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ABSTRACT 

Objectives: Obtaining body temperature is a quick and easy method to screen for acute infection 

such as COVID-19. Currently, the predictive value of body temperature for acute infection is 

inhibited by failure to account for other readily available variables that affect temperature values. 

In this proof-of-concept study, we sought to improve COVID-19 pretest probability estimation 

by incorporating covariates known to be associated with body temperature, including patient age, 

sex, comorbidities, month, time of day. 

Methods: For patients discharged from an academic hospital emergency department after testing 

for COVID-19 in March and April of 2020, we abstracted clinical data. We reviewed physician 

documentation to retrospectively generate estimates of pretest probability for COVID-19. Using 

patients’ COVID-19 PCR test results as a gold standard, we compared AUCs of logistic 

regression models predicting COVID-19 positivity that used: 1) body temperature alone; 2) body 

temperature and pretest probability; 3) body temperature, pretest probability, and body 

temperature-relevant covariates. Calibration plots and bootstrap validation were used to assess 

predictive performance for model #3. 

Results: Data from 117 patients were included. The models’ AUCs were: 1) 0.69 2) 0.72, and 3) 

0.76, respectively.  The absolute difference in AUC was 0.029 (95%CI -0.057 to 0.114, p=0.25) 

between model 2 and 1 and 0.038 (95%CI -0.021 to 0.097, p=0.10) between model 3 and 2. 

Conclusions: By incorporating covariates known to affect body temperature, we demonstrated 

improved pretest probability estimates of acute COVID-19 infection. Future work should be 

undertaken to further develop and validate our model in a larger, multi-institutional sample. 
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INTRODUCTION  

Improving the detection of acute COVID-19 infection is critical to minimizing spread of the 

infection and limiting avoidable morbidity and mortality.[1] However, the ability to diagnose 

COVID-19 is often limited because of asymptomatic or mildly symptomatic infection;[2] limited 

testing availability;[3] and slow turnaround time for test results. Given these limitations, 

improving pretest probability estimation is a crucial way to improve decision-making about 

when testing is warranted and thus curb community spread of acute infection.[4] 

 

Measuring body temperature is a quick, easy, and almost ubiquitously available way to evaluate 

for acute infection. However, the use of temperature to diagnose COVID-19 has not reached its 

fullest potential for three reasons. First, clinicians tend to use temperature as a binary variable, 

often with a cutoff of 100.4 degrees Fahrenheit signaling active infection.[5] Thus, many 

infections can be missed when patients exhibit temperatures that are mildly elevated.[6] Second, 

failure to account for the effects of other variables on temperature values lead to missed 

opportunities to detect active infection. Differences in measured body temperature and/or a 

patient’s ability to mount an elevated temperature in the setting of acute infection occur with: 

patient age, sex, baseline body temperature, and comorbidities (e.g. depression, allergic 

conditions); time of day; ambient temperature; calendar month; and route of body temperature 

measurement.[7-9] Third, our clinical experience suggests that, while clinicians are aware of 

some of these relationships that should alter the interpretation of temperature values, they 

probably do not account for them effectively when making clinical decisions.  
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We propose that it may be possible to improve pretest probability estimation for COVID-19 by 

developing a novel model that includes variables readily available in the electronic health record 

(EHR). Figure 1 depicts a conceptual model demonstrating how body temperature-related 

covariates influence pretest probability, including how a clinician should decide to test for 

COVID-19 and act on results. Estimating pretest probability is critical to determining which 

patients should be tested. Additionally, because false-negative rates for COVID-19 testing have 

been found to range between 2% and 29%,[10] estimating pretest probability has been strongly 

encouraged to determine which patients should get a second test, even after an initial negative 

test.[11] 

 

In this proof-of-concept study of model development, we sought to evaluate whether pretest 

probability estimates of COVID-19 could be improved by incorporating covariates known to be 

associated with body temperature, including demographics, comorbidities, time of day, and 

month of the year. We hypothesized that adding body temperature-relevant covariates would 

improve the area under the curve (AUC) for a logistic regression model predicting COVID-19 

polymerase chain reaction (PCR) test positivity.   

