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Abstract

Mexico has experienced one of the highest COVID-19 death rates in the world. A delayed
response towards implementation of social distancing interventions until late March 2020 and a
phased reopening of the country in June 2020 has facilitated sustained disease transmission in the
region. Here, we systematically generate and compare 30-day ahead forecasts using previously
validated growth models based on mortality trends from the Institute for Health Metrics and
Evaluation for Mexico and Mexico City in near real-time. Moreover, we estimate reproduction
numbers for SARS-CoV-2 based on methods that rely on genomic data as well as case incidence
data. Subsequently, functional data analysis techniques are utilized to analyze the shapes of
COVID-19 growth rate curves at the state level to characterize the spatial-temporal transmission
patterns. The early estimates of reproduction number for Mexico were estimated between R~1.1-
1.3 from genomic and case incidence data. Moreover, the mean estimate of R has fluctuated ~1.0
from late July till end of September 2020. The spatial analysis characterizes the state-level
dynamics of COVID-19 into four groups with distinct epidemic trajectories. We found that the
sequential mortality forecasts from the GLM and Richards model predict downward trends in the
number of deaths for all thirteen forecasts periods for Mexico and Mexico City. The sub-
epidemic and IHME models predict more realistic stable trajectory of COVID-19 mortality
trends for the last three forecast periods (09/21-10/21 - 09/28-10/27) for Mexico and Mexico
City. Our findings support the view that phenomenological models are useful tools for short-
term epidemic forecasting albeit forecasts need to be interpreted with caution given the dynamic

implementation and lifting of social distancing measures.
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Introduction

The ongoing COVID-19 (coronavirus disease 2019) pandemic is the most important global
health challenge since the 1918 influenza pandemic [1]. This calls for scientists, health
professionals and policy makers to collaboratively address the challenges posed by this deadly
infectious disease. The causative SARS-CoV-2 (severe acute respiratory syndrome virus 2) is a
novel, unusually complex and highly transmissible virus that spreads via respiratory droplets and
aerosols [2, 3]. It presents a clinical spectrum that ranges from asymptomatic individuals to
conditions that require the use of mechanical ventilation to multiorgan failure and septic shock
leading to death [2]. The ongoing COVID-19 pandemic has not only exerted significant
morbidity but also excruciating mortality burden with more than 79.2 million cases and 1.7
million deaths reported worldwide as of December 29, 2020 [4]. Approximately 27 countries
globally including 9 countries in the Americas have reported more than 10,000 deaths
attributable to SARS-CoV-2 as of December 29, 2020 despite the implementation of social
distancing policies to limit the death toll [5]. In comparison, a total of 774 deaths were reported
during the 2003 SARS multi-country epidemic and 858 deaths were reported during the 2012

MERS epidemic in Saudi Arabia [6, 7].

Determining the best containment strategies for COVID-19 pandemic is a highly active research
area [3]. While multiple vaccines against the novel coronavirus have begun to roll out, many
scientific uncertainties exist that will dictate how vaccination campaigns will affect the course of
the pandemic. For instance, it is still unclear if the vaccine will prevent the transmission of
SARS-CoV-2 or just protect against more severe disease outcomes and death [8, 9]. In these

circumstances non-pharmaceutical interventions remain the most promising policy levers to
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reduce the virus transmission [10]. The epidemiological and mathematical models can help
quantify the effects of these non-pharmaceutical interventions such as wearing facemasks and
social distancing mandates to contain the spread of the virus [11]. However, recent studies have
demonstrated that indicators such as population density, poverty, over-crowding and
inappropriate work place conditions hinder the social distancing interventions propagating the
unmitigated spread of the virus, especially in developing countries [12, 13]. Moreover, the
differential mortality trends are also influenced by the disparate disease burden driven by the

socioeconomic gradients with the poorest areas showing highest preventable mortality rates [14].

Mexico, exhibiting one of the highest COVID-19 mortality impact in the world thus far [15], is a
highly populated country [16] with ~42% of the population living in poverty (defined as the state
if a person or group of people lack a specified amount of money or material possessions) [17]
and ~60% of the population work in the informal sector [18]. In this context, Mexico ranks
fourth in the world in terms of the number of COVID-19 deaths, a tally surpassed only by the
USA, Brazil and India [19] , has reported one of highest death tolls among healthcare workers

(~2500 deaths) [20], and has conducted the lowest number of COVID-19 tests per capita [21].

The Mexican Ministry of Health identified three phases of contingency plan: viral importation,
community transmission and epidemic to combat the COVID-19 pandemic in Mexico [22]. The
pandemic was likely seeded by imported COVID-19 cases reported on February 28, 2020 [23,
24]. As the virus spread across the nation in phase one of the pandemic, some universities
switched to virtual classes and some festivals and sporting events were postponed [25].

However, the government initially downplayed the impact of the virus and did not enforce strict


https://doi.org/10.1101/2021.01.11.21249561
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.01.11.21249561; this version posted February 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

98 social distancing measures [26]. This led to large gatherings at some social events such as
99  concerts, festivals and soccer tournament amidst sustained disease transmission in the country
100  [27]. A study conducted in Mexico estimated the early reproduction number for the first ten days
101  of the epidemic between ~2.9-4.9 [28]. However, the true impact of the pandemic was generally
102  under-estimated by the Mexican government despite active virus transmission in the country
103 [29].

