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Abstract: There are very few estimates of the age-specific infection fatality rate (IFR) of SARS-

CoV-2 in low- and middle-income countries. India reports the second highest number of SARS-

CoV-2 infections in the world. We estimate age-specific IFR using data from seroprevalence 

surveys in Mumbai (population 12 million) and Karnataka (population 61 million), and a random 

sample of economically distressed migrants in Bihar with mortality followup. Among men aged 

50–89,  IFR is 0.12% in Karnataka (95% C.I. 0.09%–0.15%), 0.53% in Mumbai (0.52%–0.54%), 

and 5.64% among migrants in Bihar (0–11.16%). IFR in India is approximately twice as high for 

men as for women, is heterogeneous across contexts, and rises much less at older ages than in 

comparable studies from high income countries. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 6, 2021. ; https://doi.org/10.1101/2021.01.05.21249264doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:amalani@uchicago.edu
https://doi.org/10.1101/2021.01.05.21249264
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Measurement of the infection fatality rate (IFR) for severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) has been a major objective for researchers since the beginning of 

the global pandemic (1, 2). Reliable estimates of the IFR are essential for policy decisions 

around non-pharmaceutical interventions and vaccine allocation plans (1, 3). In this paper, we 

estimate age-specific IFRs in three locations in India. 

A range of estimates for age-specific SARS-CoV-2 IFRs now exists, the majority of 

which are based on data from high-income countries (3–6). Meta-analyses that estimate age-

specific IFR in low- and middle-income countries (7, 8) rely on the assumption that crucial 

epidemiological characteristics (e.g. transmission dynamics, age-specific death rates) from high-

income countries are generalizable to low-income settings. 

Seroprevalence studies in low- and middle-income countries have given rise to several 

population-representative estimates of overall IFR (9–14). Ioannidis (15) additionally estimates 

IFR in several developing countries by combining population-representative seroprevalence 

surveys (16–18), and subpopulation-specific surveys (e.g. blood donors) (13, 19–23) with 

reported deaths. However, to date we are aware of only two studies in any LMIC that estimate 

age-specific IFRs, and these are limited to small or non-representative samples. The sample in 

Picon et al. (24) is representative for one city in Brazil; the sample in Verity et al. (25) is limited 

to repatriated international residents leaving Wuhan Province (China) in a two-day span. Thus, 

this paper is the first to provide representative age- and sex-specific IFR estimates for a large 

population (the combined population of Mumbai and Karnataka is 73 million) in a low- or 

middle-income setting. 

Early models of lower-income settings assumed that age-specific infection mortality rates 

would be higher due to worse baseline population health and under-resourced healthcare systems 

(8, 26, 27). Other researchers observed low case fatality rates (CFR) in Sub-Saharan Africa and 

proposed that vaccination, past infection history, and effective mitigation strategies might have 

reduced mortality (28–30). The age pattern of deaths in lower-income countries has skewed 

younger than in high-income countries, more so than can be explained by age distribution alone, 

but the explanation for this fact is not known (31–33). 

Estimating infection fatality rates requires accurate measurement of the number of 

infections and of deaths in the population due to COVID-19. Widely reported CFRs rely on the 

number of infections measured by positive tests undertaken largely for clinical purposes. CFRs 
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may dramatically overestimate IFRs, especially in low-income settings where testing capacity is 

limited (34) and therefore tests are reserved for symptomatic patients who are more likely to be 

infected. IFR estimates almost universally rely upon large-scale seroprevalence samples drawn 

from the larger population, matched to administrative data on deaths. There have been very few 

seroprevalence studies (listed above) that can be matched to mortality counts in lower-income 

settings and none with sufficient sample size to calculate age-specific IFRs with any granularity 

(24). But IFRs that are not age-specific are difficult to compare across contexts, because the age 

pattern of infection may vary and aggregate IFRs will be larger in places where older people 

have a larger share of infections. 

We use three data sources from India that are uniquely well-suited to calculating age-

specific IFRs. We first use population-representative seroprevalence surveys in the city of 

Mumbai (N~=7000) and in the state of Karnataka (N~=1200). By matching results from these 

surveys to age-specific administrative data on deaths at the time of seroprevalence surveillance, 

we can calculate IFR without relying on non-representative testing data. Karnataka and 

Maharashtra (the state of Mumbai) are among the states of India with higher quality 

epidemiological surveillance and death registration (35). The third data source is a survey of 

COVID-19 prevalence among randomly sampled short-term outmigrants (mostly working-age 

men) returning home to the state of Bihar, with mortality followup. Because these migrants were 

randomly sampled and tracked until recovery or death, the death rate among those who tested 

positive in this group is interpretable as an IFR. 