 

MATERIALS, SUBJECTS, AND METHODS 

Setting and Population 

This study was conducted at the emergency department (ED) of an academic medical center in 

Los Angeles, CA. The study population included patients who were triaged to a temporary 

COVID-19 surge tent (open from 7:00am to 11:00pm), tested for acute COVID-19 infection with 

a nasopharyngeal PCR test, and discharged home for outpatient management between March 12 
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and April 6, 2020. Patients were excluded from the study if they did not have an oral temperature 

reading, if they were previously seen in the ED within the prior 7 days, if they did not complete 

ED evaluation (i.e., left without being seen, left against medical advice, or eloped), or if they 

reported no symptoms. 

Data Sources 

Study procedures involved accessing an existing operational database to collect variables 

characterizing: patient age, sex, vital signs (including date, time, and route of measurement), 

comorbidities, and COVID-19 PCR test results from nasal swab samples.[12] Additionally, the 

content of physician and physician assistant notes describing patients’ visits was reviewed. 

Measures 

Outcome variable 

The pilot model predicted acute COVID-19 infection at the individual patient level based 

on results of COVID-19 PCR testing performed during the ED visit. 

Predictor variables 

Selected predictor variables were covariates known to be associated with individual-level 

body temperature, including age, sex, month and time of day of temperature measurement, and 

comorbidities [8, 9, 13, 14]. Body temperature was operationally defined as the highest 

temperature measurement taken during the ED visit. Time of day of body temperature 

measurement ranged from 9:00AM to 9:00PM and was defined as a continuous variable, derived 

by squaring the nearest rounded hour of body temperature measurement. Comorbidities 

associated with individual variation in baseline body temperature and considered for inclusion as 

predictor variables were cancer, pulmonary disease, hypothyroidism, kidney disease, congestive 
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heart failure, allergies, and depression [9, 13]. Comorbidities were enumerated through study 

team review of diagnoses listed in the patient’s past medical history.  

Justification for using clinicians’ estimates of pretest probability without access to objective 

temperature data 

Because body temperature is a key predictor for acute COVID-19 infection, we included 

it directly in our final model based on structured EHR data rather than asking clinicians to 

incorporate it in an overall pretest probability. To avoid using body temperature twice, we used 

clinicians’ estimates of pretest probability without access to objective body temperature data.  

Analyses 

Derivation of Independent Variable 

Physician pretest probability estimation 

Two study team members trained in emergency medicine (CB and CL) independently 

reviewed clinical documentation (ED notes from physician assistants and physicians) to estimate 

pretest probability for COVID-19 while blinded to patients’ ED visit temperature measurements. 

Reviewers rated each case on a 5-point ordinal scale (1=20% suspicion or less; 5=80% suspicion 

or more). To determine estimates, reviewers were instructed to consider clinically relevant 

contextual factors, including local prevalence of COVID-19 at the time of the visit; patient-

reported history of recent COVID-19 exposure within the last 14 days; patient-reported 

symptoms (e.g., fever, chills, cough, shortness of breath, chest tightness, headache, sore throat, 

fatigue, body aches, diarrhea, abdominal pain, confusion, loss of taste, loss of smell); and 

objective criteria (e.g., vital signs, excluding redacted temperature). In cases where reviewers’ 

estimates differed by exactly one point, the estimates were averaged to obtain a mean pretest 

probability. If estimates differed by more than one point, the two reviewers discussed the case 
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until consensus was achieved. Physician pretest probability estimates were included as a 

continuous predictor variable in statistical modeling.  

Statistical Analysis 

Descriptive statistics were obtained using SPSS Statistics version 24.0 (IBM Corporation, 

Armonk, New York, USA) to compare demographics, comorbidities, and clinical characteristics 

of patients who tested positive and negative for acute COVID-19 infection. Between-group 

differences in demographics, comorbidities, and clinical characteristics were assessed using 

independent samples t-tests, Mann Whitney U tests, Pearson’s chi-square tests of independence, 

or Fisher’s exact tests. Intraclass correlation coefficients (ICCs) were calculated to estimate 

inter-rater agreement on physician pretest probability estimates [15, 16].   