104

105 As local clusters of disease started to appear in the community, phase 2 (community
106  transmission) of the pandemic was declared on March 24, 2020 [30]. Authorities suspended all
107  non-essential activities including closure of public and entertainment places and banned
108 gatherings of more than 100 people [31]. This was followed by the declaration of national
109 emergency on March 30, 2020. The new measures to fight the virus under the national
110  emergency included extending the suspension of non-essential activities and a reduction the
111  number of people who can gather to fifty [32]. However, as the virus paved its way across the
112  country ravaging through the poor and rural communities, the government urged the public to
113  comply with the stay-at-home orders [33-35]. These preventive orders from the government were
114  met with mixed reactions from people belonging to different socio-economic sectors of the
115 community [36]. Moreover, transportation restrictions to and from the regions most affected by
116  COVID-19 were not implemented until April 16, 2020 [37]. Shortly after, on April 21, 2020,
117  Mexico announced phase 3 of the contingency (epidemic phase) as wide-spread community
118  transmission intensified [38].

119
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120  With lockdowns and other restrictions in place, Mexican officials shared model output [39]
121  predicting that COVID-19 case counts would peak in early May and that the epidemic was
122  expected to end before July 2020 [40]. Despite notorious disagreement between surveillance data
123 and government forecasts, these model predictions continued to be cited by official and
124 independent sources [41, 42]. The extent to which these overly optimistic predictions skewed the
125 plans and budgets of private and public institutions remains unknown. Under the official
126  narrative that the pandemic would soon be over, Mexico planned a gradual phased re-opening of
127  itseconomy in early June 2020, as the “new normal” phase [43].

128

129  In Mexico, reopening of the economic activities started on June 1 under a four color traffic light
130  monitoring system to alert the residents of the epidemiological risks of COVID-19 based on the
131  level of severity of the pandemic in each state, on a weekly basis [44, 45]. As of December 29,
132 2020 Mexico exhibits high estimates of cumulative COVID-19 cases and deaths; 1,401,529 and
133 123,845 respectively [15]. Given the high transmission potential of the virus and limited
134  application of tests in the country, testing only 24.54 people for every 1000 people (as of
135 December 28, 2020) [21], estimates of the effective reproduction number from the case
136 incidence data and near real-time epidemic projections using mortality data could prove to be
137  highly beneficial to understand the epidemic trajectory of COVID-19. It may also be useful to
138  assess the effect of intervention strategies such as the stay-at-home orders and mobility patterns
139  on the epidemic curve and understand the different spatiotemporal dynamics of the virus.

140

141  In order to investigate the transmission dynamics of the unfolding COVID-19 epidemic in

142  Mexico, we analyze the case data by date of symptoms onset and death data by date of reporting
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143  utilizing mathematical models that are useful to characterize the empirical patterns of epidemics
144  [46, 47]. We estimate the effective reproduction number of SARS-CoV-2 in Mexico to
145  understand the transmission dynamics of the virus and examine the mobility trends in relation to
146  the curve of the number of COVID-19 deaths. Moreover, we employ statistical methods from
147  functional data analysis to study the shapes of the COVID-19 growth rate curves at the state
148 level. This helps us characterize the spatial-temporal dynamics of the pandemic based on the
149  shape features of these curves. Lastly, twitter data demonstrating the frequency of tweets

150 indicating stay-at-home-order is analyzed in relation to the COVID-19 case counts at the national

151  level.

152

153  Methods
154  Data

155  Five sources of data are analyzed in this manuscript. A brief description of the datasets and their
156  sources are described below.

157 (1) IHME data for short term forecasts

158  We utilized the openly published smoothed trend in daily COVID-19 reported deaths from the
159 Institute of Health Metrics and Evaluation (IHME) for (i) Mexico (country) and (ii) Mexico City
160  (capital of Mexico) as of October 9, 2020 to generate the forecasts [48]. IHME smoothed data
161  estimates (current projection scenario) were utilized as they were corrected for the irregularities
162 inthe daily death data reporting, by averaging model results over the last seven days. As this was
163  our source of data for prediction modeling, it was chosen for its consistent updates. The
164  statistical procedure of spline regressions obtained from MR-BRT (“meta-regression—Bayesian,

165  regularized, trimmed”) smooths the trend in COVID-19 reported deaths as described in ref [10].


https://doi.org/10.1101/2021.01.11.21249561
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.01.11.21249561; this version posted February 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

166  This data are publicly available from the IHME COVID-19 estimates downloads page [48]. For
167  this analysis, deaths as reported by the IHME model (current projection scenario as described
168 ahead) on November 11, 2020 are used as a proxy for actual reported deaths attributed to
169 COVID-19.

170 (i)  Apple mobility trends data

171  Mobility data for Mexico published publicly by Apple’s mobility trends reports was retrieved as
172  of December 5, 2020 [49]. This aggregated and anonymized data is updated daily and includes
173  the relative volume of directions requests per country compared to a baseline volume on January
174 13, 2020. Apple has released the data for the three modes of human mobility: driving, walking
175  and public transit. The mobility measures are normalized in the range 0-100 for each country at
176  the beginning of the series, so trends are relative to this baseline.

177 (i)  Caseincidence and genomic data for estimating reproduction number

178 In order to estimate the reproduction number, we use two different data sources. For estimating
179  the early reproduction number from the genomic data, 111 SARS-CoV-2 genome samples were
180  obtained from the “global initiative on sharing avian influenza data” (GISAID) repository
181  between February 27- May 29, 2020 [50]. For estimating the reproduction number from the case
182 incidence data (early reproduction number and the instantaneous reproduction number), we
183 utilized publicly available time series of laboratory-confirmed cases by dates of symptoms onset
184  which were obtained from the Mexican Ministry of Health as of December 5, 2020 [15].