Our objective was to calculate age-specific IFRs in all three locations and to compare 

them to international estimates, which are based mostly on high-income countries. We further 

examined heterogeneity of mortality rates across the three sample locations, and by age. 

Methods. In Mumbai and Karnataka, we matched representative seroprevalence surveys 

to administrative reports of COVID-19 deaths. In Mumbai, seroprevalence surveys were 

conducted for two weeks in July 2020 on representative samples of three wards, one from each 

of the city’s three zones, stratified by age, gender and slum/non-slum dwellers (10). The sample 

consisted of 6,904 participants (4,202 from slums and 2,702 from non-slums), tested for IgG 

antibodies to the SARS-CoV-2 N-protein using the Abbott Diagnostics Architect™ test. After 

adjusting for test sensitivity, we calculated aggregate seroprevalence for each ward and 

multiplied by ward population to obtain a count of the number of people infected. We estimated 
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infection counts to non-sampled wards by assuming a constant rate of government under-

reporting in wards in the same zone, an approach that was supported by the finding of very 

similar case-to-seroprevalence ratios in the three wards with seroprevalence data. Age- and sex-

specific infection shares were based on the seroprevalence survey. Data on cumulative deaths 

was collected from daily reports on COVID-19 from the municipal governing body 

(Brihanmumbai Municipal Corporation, henceforth BMC). We matched seroprevalence-based 

infection counts to deaths under the assumption that the delay between infection and 

seroconversion is on average two days shorter than the delay between infection and death (36, 

37). To implement this, we calculated the IFR as the cumulative number of deaths reported as of 

two days after the end of seroprevalence testing, divided by the number of infections calculated 

as above. Sensitivity tests, described in the supplement, were run with alternate assumptions 

about timing and test sensitivity. 

In Karnataka, seroprevalence surveys were conducted from June 15 to August 29, 2020, 

in representative samples of urban and rural areas in 20 out of Karnakata’s 30 districts, stratified 

to generalize to five homogenous regions that span all districts of the state (38). 1,196 

participants were tested with the ELISA test for antibodies to the receptor binding domain (RBD) 

of the SARS-CoV-2 virus, developed by Translational Health Science and Technology Institute 

in India. We adjusted for test sensitivity and specificity and used census population counts to 

aggregate seroprevalence to state-level infection counts, reweighting to match regional age and 

gender distributions. We collected district-level death data from the Government of Karnataka 

Department of Health and Family Welfare bulletins. The infection count was matched to the 

number of deaths reported two days after the last day of seroprevalence surveillance in each 

region, as above. IFR was calculated as the number of deaths divided by the number of cases 

identified by seroprevalence surveys. Date matching is described in more detail in the 

supplement, along with sensitivity tests for results under alternate date assumptions. In 

particular, because the seroprevalence survey period in Bangalore spanned two months 

(compared with less than three weeks in the other regions), we show results excluding 

Bangalore, where deaths may have been overestimated due to the longer survey period.  

In Bihar, the state government began COVID-19 testing among returning out-of-state 

migrants soon after the first positive case was identified in a migrant on March 22. Beginning on 

May 4, Bihar began to randomly select migrants for testing. Random testing continued until July 
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21, though for a brief window (May 22–31) only migrants returning on trains from seven major 

cities were sampled for testing. We isolated the subsample of migrants who were randomly 

selected for testing, yielding 4,362 individuals with positive tests. Tests were conducted with 

TrueNat machines manufactured by MolBio Diagnostics in Goa, with positive tests confirmed by 

real-time PCR kits (39). Bihar attempted to track all migrants, obtaining positive tests until they 

eventually recovered or died. 1,530 infected individuals (35%) could not be tracked. In main 

estimates, we assumed that their fatality rates were the same as successfully tracked individuals; 

in the sensitivity analysis, we considered the possibility that all survived. High attrition is 

common in studies of migrant workers (40), with followup in this case complicated by the 

ongoing crisis. The vast majority of short-term migrants are working-age men; we limited our 

analytic sample to 3,921 randomly-sampled male migrants, 2,536 for whom outcomes are 

known. 

