that of the respiratory system. This is supported by findings related to 

UTIs, where they appear as a less damaging, but persistent, risk factor regardless of the time since diagnosis. 

Respiratory and kidney complications are a hallmark of severe and fatal COVID-19, thus the observation that a 

history of severe conditions affecting these organs effectively forecasts COVID-19 prognosis is logical36. To 

date, however, the relationship between less severe urogenital factors and COVID-19 has not been effectively 

assessed. A recent systematic review on urological manifestations found urinary symptoms were absent from all 

included studies37. Where data has been collected, sample sizes have been too low to draw strong conclusions. 

Though the occurrence of de novo urinary symptoms has been documented without noticeable impact on 
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prognosis38,39, it has been previously suggested, and more recently evidenced, that the presence of pre-existing 

urinary conditions may be associated with a poorer disease prognosis proportional to their severity40,41. Our 

investigation provides the first reliable evidence that a history of UTI is predictive of greater COVID-19 

mortality risk. We hypothesise that the underlying nature of this association reflects poorer baseline health status 

which may not previously have been of clinical significance in the absence of a highly infective, fatal pathogen 

such as SARS-CoV-2. 

The approach taken in the development of this model is a symbiosis of machine learning and traditional 

statistical modeling, boosting the performance and acceptability of the resultant algorithm. The results show that 

both the RF and CPH models are comparable in terms of accuracy. However, the RF was integral to the CPH’s 

construction by searching through the large feature space and selecting the most important of the original 

~12,000. Moreover, the RF model is more resilient to overfitting the data, and this could explain the improved 

F1-scores. Given the different performance characteristics of the RF and CPH models, an ensemble of the two 

models is recommended to ensure greater stability and performance. By using an ensemble approach, 

predictions from each model are less susceptible to error, with averaging across the predictions reducing 

individual error. 

Our model’s critical component is the distinction of variables with respect to their time of onset. Classifying 

variables in a time-dependent fashion enables discrimination between events that occurred prior to COVID-19 

infection and those which occurred during the course of the disease, either shortly before or following diagnosis 

(i.e. segregating pre-existing conditions, symptoms, and complications). This was especially important as 

several of our novel features are also established complications of COVID-19. Studies have emphasised the 

need for distinguishing pre-existing conditions from complications of COVID-19 infection and their respective 

impact on prognosis42,43 but, to our knowledge, no predictive models for this disease have stratified variables in 

such a way. Applied in the context of patient management and enriched by the explainability of variable time-

filtering, our results could help clarify crucial aspects of patients’ past medical history and their relation to 

predicted prognosis. Models which forecast infection risk as a component of their mortality prediction have 

been criticised for generalizing human behaviour, which results in underestimation of risk factors and leaves 

their calibration extremely vulnerable to changes in local population dynamics44. One strength of our model is 

that the risk of mortality is predicated on the assumption of a positive COVID-19 test, avoiding the associated 

ambiguity of multi-event prediction and enabling its use in clinical practice. 

The COVID-19 pandemic has resulted in extraordinary acceptance of digital technology in healthcare45. As 

clinician:patient ratios are increasingly stretched46, risk assessment tools can support the streamlining of clinical 

time and resource prioritization, whether on a national, organizational, or patient level. Models such as those 

presented, can support the latter by monitoring patients at-scale and identifying those at-risk of severe illness, in 

real-time, and without requiring specialist equipment or clinical input. Notably, our focus on variables which are 

not presently assessed by clinicians to stratify patients in remote monitoring settings means such a model 

enriches the standard-of-care, rather than attempting to replace it through the amalgamation of currently utilised 

data. 
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Algorithm performance may be further improved by inclusion of passive, continuous variables via smartphones 

or wearables. Establishing our model in a prospective healthcare setting may enable this when coupled with high 

quality, continuous vital sign information and replete data on the course of symptomatology. Similar digital 

phenotyping has also shown potential in predicting COVID-19 infection at early symptoms onset47,48. We 

believe a combination of these two types of digital tools, in union with dedicated hospital-at-home services, may 

become considered standard practice in infectious disease management, particularly during historically 

resource-intense periods, such as annual influenza outbreaks. 

While the use of the UKB is a key strength in the development of the model, there are associated limitations 

which may impact the generalizability of the model. The UKB cohort trends towards being healthier and 

wealthier than the general population, which poses a notable limitation when modeling noncommunicable 

diseases49. As COVID-19 acquisition, however, is determined by exposure, this limitation is minimised in our 

investigation. Separately, the UKB COVID-19 data subset is less likely to capture asymptomatic or non-severe 

cases, in part as such individuals may not have received a test or sought medical treatment, but predominantly 

owing to UKB’s enrichment for older age resulting in lesser rates of such presentation. The restricted age 

distribution (51-85 years) may further limit generalization of our findings to outside of this age range, however, 

ONS figures show those aged 50+ have accounted for 98.06% of all COVID-19-related deaths in England and 

Wales50. 