185 (iv)  Caseincidence datafor Spatial analysis

186  We recovered daily case incidence data for all 32 states of Mexico from March 20 to December
187 5 from the Ministry of Health Mexico, as of December 5, 2020 [15].

188 (v) Twitter data for twitter analysis
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189  For the twitter data analysis, we retrieved data from the publicly available twitter data set of

190 COVID-19 chatter from March 12 to November 11, 2020 [51].

191

192 Modeing framework for forecast generation

193  We harness three dynamic phenomenological growth models previously applied to multiple
194  infectious diseases (e.g., SARS, foot and mouth disease, Ebola [52, 53] and the current COVID-
195 19 outbreak [54, 55]) for mortality modeling and short-term forecasting in Mexico and Mexico
196  City. These models include the simple scalar differential equation models such as the generalized
197  logistic growth model [53] and the Richards growth model [56]. We also utilize the sub-
198 epidemic wave model [52] which accommodates complex epidemic trajectories by assembling
199 the contribution of multiple overlapping sub-epidemic waves. The mortality forecasts obtained
200 from these mathematical models can provide valuable insights on the disease transmission
201  mechanisms, the efficacy of intervention strategies and help evaluate optimal resource allocation
202  procedures to inform public health policies. The COVID-19 mortality forecasts for Mexico and
203  Mexico City generated by IHME (current projections scenario) are used as a benchmark model.
204 The description of these models is provided in the supplemental file.

205

206  Cumulative mortality forecasts obtained from our phenomenological growth models are
207  compared with the total mean smoothed death data estimates retrieved from the IHME reference
208  scenario and two IHME counterfactual scenarios. The IHME reference scenario depicts the
209  “current projection”, which assumes that the social distancing measures are re-imposed for six
210  weeks whenever daily deaths reach eight per million. The second scenario “mandates easing”

211  implies what would happen if the government continues to ease social distancing measures
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212 without re-imposition. Lastly, the third scenario, “universal masks” accounts for universal
213  facemask wearing, that reflects 95% facemask usage in public and social distancing mandates
214 reimposed at 8 deaths per million. Detailed description of these modeling scenarios and their
215  assumptions is explained in ref. [10]. Moreover, the total mean smoothed death data estimates
216  reported by IHME reference scenario as of November 11, 2020 are considered as a proxy for
217  actual death count for each forecasting period.

218

219 Modéd calibration and for ecasting approach

220  We conducted 30-day ahead short-term forecasts utilizing thirteen data sets spanned over a
221  period of four months (July 4-October 9, 2020) (Table 1). Each forecast was fitted to the daily
222  death counts from the IHME smoothed data estimates reported between March 20-September 27,
223 2020 for (i) Mexico and (ii) Mexico City. The first model calibration process relies on fifteen
224 weeks of data, from March 20-July 4, 2020. Sequentially models are recalibrated each week with
225  the most up-to-date data, meaning the length of the calibration period increases by one week up
226  to August 2, 2020. However, owing to irregular publishing of data estimates by the IHME, the
227  length of calibration period increased by 2 weeks after August 2, 2020. This was followed by a
228 one week increase from August 17-September 27, 2020 as the data estimates were again
229  published every week.

230

231  Table 1: Characteristics of the data sets used for the sequential calibration and forecasting of the

232 COVID-19 epidemic in Mexico and Mexico City (2020).

10
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Date of the retrieval of | Calibration period for | Calibration period Forecast period for the

data set the GLM, sub- | (number of days) GLM,  sub-epidemic,
epidemic,  Richards Richards and IHME
and IHME model model

07/04 03/20-07/04 107 07/05-08/03

07/10 03/20-07/11 114 07/12-08/10

07/17 03/20-07/17 120 07/18-08/16

07/27 03/20-07/25 128 07/26-08/24

08/06 03/20-08/02 136 08/03-09/01

08/22 03/20-08/17 151 08/18-09/16

08/27 03/20-08/22 156 08/23-09/21

09/02 03/20-08/30 164 08/31-09/30

09/11 03/20-09/07 172 09/08-10/08

09/18 03/20-09/13 179 09/14-10/13

09/24 03/20-09/20 185 09/21-10/21

10/02 03/20-09/27 193 09/28-10/27

10/09 03/20-09/27 193 09/28-10/27

The 30-day ahead shot-term forecasts generated by calibrating our three phenomenological

growth models with the IHME smoothed death data estimates are compared with the forecasts

generated by the IHME reference scenario for the same calibration and forecasting periods.

For each of the three models; GLM, Richards growth model and the sub-epidemic wave model,

we estimate the best fit solution for each model using non-linear least square fitting procedure

[57]. This process minimizes the sum of squared errors between the model fit, f(t,®) and the

11
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242  smoothed data estimates, y, and yields the best set of parameter estimates ® = (64, 65, ..., Om).
243 The parameters © = argmin Y7 ,(f(t,0) — y,)? define the best fit model f(t,0). Here
244 O = (r,p, k,,q and C,,,) corresponds to the set of parameters of the sub-epidemic model,
245  © = (r,ky,a) corresponds to set of parameters of the Richards model and 8 = (r,p, k, )
246  corresponds to the set of parameters of the GLM model [58]. For the GLM and sub-epidemic
247  wave model, we provide initial best guesses of the parameter estimates. However, for the
248  Richards growth model we initialize the parameters for the nonlinear least squares’ method [57]
249  over a wide range of plausible parameters from a uniform distribution using Latin hypercube
250 sampling [59]. This allows us to test the uniqueness of the best fit model. Moreover, the initial
251  conditions are set at the first data point for each of the three models [58]. Uncertainty bounds
252  around the best-fit solution are generated using parametric bootstrap approach with replacement
253  of data assuming a Poisson error structure for the GLM and sub-epidemic model. A negative
254  binomial error structure was used to generate the uncertainty bounds of the Richards growth
255  model; where we assume the mean to be three times the variance based on the noise in the data.
256  Detailed description of this method is provided in ref [58].