Bivariable and multivariable logistic regression models were fitted to the data to test the 

research hypotheses that independent variables are predictive of acute COVID-19 infection. 

Three pilot models were estimated with the following combinations of predictor variables:  

Model #1: Body temperature 

Model #2: Clinical probability (Body temperature and pretest probability estimate) 

Model #3: Enhanced clinical probability (Body temperature, pretest probability estimate, 

and body temperature-relevant covariates  

Our primary hypothesis was that the predictive performance of Model #3 would exceed 

that of Model #2 due to the incorporation of body temperature-relevant covariates in Model #3. 

Predictive performance was evaluated using the area under the curve (AUC) and receiver 

operating curve (ROC) for discrimination, and calibration-in-large and calibration slope for 

calibration. Model performance, when evaluated in the same sample that was fitted, is 

overestimated. Therefore, we calculated the optimism of predictive performance measures using 
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bootstrap to obtain optimism bias-corrected estimates.[17, 18] The significance of predictor main 

effects in bivariable and multivariable models were assessed using likelihood ratio chi-square 

tests, calculated as twice the difference of the log-likelihoods between the full model and the 

constrained model that that does not contain the effect. Differences in AUCs between models 

were tested for statistical significance using Delong’s Test with alpha set to 0.05 and using a 

one-sided test.[19] Regression analyses were carried out by the logistic procedure in SAS version 

9.4 (SAS Institute Inc., Cary, North Carolina, USA). Calibration and optimism bias-corrected 

estimates were obtained using R version 4.0.3 (The R Foundation for Statistical Computing, 

Vienna, Austria). All study procedures were reviewed and approved by the Institutional Review 

Board at Cedars-Sinai Medical Center. 

RESULTS 

  Out of 128 patients evaluated for inclusion in the study, a total of 117 patients met 

inclusion criteria. (See Appendix Figure 1 for a study flow chart.) Forty out of 117 (34%) 

patients in the sample tested positive for COVID-19. Compared to patients who tested negative 

for COVID-19, patients who tested positive had higher maximum oral body temperatures in the 

emergency department (99.3 vs 98.5°F, p < 0.05), but demographic and comorbidity 

characteristics were generally similar to patients who tested negative (Table 1). 

 For the 117 patients in our study, COVID-19 pretest probability estimation by dual 

reviewers yielded identical scores in 55 (43.0%) cases, adjacent scores in 66 (51.6%) cases; and 

scores initially differing by more than 2 or more points in 7 (5.5%), which were resolved by 

adjudication. The intraclass correlation coefficient (ICC) for pretest probability estimation was 

0.75 (95% CI 0.64-0.83). 

 After pretest probability estimates were determined, we used our data to derive 
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three models of the relationship between body temperature and acute COVID-19 infection 

(Tables 2-4). Model #1, which used a patient’s maximum oral temperature alone, resulted in an 

AUC of 0.69 (95% CI 0.58-0.79). Model #2 used pretest probability estimates in addition to 

body temperature, and it achieved an AUC of 0.72 (95% CI 0.62-0.82, absolute difference in 

AUC between Model 2 versus 1 of 0.029 (95% CI -0.057-0.115, p=0.25)). Model #3, which 

approximated clinicians’ current method of developing a pretest probability by using the 

objective temperature data, pretest probability estimates, and body temperature-relevant 

covariates, yielded an AUC of 0.76 (95% CI 0.67-0.86, absolute difference in AUC between 

Model 3 versus 2 of 0.038 (95% CI -0.021 to 0.097, p=0.10), and optimism-adjusted AUC 

estimate of 0.672. See Table 2 for a list of AUCs for the three models, Table 3 for multivariable 

logistic regression coefficients and odds ratios predicting COVID-19 test result positivity under 

Model #3. See Figure 2 for a graphical representation of the ROC curves for Models #1-3.  