Representative seroprevalence surveys matched to administrative death data are the 

primary source of IFR measurement everywhere in the world  (3–7). The surveys in Mumbai and 

Karnataka thus give us credible and comparable estimates of age-specific fatality rates in those 

regions. In Bihar, because migrants were randomly sampled, there is no selection on 

symptomatic or severe cases, and mortality rates among positive cases can be interpreted as 

IFRs. We found supporting evidence that the sampling was indeed random in that the 

symptomatic rate among randomly tested migrants was similar to that among those testing 

positive in the seroprevalence surveys. As we note in the discussion, short-term migrants from 

Bihar are economically marginalized; their IFRs can be understood as representative of the 

migrant population, but not necessarily the general population. 

We calculated IFRs in 10-year age bins in all locations, as well as for individuals 

aged 10–49 and 50–89. We used two large-scale meta-analyses (3, 7) of age-specific SARS-

CoV-2 IFRs as reference groups. Both Levin et al. (3) and O’Driscoll et al. (7) draw almost 

exclusively from seroprevalence samples in high-income areas in Europe and the United States. 

The application of these seroprevalence samples to mortality in LMICs (as in O’Driscoll et al. 

(7)) requires the as-yet untested assumption that multiple epidemiological factors (e.g., 

transmission dynamics, infection attack rate) are uniform across HICs and LMICs. Levin et al. 

(3) do not report IFRs separately for men and women; we estimated gender-specific IFRs from 

Levin et al. by assuming the same relative IFR for men as was reported in O’Driscoll et al. For 
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the larger age bins, we weighted sample populations and meta-analysis age-specific IFR 

estimates by the Indian national population distribution, to ensure that differences across 

contexts were driven by differences in age-specific IFRs rather than different distributions of 

ages within each bin. 

We calculated the slope of natural log of the IFR as a function of age, by fitting a linear 

function to the most granular age-specific IFR data that could be obtained in each location. 

Additional details on the underlying samples and the methodology can be found in the 

Supplementary Materials. 

Results. We plotted age-specific IFR for each location on a log scale, to enable 

comparison at all ages in spite of the exponential increases in mortality at higher ages found in 

all countries (Figures 1a and 1b). For both men and women, there is substantial variation in IFRs 

across the three locations in India. In Karnataka, age-specific mortality rates are an order of 

magnitude lower than those reported in the meta-analyses, especially over age 70. In Mumbai, 

estimates were close to the lower of the two meta-analyses at younger ages, but then 

considerably lower in Mumbai at ages above 60. For 60–69-year-old men, for example, we 

measured an IFR of 0.17% [95% CI: 0.092, 0.240] in Karnataka and 0.62% [95% CI: 0.591, 

0.647] in Mumbai (Table 1); the meta-analyses reported male IFR of 1.02% and 1.86% in this 

age group, respectively. 

In contrast, mortality among male migrants returning to Bihar is an order of magnitude 

higher. Mortality among men aged 60–69 was extremely high but measured imprecisely due to 

the small sample of older men (4.0% [95% CI: 0, 9.4%]). The larger age bins allowed a more 

precise measure of IFR in Bihar (Table 2). In both the 10–49 and 50–89 age bins, mortality in 

Bihar was an order of magnitude higher than the other Indian locations and both meta-analyses, 

after weighting to the Indian age distribution to ensure age-specific comparability. For the 50–89 

age group, the estimates were not precise enough to rule out equality between Bihar and the 

other groups. For the 10–49 age group, we can rule out equality (p < 0.01). 

To the extent that an IFR advantage exists in India, it was found among the old more than 

among the young. In all three regions, the overall increase in IFR with age was considerably less 

steep than in the reference meta-analyses (Figure 1), particularly at older ages. The meta-

analyses suggest that an 80-year-old has about 100x the IFR of a 40-year-old; in Mumbai, the 

increase in risk factor is 40x and in Bihar it is only 10x. Specifically, male IFR increased on 
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average by 4.7%, 9.7%, and 10.3% with each year of age in Bihar, Mumbai, and Karnataka 

respectively. We calculated comparable figures in the meta-analyses as 11.4% (7) and 12.3% (3). 

The differences between the Indian and the reference groups were similar among women.  

The main estimates are replicated in the supplementary materials under a range of 

different scenarios and assumptions; the ordering of IFRs across regions and with respect to the 

reference groups is highly robust (Figures 2a-d). 