257

258  Each of the M best-fit parameter sets are used to construct the 95% confidence intervals for each
259  parameter by refitting the models to each of the M = 300 datasets generated by the bootstrap
260  approach during the calibration phase. Further, each M best fit model solution is used to generate
261  m= 30 additional simulations with Poisson error structure for GLM and sub-epidemic model and
262  negative binomial error structure for Richards model extended through a 30-day forecasting

263  period. For the forecasting period, we construct the 95% prediction intervals with these 9000 (M

12
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264  x m) curves. Detailed description of the methods of parameter estimation can be found in
265  references [58, 60, 61]

266

267  Performance metrics

268  We utilized the following four performance metrics to assess the quality of our model fit and the
269  30-day ahead short term forecasts: the mean absolute error (MAE) [62], the mean squared error
270  (MSE) [63], the coverage of the 95% prediction intervals [63], and the mean interval score (MIS)
271  [63] for each of the three models: GLM, Richards model and the sub-epidemic model. For
272  calibration performance, we compare the model fit to the observed smoothed death data
273  estimates fitted to the model, whereas for the performance of forecasts, we compare our forecasts
274  with the smoothed death data estimates (current projections scenario) reported on November 11,

275 2020 for the time period of the forecast.

276  The mean squared error (MSE) and the mean absolute error (MAE) assess the average deviations

277  of the model fit to the observed death data. The mean absolute error (MAE) is given by:

1% _
MAE = =" £(,8) - v,
i=1

278  The mean squared error (MSE) is given by:

279

1 _
MSE = EZ(f (. 8) — y:)’

13
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280  where y, is the time series of reported smoothed death estimates, ¢; is the time stamp and 0 is the

281  set of model parameters. For the calibration period, n equals the number of data points used for
282  calibration, and for the forecasting period, n = 30 for the 30-day ahead short-term forecast.
283
284  Moreover, in order to assess the model uncertainty and performance of prediction interval, we
285  use the 95% Pl and MIS. The prediction coverage is defined as the proportion of observations
286  that fall within 95% prediction interval and is calculated as:

L&

PI coverage = Ez Y, >L, nY.<U}
t=1

287  where Y;are the smoothed death data estimates, L;and U; are the lower and upper bounds of the
288  95% prediction intervals, respectively, n is the length of the period, and I is an indicator variable
289  that equals 1 if value of Y;is in the specified interval and 0 otherwise
290
291  The mean interval score addresses the width of the prediction interval as well as the coverage.
292  The mean interval score (MIS) is given by:

293

1% 2 2
MIS = EZ(UH - Lti) + m(l'ti _yti)l{yti <Lti} +m (Uti o yti)l{yti > Ufi}

=1

294

295 In this equation L,, U, n and | are as specified above for Pl coverage. Therefore, if the PI
296  coverage is 1, the MIS is the average width of the interval across each time point. For two
297  models that have an equivalent Pl coverage, a lower value of MIS indicates narrower intervals

298  [63].

14
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299

300 Mobility data analysis

301 In order to analyze the time series data for Mexico from March 20-December 5, 2020 for three
302  modes of mobility; driving, walking and public transport, we utilize the R code developed by
303  Kieran Healy [64]. We analyze the mobility trends to look for any pattern in sync with the
304  mortality curve of COVID-19. The time series for mobility requests is decomposed into trends,
305  weekly and remainder components. The trend is a locally weighted regression fitted to the data
306 and remainder is any residual left over on any given day after the underlying trend and normal
307  daily fluctuations have been accounted for.

308

309  Reproduction number

310 We estimate the reproduction number, R,, for the early ascending phase of the COVID-19
311  epidemic in Mexico and the instantaneous reproduction number R, throughout the epidemic.
312  Reproduction number, R,, is a crucial parameter that characterizes the average number of
313  secondary cases generated by a primary case at calendar time t during the outbreak. This
314  quantity is critical to identify the magnitude of public health interventions required to contain an
315  epidemic [65-67]. Estimates of R, indicate if widespread disease transmission continues (R.>1)
316  or disease transmission declines (R,<1). Therefore, in order to contain an outbreak, it is vital to
317  maintain R.<1.

318
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319 Estimating the reproduction number, R,, from case incidence using generalized growth
320 model (GGM).