 Apparent calibration slope and calibration-in-large for Model #3 were 1.0 and 0.0, 

respectively, indicating perfect calibration and overfitting. Bootstrap validation of Model #3 

yielded an optimism-adjusted calibration slope of 0.478, indicating that the model 

underestimates low risk of COVID-19 infection and overestimates high risk of COVID-19 

infection. Optimism-adjusted calibration-in-large was -0.293, indicating that the model on 

average overestimates the risk of a COVID-19 infection. See Figure 3 for calibration plots of 

apparent and optimism-adjusted Model #3.   

 

DISCUSSION 

Based on our a priori hypothesis that several covariates known to be associated with 

body temperature in non-infected subjects [8, 9, 13, 14] could improve the performance of body 
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temperature as a predictor of COVID-19 acute infection status, we compared the predictive 

performance of three models. These models included oral body temperature alone, physicians’ 

temperature-blinded pretest probability plus objective temperature data, and a proposed 

enhanced model (which added age, sex, month, time of day, and comorbidities), which increased 

the AUC from 0.69 to 0.76—a statistically nonsignificant difference but a trend which should 

undergo investigation in further research. 

Clinicians have long known that covariates are relevant to the interpretation of body 

temperature. Until now, however, most consideration of covariates’ effects has been handled 

qualitatively in clinicians’ minds. To the extent that these associations hold true and can be 

validated in other datasets, they provide a method for clinicians to quantitatively adjust their 

interpretation of body temperature which could be used to produce an evidence-based adjusted 

body temperature for every patient encounter. This could be likened to using a corrected QT 

interval, which has superseded use of an unadjusted QT interval in nearly all clinical settings. 

Because there are billions of patient encounters per year that use body temperature, the public 

health implications of even a tiny improvement in discriminatory ability are large. 

 We recognize that this initial analysis has several limitations. First, we expect that these 

AUCs are optimistic because they are evaluated in a derivation sample at a single site,[20] 

though we attempted to mitigate this effect by reporting optimism-adjusted performance 

measures of calibration and discrimination. Second, our data used a subset of patients who were 

tested for COVID-19 during a time when testing supplies were limited, making selection bias a 

potential limitation. Third, members of the research team who generated pretest probability 

estimates were not blinded to the study hypothesis regarding which covariates should affect 

interpretation of temperature. This may have caused their estimates to differ from estimates that 
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would otherwise by generated in practicing clinicians. Fourth, even when AUC is increased, it 

must be considered in a clinical context to ensure that yields clinically significant benefit. Fifth, 

we were unable to include two important classes of variables in our analysis because of gaps in 

the sample: patients’ baseline temperature values and variables related to women’s hormonal 

cycles. Accounting for patients’ baseline temperature has been endorsed by the Infectious 

Disease Society of America[21]. Moreover, use of hormonal contraceptives and estrogen 

replacement therapy have been demonstrated to impact temperature interpretation,[7] which 

suggests that time since a woman’s last menstrual period may also affect temperature elevation 

in the setting of acute infection. These variables were infeasible for us to collect in our proof-of-

concept study, but we believe that they would likely further enhance predictive performance of 

our model if we had been able to include them. 

In conclusion, we present preliminary evidence that enhancing the interpretation of body 

temperature with body temperature-relevant covariates can improve discriminatory ability for 

COVID-19 above and beyond what is currently possible by using clinical suspicion and body 

temperature alone. If future research can validate these findings in other datasets, use of body-

temperature relevant covariates to generate an adjusted temperature could be a promising method 

to improve detection of COVID-19 and other febrile illnesses, and to curb their spread. 
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TABLES 

 

Table 1. Participant demographics   
 

Characteristic 
COVID- 
(n=77) 

COVID+ 
(n=40) p-value 

Maximum BT from ED (°F), mean (SD)†  98.5 (0.7) 99.3 (1.3)  0.002* 
Pre-test probability estimate without BT,    
     median (range)‡ 