Discussion. Our results suggest that there is substantial heterogeneity in age-specific IFR 

from COVID-19 in India. In Mumbai and Karnataka, IFRs were lower than those measured in 

richer countries, particularly at the ages where most deaths occur. In Bihar, IFR estimates were 

an order of magnitude higher than the other two locations and the international reference groups. 

Migrants to Bihar may have had higher IFRs because they were among the most 

socioeconomically distressed people in the country. Short-term migrants were on average very 

poor even before the pandemic, often working in cities in marginal conditions without security of 

tenure (40). The sudden lockdown left them out of work, short of wages, and desperate to return 

home (41). They may even have worse outcomes than slum residents on average (42) because 

they self-selected to leave slums. With transportation options shut down, the return journey was 

arduous for many (43). Migrant workers have worse health than the general population at 

baseline (44); the circumstances at the beginning of the pandemic may have made this group 

exceptionally vulnerable to adverse health events following viral infection. 

Our study also revealed a weaker increase in IFR over age than seen in other countries. It 

has already been noted that the pattern of mortality in low- and middle-income countries skews 

younger than would be predicted from age distribution (33, 45, 46). Our study suggests that a 

flatter age profile in mortality could be a major factor driving this difference. 

Like all population estimates connected to COVID-19, our estimates are only as good as 

the underlying data. The largest potential source of bias in this study was the use of official 

reports of COVID-19 deaths, which are likely to undercount the true number of deaths (35, 47). 

Misreporting of deaths would have to be substantial, however, to change our conclusions. 

Focusing on the 50+ age group, in Mumbai, a doubling of COVID-19 deaths would be required 

to put the IFR in the range of the meta-analyses. It is at least plausible that deaths in Mumbai 

were undercounted by a factor of 2; from March to July, Mumbai recorded 6,600 excess deaths 

in addition to the 6,400 COVID-19 deaths used for the estimation in this study (48). In 
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Karnataka, COVID-19 deaths would have to be under-reported by a factor of 5 to bring IFR in 

line with the international estimates. We cannot rule out this kind of death misreporting; 

however, we calculated IFR using a standard methodology used in many cross-national settings, 

many of which are also characterized by under-reporting of COVID-19 deaths. Finally, official 

misreporting of COVID-19 deaths would not bias our IFR estimates in Bihar, due to the 

mortality followup methodology underlying these estimates. For our Bihar estimates to match 

the range of meta-analyses, deaths would need to have been overcounted by a factor of 2 for ages 

50–89 and a factor 10 for ages 10–49. 

It is also possible that our estimates could overestimate IFR. Antibodies fade over time, 

so seroprevalence tests provide an upper bound on the cumulative infection rate (49, 50). If the 

number of infected patients carrying few antibodies at the time of testing is high, then 

seroprevalence-based IFR estimates will be biased upward.  

In Bihar, we cannot rule out that the government did not adhere to its stated random 

sampling protocol, and may have sampled individuals who were more likely to fall seriously ill 

and die. However, we found the same symptomatic rate in positive patients in Bihar as was 

found in the random seroprevalence test samples, suggesting sampling in Bihar was indeed 

random. Finally, we do not know the base rate of migrant death in the absence of COVID-19, 

given the hardships faced by returning migrants. If migrant deaths would be high regardless of 

COVID-19, we may overstate the mortality attributable to COVID-19 in this group. 

At the time of writing, these estimates are the best available in a lower-income setting. 

Improved epidemiological surveillance and accounting of SARS-CoV-2 are critical investments 

that would improve our ability to understand the fatality risk of the virus in lower-income 

settings. 
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Materials and Methods

Bihar

Data We made use of data on all positive cases in the state of Bihar found during random testing

of incoming migrants during an early phase of the pandemic. The data was provided by the Health

Department of the Government of Bihar. The data contained a sample of 4,954 active infections

and their outcomes, reported between March 22 (the date on which the first positive case in Bihar

was detected) and July 21, 2020. The vast majority of the sample (over 99%) consisted of migrants

travelling from within India into Bihar, most on designated trains. Migrants were more likely to

be sampled if they presented symptoms between March 22 and May 3. State policy beginning

May 4 during the sample collection period mandated that travellers from within or outside India

(mainly migrant workers returning home due to travel restrictions) be randomly sampled and tested

for COVID-19 infection from March 20 to May 22, and after May 31. Between May 22–31, only

migrants from seven high-infection cities (National Capital Region, Mumbai, Ahmedabad, Pune,

Surat, Kolkata, and Bangalore) in India were randomly sampled. We isolated the subsample of

migrants who were randomly selected for testing, yielding 4,362 cases.