Although age is clearly an important feature, our sensitivity analysis (Supplementary Figure 2) demonstrated 

negligible performance drop, likely because much of the risk associated with older age is captured within other 

included features. One reason for using uniform leave-one-out (LOO) training is to overcome such issues of 

feature reliance and generalize the model as much as possible. The F-score in Figure 2B illustrates this 

robustness, however, this must be tested on a separate representative dataset for a conclusive answer. Several 

included risk factors (lifestyle and anthropometric data) were assessed over 10-years prior to the time of 

COVID-19 infection and may have since changed. Deterioration in these factors may be expected over time and, 

therefore, the findings may be biased towards the null. Despite these limitations, our robust development 

approach, paired with deep individual phenotyping, strengthens the evidence towards effective COVID-19 risk 

profiling. In addition to the limitations of the dataset, it is likely that there are regional variances in COVID-19 

outcomes. As such, the model would strongly benefit from external validation, especially with the continued 

emergence of disruptive SARS-CoV-2 variants51. 

While the model presented outperforms QCOVID (AUC: 0.92 vs. 0.83), and best efforts were made in the 

comparison, it cannot be considered a direct comparison. In replication of the QCOVID algorithms, variables 

were mapped to related fields in the UKB, however, we were unable to confirm these were fully paired. 

Moreover, as the UKB is not linked to GP databases in the same manner, there were some missing variables 

(Supplementary Table 2). Importantly, contrasting with our purpose of supporting patient management, 

QCOVID is designed for population risk stratification to aid public health decision-making, and was used to 

exemplify the necessity of specific model design for specific purposes. 
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Conclusion 

In conclusion, we present a comprehensive, robust model based on readily accessible factors. In our novel 

analysis, we combine data-driven model development and clinical refinement to produce a model that uniquely 

incorporates time-to-event, symptoms, and vital signs. The design and feature selection of the framework lends 

itself for deployment in a digital setting. Possible applications of this include supporting individual-level risk 

profiling and monitoring deterioration in high volumes of COVID-19 patients, particularly in hospital-at-home 

settings. 

Online Methods 

Study population 

The development and validation of the risk model was carried out using the UKB. The UKB is a large cohort 

study with rich phenotype mapping of participants, including over 500,000 individuals aged between 40- and 

69-years-old at recruitment, between 2006 and 2010, from across England, Scotland, and Wales52. The open 

dataset contains detailed health data and outcomes obtained prospectively from electronic health records and 

self-reported health measures from on-site testing over the past 15-years. The current analysis was approved 

under the UKB application number 55668. Ethical approval was granted by the national research ethics 

committee (REC 16/NW/0274) for the overall UK Biobank cohort. 

COVID-19 Status and Sample Selection 

For this study, only participants with a positive RT-PCR COVID-19 test, from English assessment centres who 

were alive on 19th December 2020 were included (Supplementary Figure 1). Public Health England provided 

data on SARS-CoV-2 tests, including the specimen date, location, and result53. COVID-19 test result data were 

available for the period 16th March 2020 to 12th December 2020, and were linked with hospital admission, 

primary care, and death records. In total, 83,148 COVID-19 tests were conducted on 46,450 participants in the 

available cohort. Of these, 37,951 were excluded due to negative test results. Overall, 7,536 participants tested 

positive of which 7,040 were survivors and 496 non-survivors. Deaths were defined as COVID-19-related if 

ICD-10 codes U07.1 or U07.2 were present on the death certificate. No COVID-19 test data were available for 

UKB assessment centers in Scotland and Wales, thus data from these centers were not included. 

Time Filtering 

Considering the chronology of medical events is critical to distinguish between, for example, pre-existing 

conditions and complications resulting from COVID-19. Specific attributes, therefore, can be included or 

excluded in the prediction model for various use cases. This study focuses on developing a model to predict 

mortality for COVID-19 patients before hospital admission. Accordingly, inclusion of respiratory failure (ICD-

10: J96.9), for example, as a symptom or complication to predict mortality has limited use, as such events would 
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demand hospital admission. Conversely, it is valuable to include personal history of respiratory failure as a 

prognostic indicator. Thus, we implemented a time filter for all features which were not demographics, 

symptoms, or vital signs, excluding any data recorded later than one-week prior to patients’ positive COVID-19 

test. This accounted for the circumstance whereby a patient may have been admitted for severe symptoms of 

COVID-19 prior to receiving a test. Further time filtering of <1 month, 1-12 months, and >12 months was 

applied to specific acute features to provide more granular insight. Similarly, it is important to consider only 

relevant symptoms and vital signs corresponding to the period of COVID-19 infection. Thus, a two-week 

window pre- and post- the first COVID-19 positive test was implemented. 