3.5 (3.5) 4.0 (2.5) 0.01* 

Age (years), mean (SD) 43.2 (13.4) 41.1 (14.7) 0.442 
Female 43   (55.8) 19 (47.5) 0.391 
English-speaking 73 (94.8) 36 (90.0) 0.443 
Non-white 17 (22.1) 10 (25.0) 0.722 
Hispanic 11 (14.3) 9 (22.5) 0.425 
Number of comorbidities     0.891 
     0 44 (57.1) 21 (52.5)  
     1 21 (27.3) 12 (30.0)  
     ≥ 2 12 (15.6) 7 (17.5)  
Comorbidities**      
   Pulmonary disease  7 (9.1) 6 (15.0) 0.353 
   Cancer  5 (6.5) 6 (15.0) 0.182 
   Hypothyroidism  6 (7.8) 1 (2.5) 0.420 
   Depression  4 (5.2) 1 (2.5) 0.659 
   Kidney disease 2 (2.6) 1 (2.5) 1.000 
   Allergies  3 (2.6) 0 (0.0) 0.550 
   Congestive heart failure  1 (1.3) 0 (0.0) 1.000 
Notes. SD = standard deviation; BT = body temperature; ED = emergency department. Values 
reported as n (%) unless indicated. 
*p ≤ 0.05  
**Two-sided fisher’s exact test 
†Welch’s unequal variances t-test 
‡Mann Whitney U Test 
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Table 2. Models derived from pilot data (N = 117) 
 

Model Name  Data Source AUC (95% CI) 
#1 BT only  (structured data from EHR) 0.69 (0.58 - 0.79) 
#2 Clinical probability (#1 and pretest probability) 0.72 (0.62 - 0.82) 
#3 Enhanced clinical 

probability  
(#2 and BT-related covariates*) 0.76 (0.67 - 0.86) 

Notes. AUC = area under the curve. BT = body temperature. CI = confidence interval. 
*Covariates included age, sex, month, time of day, and comorbidities. None had p < 0.05.          
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Table 3. Multivariable logistic regression coefficients predicting COVID-19 test positivity under Model 
#3 (n=117) 
 

Variable β OR (95%CI) SEβ χ2 df p 
Maximum BT from ED (unit: °F) 1.010 2.75 (1.43-5.25) 0.331 9.325 1 0.002* 
Pretest probability estimate† 0.561 1.75 (1.01-3.05) 0.282 3.975 1 0.046* 
Age (unit: years) 0.008 1.01 (0.98-1.04) 0.017 0.263 1 0.608 
Sex (ref: Female)       
     Male 0.669 1.95 (0.71-5.34) 0.513 1.700 1 0.192 
Month of BT measurement (ref: March)       
     April -0.397 0.67 (0.15-3.09) 0.778 0.260 1 0.610 
Hour of BT measurement (unit: hour2) -0.001 1.00 (0.99-1.01) 0.003 0.074 1 0.786 
Comorbidities (ref: no disease)       
     Cancer 1.450 4.26 (0.79-22.9) 0.858 2.856 1 0.091 
     Depression 0.038 1.04 (0.10-11.4) 1.221 0.001 1 0.975 
     Hypothyroidism -1.265 0.28 (0.02-3.46) 1.279 0.978 1 0.323 
     Kidney disease -3.407 0.03 (0.00-5.46) 2.604 1.711 1 0.191 
     Pulmonary disease 1.181 3.26 (0.77-13.7) 0.734 2.587 1 0.108 
Notes. β  = regression coefficient; BT = body temperature; df = degrees of freedom; ED = emergency 
department; OR = odds ratio; ref = reference category; SE = standard error. Chi-square statistics are Wald based. 
*p ≤ 0.05 
†Average of two raters’ scores on a 5-point ordinal scale 
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FIGURES 
 

Figure 1. Conceptual model demonstrating how relevant factors (e.g. antipyretic use, time of 
day) should influence interpretation of body temperature and the resultant effect on pretest 
probability. Direct influence is shown in red. Note also that in the example shown with a high 
pretest probability, a positive test result nearly always implies a posttest probability that exceeds 
the threshold requiring further testing, whereas a negative result may still result in a high enough 
posttest probability that further testing is warranted. 
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Figure 2. Receiver operating curves for Models #1-3 
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Figure 3. Calibration plot for apparent and optimism-adjusted Model #3 
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Appendix Figure 1. Study flow diagram 
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