321  We estimate the reproduction number by calibrating the GGM (as described in the supplemental
322  file) to the early growth phase of the epidemic (February 27-May 29, 2020) [68]. The generation
323 interval of SARS-CoV-2 is modeled assuming gamma distribution with a mean of 5.2 days and a
324  standard deviation of 1.72 days [69]. We estimate the growth rate parameter r, and the

325  deceleration of growth parameter p, as described in the supplemental file. The GGM model is
326  used to simulate the progression of local incidence cases I; at calendar time t;. This is followed
327 by the application of the discretized probability distribution of the generation interval, denoted
328 Dby p;, to the renewal equation to estimate the reproduction number at time ¢t; [70-72]:

329

R, = k
E YicoUizipy)

330

331  The numerator represents the total new cases I;, and the denominator represents the total number
332  of cases that contribute (as primary cases) to generating the new cases I; (as secondary cases) at
333 time t;. This way, R,, represents the average number of secondary cases generated by a single
334  case at calendar time t. The uncertainty bounds around the curve of R, are derived directly from
335  the uncertainty associated with the parameter estimates (r, p) obtained from the GGM. We

336  estimate R, for 300 simulated curves assuming a negative binomial error structure [58].

337

338 Instantaneousreproduction number R;, using the Cori method.
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339  The instantaneous R is estimated by the ratio of number of new infections generated at calendar
340 timet (Iy), to the total infectiousness of infected individuals at time t given by Y£_, I, _ w [73,

341  74] . Hence R; can be written as:

I

342

343  Inthis equation, I, is the number of new infections on day t and w; represents the infectivity
344 function, which is the infectivity profile of the infected individual. This is dependent on the time
345  since infection (s), but is independent of the calendar time (t) [75, 76].

346

347  Theterm Yt_, I,_w, describes the sum of infection incidence up to time step t — 1, weighted by
348 the infectivity function w,. The distribution of the generation time can be applied to approximate
349  wq, however, since the time of infection is a rarely observed event, measuring the distribution of
350 generation time becomes difficult [73]. Therefore, the time of symptom onset is usually used to
351 estimate the distribution of serial interval (SI), which is defined as the time interval between the
352  dates of symptom onset among two successive cases in a disease transmission chain [77].

353

354  The infectiousness of a case is a function of the time since infection, which is proportional to w,
355 if the timing of infection in the primary case is set as time zero of w, and we assume that the
356  generation interval equals the SI. The SI was assumed to follow a gamma distribution with a
357 mean of 5.2 days and a standard deviation of 1.72 days [69]. Analytical estimates of R; were

358  obtained within a Bayesian framework using EpiEstim R package in R language [77]. R; was

359  estimated at weekly intervals. We reported the median and 95% credible interval (Crl).

360

17


https://doi.org/10.1101/2021.01.11.21249561
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.01.11.21249561; this version posted February 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

361 Estimating the reproduction number, R, from the genomic analysis.

362 In order to estimate the reproduction number for the SARS-CoV-2 between February 27- May
363 29, 2020, from the genomic data, 111 SARS-CoV-2 genomes sampled from infected patients
364  from Mexico and their sampling times were obtained from GISAID repository [50]. Short
365  sequences and sequences with significant number of gaps and non-identified nucleotides were
366 removed, yielding 83 high-quality sequences. For clustering, they were complemented by
367  sequences from other geographical regions, down sampled to n=4325 representative sequences.
368  We used the sequence subsample from Nextstrain (www.nextstrain.org) global analysis as of
369  August 15, 2020. These sequences were aligned to the reference genome taken from the
370 literature [78] using MUSCLE [79] and trimmed to the same length of 29772 bp. The maximum
371 likelihood phylogeny has been constructed using RAXML[80]

372

373  The largest Mexican cluster that possibly corresponds to within-country transmissions has been
374  identified using hierarchical clustering of sequences. The phylodynamics analysis of that cluster
375  have been carried out using BEAST v1.10.4 [81]. We used strict molecular clock and the tree
376  prior with exponential growth coalescent. Markov Chain Monte Carlo sampling has been run for
377 10,000,000 iterations, and the parameters were sampled every 1000 iterations. The exponential
378  growth rate f estimated by BEAST was used to calculate the reproductive number R. For that,
379  we utilized the standard assumption that SARS-CoV-2 generation intervals (times between

380 infection and onward transmission) are gamma-distributed [82]. In that case R can be estimated
u2

e
381 as R= (1 +%)”2,where u and o are the mean and standard deviation of that gamma

382  distribution. Their values were taken from ref [69].

383
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384  Spatial analysis.
385  For the shape analysis of incidence rate curves we followed ref. [83] to pre-process the daily

386 cumulative COVID-19 case data at state level as follows:

387 a) Time differencing: If f;(t) denotes the given cumulative number of confirmed cases for
388 state i on day t, then per day growth rate at time t is given by g;(t) = f;(t) — f;(t — 1).
389 b) Smoothing: We then smooth the normalized curves using smooth function in Matlab.

390 c) Rescaling: Rescaling of each curve is done by dividing each g; by the total confirmed
391 cases for a state i. That is, compute h;(t) = g;(t)/r;, where r; =Y, g; (t).

392 To identify the clusters by comparing the curves, we used a simple metric. For any two
393 rate curves, h; and h;, we compute the norm ||h; —h;j||, where the double bars denote the L2
394 norm of the difference function, i.e., |[hi —h;]| = \/Zt (hi(t) — h; (t))z.

395  This process is depicted in S17 Fig. To identify the clusters by comparing the curves, we used a

396  simple metric. For any two rate curves, h; and h;, we compute the norm ||h; — h;||, where the

397 double bars denote the L? norm of the difference function, i.e., llh; — hl| =

2
398 \/Zt (hi(t) - hj(t)) . To perform clustering of 32 curves into smaller groups, we apply the

399  dendrogram function in Matlab using the “ward” linkage as explained in ref [84]. The number of
400 clusters is decided empirically based on the display of overall clustering results. After clustering
401 the states into different groups, we derived average curve for each cluster after using a time
402  wrapping algorithm as performed in refs [84, 85].