COVID-19 Mortality Model 

Feature Selection 

The data ingestion pipeline, Figure 1A, generates an array of ~12,000 dimensions (including patient 

characteristics, pre-existing conditions, symptoms, and vital signs). Owing to the small number of samples in the 

dataset and the importance of obtaining an unbiased model, a LOO cross-validation experiment, which is closely 

related to the jack-knife estimation method54, was used to search the full feature array for the most relevant 

features. LOO iterates through every sample in the dataset, whereby at each step the current sample was used to 

evaluate the model trained on the remaining dataset. At each iteration the samples of all classes were balanced to 

ensure unbiased training and, following evaluation, the model was discarded and a new model trained. A RF 

model was chosen due to its inherent ability to extract features, handle high dimensionality data, and generalize 

well to unseen data55. During each step of the LOO cross-validation, a ranked list of features was extracted and 

averaged across the entire experiment to obtain a final shortlist of features that produced the highest accuracy, 

further cross-checked by clinical expertise. Figure 1B illustrates the production of shortlisted features driven by 

data, and their validation and review based on clinical judgement. 

Clinical feature selection was informed by a review of ranked feature importance in RF model. The highest 

ranked 1,000 features were screened by at least two reviewers. Any disagreements were settled by consensus 

with input of additional reviewers. Features were excluded where: i) they could not be readily obtained through 

self-reporting or measured outside of the clinical setting; ii) there was high confounding with higher ranked 

features; iii) clinical consensus concluded that the feature’s rank was more likely to be explained by database 

bias. Subsequently, features which were closely related (e.g. cancer diagnoses) were grouped together. 

Supplementary ICD-10 codes were included and, where possible, generalized (Supplementary Table 1). 

Experimental Setup 

The LOO evaluation was selected to maximize the value of the available datasets. By evaluating one sample at 

each iteration, the rest of the samples could be used for training the model. By iterating on the entire dataset, 

each sample took turns to be the evaluation sample. At each iteration, the previously trained model was 

completely discarded and a new one trained. Another advantage of using the LOO was to ensure fair machine 

learning training by having enough samples to represent the different prediction classes uniformly. 
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In this study, the prediction classes were two: COVID-19 survivors (n=7,040) and non-survivors (n=496). At 

each LOO iteration, two groups of equal sample size were randomly selected without replacement for training. 

The evaluation sample outcome and RF likelihood value were aggregated from all iterations. After aggregating 

all the evaluation results from the LOO experiment, the ROC curve analysis was carried out, and the AUC 

computed as a measure of accuracy55. Furthermore, the F-β statistic was used to evaluate the robustness of the 

model. When β is 1, this becomes the F1-score, which gives equal weights to recall and precision. A smaller β 

value gives more weight to precision, minimising false-positive errors, while a larger β value gives more weight 

to recall, minimising false-negative errors. The F-score range is [0, 1], where a score of 1 is a perfect 

performance. 

The machine learning algorithm used in this study is the RF, which is an ensemble meta-estimator constructed 

from several decision trees55. These trees were fitted to the data using the bootstrap aggregation method (or 

bagging), which is robust and resilient to over-fitting56. The Gini impurity was used to compute the model 

likelihood of prediction. To quantify the prediction uncertainty of the RF model, a Monte Carlo approach was 

used to compute the confidence interval of each prediction. A CPH model22 trained on the same subset of 

features was constructed and assessed to maximise explainability of the RF model. 

QCOVID Comparison 

We compared our model against QCOVID, a leading risk prediction model for infection and subsequent death 

due to COVID-19, which was developed by fitting a sub-distribution hazard model on the QResearch 

database16. Predictor variables reported in QCOVID were mapped to comparable features in the UKB dataset. 

The UKB dataset did not include all of the relevant variables used in the QCOVID algorithm, hence 

chemotherapy grades and medication variables were excluded in our analysis (Supplementary Table 2). 

QCOVID risk equations for mortality were then implemented for both male and female cohorts. To ensure a fair 

comparison between models, QCOVID risk equations were evaluated on the UKB dataset using the same 

methods described above. 

This article was written following the TRIPOD (Transparent Reporting of a Multivariable Prediction Model for 

Individual Prognosis or Diagnosis) guidelines57, which are further elaborated in Supplementary Table 5. 
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