403

404  Twitter data analysis.
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405  To observe any relationship between the COVID-19 cases by date of symptoms onset and the
406  frequency of tweets indicating stay-at-home orders we used a public dataset of 698 million
407  tweets of COVID-19 chatter [51]. The frequency of tweets indicating stay-at-home order is used
408  to gauge the compliance of people with the orders of staying at home to avoid spread of the virus
409 by maintaining social distance. Tweets indicate the magnitude of the people being pro-lockdown
410  and depict how these numbers have dwindled over the course of the pandemic. To get to the
411  plotted data, we removed all retweets and tweets not in the Spanish language. We also filtered by
412  the following hashtags: #quedateencasa, and #trabajardesdecasa, which are two of the most used
413  hashtags when users refer to the COVID-19 pandemic and their engagement with health
414  measures. Lastly, we limited the tweets to the ones that originated from Mexico, via its 2-code
415  country code: MX. A set of 521,359 unique tweets were gathered from March 12 to November
416 11, 2020. We then overlay the curve of tweets over the epi-curve in Mexico to observe any
417  relation between the shape of the epidemic trajectory and the shape of curve for the frequency of
418  tweets during the established time period. We also estimate the correlation coefficient between
419  the cases and frequency of tweets.

420

421  Results

422  As of November 11, 2020, Mexico has reported 105,656 deaths whereas Mexico City has
423  reported 15,742 deaths as per the IHME smoothed death data estimates. Fig 1 (upper panel)
424 shows the daily COVID-19 death curve in Mexico and Mexico City from March 20-November
425 11, 2020. The mobility trend for Mexico (Fig 1, lower panel) shows that the human mobility
426  tracked in the form of walking, driving and public transportation declined from end of March to

427  the beginning of June, corresponding to the implementation of social distancing interventions
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428 and the Jornada Nacional de Sana Distancia that was put in place between March 23-May 30,
429 2020 encompassing the suspension of non-essential activities in public, private and social sectors
430 [86]. The driving and walking trend subsequently increased in June with the reopening of the
431  non-essential services. Fig 1 (upper panel) shows that reopening of the country coincides with
432  the highest levels of daily deaths. These remain at a high level for just over two months (June
433  and July). Then, from mid-August, the number of deaths begins to fall, reaching a reduction of
434 nearly 50% by mid-October. But at the end of October a new growth begins.

435

436  Fig 1: Upper panel: Epidemic curve for the COVID-19 deaths in Mexico and Mexico City from
437  March 20-November 11, 2020. Blue line depicts the confirmed deaths in Mexico and green line
438  depicts the confirmed deaths in Mexico City.

439  Lower panel: The mobility trends for Mexico from January 1-December 5, 2020. Orange line
440  shows the driving trend, blue line shows the transit trend, and the black line shows the walking
441  trend.

442

443 In the subsequent sections, we first present the results for the short-term forecasting, followed by
444 the estimation of the reproduction numbers. Then we present the results of the spatial analysis
445  and the twitter data analysis.

446

447  Modéd calibration and forecasting performance

448  Here we compare the calibration and 30-day ahead forecasting performance of our three models:
449  the GLM, Richards growth model and the sub-epidemic wave model between March 20-

450  September 27, 2020 and July 5-October 27, 2020 respectively for (i) Mexico and (ii) Mexico
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451  City. We also compare the results of our cumulative mortality forecasts with the total mean
452  smoothed death data estimates retrieved from the three IHME model scenarios (as explained in
453  the methods section).

454

455  Calibration performance. Across the thirteen sequential model calibration phases for Mexico
456  over a period of seven months (March-September), as provided in Table S1 and Fig 2, the sub-
457  epidemic model outperforms the GLM with lower RMSE estimates for the seven calibration
458  phases 3/20-07/04, 3/20-7/17, 3/20-8/17, 3/20-08/22, 3/20-09/13, 3/20-09/20, 3/20-09/27. The
459  GLM model outperforms the other two models for the remaining six calibration phases in terms
460 of RMSE. The Richards model has substantially higher RMSE (between 10.2-24.9) across all
461  thirteen calibration phases indicating a sub-optimal model fit. The sub-epidemic model also
462  outperforms the other two models in terms of MAE, MIS and the 95% PI coverage. It has the
463  lowest values for MIS and the highest 95% PI coverage for nine of the thirteen calibration phases
464  (Table S1). Moreover, the sub-epidemic model has the lowest MAE for eleven calibration
465  phases. The Richards model shows much higher MIS and lower 95% PI coverage compared to
466  the GLM and sub-epidemic model, pointing towards a sub-optimal model fit.

467

468  Fig 2: Calibration performance for each of the thirteen sequential calibration phases for GLM
469  (magenta), Richards (red) and sub-epidemic (blue) model for Mexico. High 95% PI coverage
470  and lower mean interval score (MIS), root mean square error (RMSE) and mean absolute error
471  (MAE) indicate better performance.

472
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473  For Mexico City, the sub-epidemic model outperforms the other two models in terms of all
474  performance metrics. It has the lowest RMSE for eleven of the thirteen calibration phases
475  followed by the GLM and Richards model. The MAE is also the lowest for the sub-epidemic
476  model for all thirteen calibration phases, followed by the GLM and Richards growth model.
477  Further, in terms of MIS, the sub-epidemic model outperforms the Richards and GLM model for
478  nine calibration phases whereas the GLM model outperforms the other two models in four
479  calibration phases (3/20-7/04, 3/20-7/11, 3/20-7/17, 3/20-8/02). The Richards model has much
480  higher estimates for the MIS compared to the other two models indicating a sub-optimal model
481  fit. The 95% PI across all thirteen calibration phases lies between 91.6-99.4% for the sub-
482  epidemic model, followed by the Richards model (85.9- 100%) and the GLM model (53.2-
483  100%) (Table S2, Fig 3).

484

485  Fig 3: Calibration performance for each of the thirteen sequential calibration phases for GLM
486  (magenta), Richards (red) and sub-epidemic (blue) model for Mexico City. High 95% PI
487  coverage and lower mean interval score (MIS), root mean square error (RMSE) and mean
488  absolute error (MAE) indicate better performance.

489

490 Over-all the goodness of fit metrics points toward the sub-epidemic model as the most
491  appropriate model for the Mexico City and Mexico across all four-performance metrics except
492  for the RMSE for Mexico, where the estimates of GLM model compete with the sub-epidemic
493  model.

494
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495  Forecasting performance. For Mexico, the sub-epidemic model consistently outperforms the
496  GLM and Richards growth model for ten out of the thirteen forecasting phases in terms of RMSE
497  and MAE, eight forecasting phases in terms of MIS and nine forecasting phases in terms of the
498  95% PI coverage. This is followed by the GLM and the Richards growth model (Fig 4, Table
499  S4).

500

501 Fig 4: Forecasting period performance metrics for each of the thirteen sequential forecasting
502 phases for GLM (magenta), Richards (red) and sub-epidemic (blue) model for Mexico. High
503 95% PI coverage and lower mean interval score (MIS), root mean square error (RMSE) and
504  mean absolute error (MAE) indicate better performance.

505

506  Similarly, for Mexico City, the sub-epidemic model consistently outperforms the GLM and
507  Richards growth model for ten of the thirteen forecasting phases in terms of RMSE and MAE
508 and eleven forecasting phases in terms of the MIS. Whereas, in terms of 95% PI coverage,
509 forecasting phases 08/31- 09/29, 09/08-10/08 and 09/21-10/21 show zero 95% PI coverage
510 across all three models. The sub-epidemic model outperforms the Richards and GLM model in
511  six forecasting phases, with the Richards model performing better than the GLM model for the
512  remaining four forecasting phases in terms of the 95% PI coverage (Fig 5, Table S3).

513

514  Fig 5: Forecasting period performance metrics for each of the thirteen sequential forecasting
515 phases for GLM (magenta), Richards (red) and sub-epidemic (blue) model for the Mexico City.
516  High 95% PI coverage and lower mean interval score (MIS), root mean square error (RMSE) and

517  mean absolute error (MAE) indicate better performance.
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518

519 Comparison of daily death forecasts

520  The thirteen sequentially generated daily death forecasts from GLM and Richards growth model,
521  for Mexico and Mexico City indicate towards a sustained decline in the number of deaths (S1
522  Fig, S2 Fig, S3 Fig and S4 Fig). However, the IHME model forecasts (retrieved from smoothed
523 death data estimates, current projections scenario) indicate a decline in the number of deaths for
524  the first six forecasts periods followed by a stable epidemic trajectory for the last seven forecasts,
525  for Mexico City and Mexico. Unlike the GLM and Richards models, the sub-epidemic model is
526  able to reproduce the observed stabilization of daily deaths observed after the first six forecast
527  periods for Mexico and the last three forecast periods for Mexico City (S5 Fig, S6 Fig, S7 Fig
528 and S8 Fig)

529

530 Comparison of cumulative mortality forecasts

531  The total number of COVID-19 deaths is an important quantity to measure the progression of an
532  epidemic. Here we present the results of the estimated cumulative death counts obtained from
533  our 30-day ahead cumulative forecasts generated using the GLM, Richards and sub-epidemic
534  growth model. We compare these results with the total mean smoothed death data estimates
535 obtained from the three IHME modeling scenarios; current projection, universal masks and
536  mandates easing. The total mean smoothed death data estimates obtained from the IHME current
537  projections scenario as of November 11, 2020 are considered as a proxy for the actual death
538  count for each date that the cumulative forecast is obtained (Figs 6 and 7) .

539
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540 Fig 6: Systematic comparison of the six models (GLM, Richards, sub-epidemic model, IHME
541  current projections (IHME C.P), IHME universal masks (IHME U.M) and IHME mandates
542  easing (IHME M.E) to predict the cumulative COVID-19 deaths for Mexico in the thirteen
543  sequential forecasts. The blue circles represent the mean deaths, and the magenta vertical line
544  indicates the 95% PI around the mean death count. The horizontal dashed line represents the
545  actual death count reported by that date in the November 11, 2020 IHME estimates files.

546

547  Fig 7: Systematic comparison of the six (GLM, Richards, sub-epidemic model, IHME current
548  projections (IHME C.P), IHME universal masks (IHME U.M) and IHME mandates easing
549 (IHME M.E) to predict the cumulative COVID-19 deaths for the Mexico City in the thirteen
550 sequential forecasts. The blue circles represent the mean deaths, and the magenta vertical line
551 indicates the 95% PI around the mean death count. The horizontal dashed line represents the
552  actual death count reported by that date in the November 11, 2020 IHME estimates files.

553

554  Mexico. The 30-day ahead cumulative forecast results for the thirteen sequentially generated
555  forecasts for Mexico utilizing GLM, Richards growth model, sub-epidemic growth model and
556  the IHME model (current projections scenario) are presented in S9 Fig, S10 Fig, S11 Fig and
557  S12 Fig. The cumulative mortality estimates comparison is given in Fig 6. For the first, second,
558 third and thirteenth generated forecasts the GLM, sub-epidemic model and the Richards model
559 tend to underestimate the true deaths counts (~50,255, ~54,857, ~58,604, 89,730 deaths
560  respectively), whereas the three IHME forecasting scenarios closely estimate the actual death
561 counts for the first, second and thirteenth forecasting periods. For the fourth, fifth and seventh

562  generated forecast the sub-epidemic model and the IHME scenarios most closely approximate
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the actual death counts (~63,078, ~67,075, ~76,054 deaths respectively). For the sixth generated

forecast the GLM model closely approximates the actual death count (~73,911 deaths) whereas

for the tenth generated forecast the sub-epidemic model closely approximates the actual deaths

(~84,471 deaths). For the eighth, ninth, eleventh and twelfth generated forecast GLM, Richards

and sub-epidemic model tend to under-predict the actual death counts with the IHME model

underestimating the actual death counts for eleventh and twelfth generated forecast and

overestimating the total death counts for the ninth generated forecast (Table 2).

Table 2: Cumulative mortality estimates obtained from the six models (GLM, Richards model,

sub-epidemic model, IHME current projections, IHME universal mask and IHME mandates

easing) for each forecasting period of the COVID-19 pandemic in Mexico (2020).

Forecast | Forecast | GLM Sub- Richards IHME IHME IHME Actual
Number | period epidemic | model current universal | mandates | deaths
Mean model Mean (95% | projections | mask easing reported
(95% PI) | Mean PI) Mean Mean Mean as of
(95% PI) (95% PI) | (95% PI) | (95% PI) | Nov 11,
2020
1 07/05- | 48,917 48,110 | 45,808 50,721 49,692 | 51,299 50,255
08/03 (43,931- | (42,939- | (38,808- (47,410- (46,500- | (47,893-
54,039 53,661) | 53,665) 55,597) 54,250) | 56,184)
2 07/12- | 49,412 52,085 | 47,358 54,438 53,615 | 55,176 54,857
08/10 (44,517- | (46,973- | (39,836- (49,269- (48,634- | (49,609-
49,412) | 57,379) | 55,808) 59,598) 58,590) | 60,621)
3 07/18- | 52,197 54,758 | 50,055 54,572 54,020 | 54,749 58,604
08/16 (47,059- | (49,600- | (42,161- (39,989- (39,989- | (39,989-
57,541) |60,070) |58,892) 62,409) 61,614) | 62,710)
4 07/26- | 56,658 62,271 | 53,742 62,902 62,194 | 63,116 63,078
08/24 (51,208- | (56,644- | (45,332- (58,094- (57,516- | (58,285-
62,320) | 68,073) | 63,144) 68,253) 67,205) | 68,542)
5 08/03- | 61,451 67,010 | 57,186 66,376 65,944 | 66,582 67,075
09/01 (55,655- | (60,988- | (48,270- (63,705- (63,308- | (63,865-
67,494) | 73,219) |67,114) 69,334) 68,853) | 69,612)
6 08/18- | 73,700 79,144 | 65,814 80,072 79,598 | 80,537 73,911
09/16 (66,996- | (72,306- | (55,834- (74,140- (73,772- | (74,479-
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80,655) | 86,048) | 76,954) 84,710) | 84,225) | 85,288)

7 08/23- | 73,901 | 75809 | 67,273 75,125 74887 | 75160 | 76,054
09/21 | (67,126- | (69,107- | (57,061- | (73,161- | (72,993- | (73,207-
80,909) | 82,699) | 78,667) 78,209) | 77,883) | 78,254)

8 08/31- | 76,535 | 77,629 | 70,218 78,525 78,653 | 79,016 | 79,683
09/30 | (69,509- | (70,688- | (59,490- | (76,644- | (76,767~ | (77,057
83,826) | 84,743) |82,174) 80,538) | 80,669) | 81,135)

9 09/08- | 79,406 | 79,491 | 72,712 84,215 84,307 | 84,937 | 82,669
10/08 | (72,084- | (72,250- | (61,556- | (80,639- | (80,682- | (81,130-
87,022) |86,959) | 85,135) 88,038) | 88,069) | 88,999)

10 09/14- | 81,546 | 84,561 | 74,504 86,249 85926 | 86,249 | 84471
10/13 | (74,030- | (76,905- | (63,026- | (84,255- | (83,982- | (84,259-
89,356) | 92,411) | 87,292) 88,722) | 88,256) | 88,694)

11 09/21- | 82,815 | 84,392 | 76,386 84,731 84,435 |84,731 | 87,39
10/21 | (75,098, | (76,640- | (64,579- | (83,126- | (82,872- | (83,135-
90,804) |92,327) | 89,556) 86,880) | 86,512) | 86,864)

12 00/28- | 84,827 |85885 | 78,448 87,491 87,265 | 87,522 | 89,730
10/27 | (76,896 | (77,943 | (66,244- | (84,095- | (83,967- | (84,115-
93,047) |94,022) | 92,090) 90,872) | 90,580 | 90,945