During the sample period, migrants were tested with TrueNat machines manufactured by MolBio

Diagnostics in Goa (India), and positive tests were confirmed with real-time reverse polymerase chain

reaction (RT-PCR) kits (53). Importantly, all infected migrants were tracked by the monitoring

team, to determine whether they eventually recovered or died. Among randomly sampled male

migrants, 1,385 infected individuals (35.3%), whom we call “lost”, could not be tracked and thus

their final outcome is uncertain. The high level of attrition is common in studies of migrant workers,

whose frequent movement complicates administrative registration and tracking, particularly during

a crisis (40). We considered several approaches to adjusting for attrition, described below. The

migrant sample, reflecting typical labor migration patterns in India, was overwhelmingly male (90%).

Thus we limited our final analytical sample to 3,921 randomly sampled male migrants, for 2,536

of whom outcomes (recovery or death) are known.

Estimating infection fatality rate
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Because everyone in the sample had tested positive for SARS-CoV-2, IFRs were estimated as

the share of deaths among non-lost individuals in each age group. To account for potential biases

due to attrition and delays between infection and recovery/death/reporting, we estimated IFRs

using three separate methods, and report estimates from all three.

In age group a, denote the number of lost cases as na,lost, the number of recovered cases as

na,recovered, and the number of cases ending in death as na,died.

Method 1 (main estimation): In our main estimation, we assumed that lost cases had the same

IFR as successfully tracked cases, within each age group. This assumption was implemented by

excluding lost individuals from the IFR calculation. Method 1 provided a midline IFR estimate:

IFR1a=
na,died

na,died+na,recovered

Method 2:In this estimation, we assumed that all lost cases eventually recovered. Thus Method

2 provided a lower bound IFR estimate:

IFR2a=
na,died

na,died+na,recovered+na,lost

Method 3: The share of cases with successful followup declined in late July as the volume of

migrants increased. To account for potential right-censoring of reported outcome rate due to delays

between report of initial infection and report of recovery/death, in the third method, we dropped

all cases reported within two weeks of the last report date (July 21st):

IFR3a=(
(na,died)

na,died+na,recovered+na,lost
| infection reported on or before July 7)

Standard errors were estimated with the normal approximation for a proportion from multiple

draws from a binomial distribution.

Mumbai Data

Data on seroprevalence were obtained from a representative, stratified, random sample of slum
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and non-slum populations in three of twenty-four wards of Mumbai (see Malani et al. (10) for full

survey design). Sample collection lasted two weeks and ended on July 14th in slums and July 19th

in non-slums. The three wards were selected to represent the city’s three broad zones (city, eastern

suburbs, western suburbs); choice of sampled ward within each zone was by convenience. The sample

consists of 6,904 participants (4,202 from slums and 2,702 from non-slums), who were tested for IgG

antibodies to the SARS-CoV-2 N-protein using the Abbott Diagnostics ArchitectTM N-protein based

test. The samples were stratified by four age groups, gender, ward, and slum/non-slum residence.

Data on reported infections and deaths by ward and age distribution of deaths were provided

in reports released by the municipal governing body (Brihanmumbai Municipal Corporation, here-

after BMC). Data on ward population in slums and non-slums came from the 2011 Population

Census. Data on shares of population by age and gender in each ward-slum came from the 2012

Socio-Economic and Caste Census.

Estimating IFR

Estimating number of infections. The seroprevalence survey reported seropositivity in four age

groups (12–24, 25–39, 40–60, 61+), called “coarse bins”. To generate infection counts that could

be compared with city death statistics (which are reported in 10-year age bins), seropositivity by

10-year age bin was interpolated by fitting a non-linear function over seropositivity in the coarse

bins. For the main estimation, we interpolated seropositivity in 10-year bins, using the inverse

distance-weighted mean of non-missing values (using the Stata package mipolate), weighting with

the squared inverse of distance. In each coarse bin, the median age of residents in Mumbai City was

used as the non-missing value for age. Figure S1 shows the observed and interpolated values. As a

sensitivity analysis, we report IFR estimates using a piecewise cubic Hermite (“pchip”) interpolation

for seropositivity (see Figure S2 for visual). Interpolation predicted seroprevalence for the midoint of

each 10-year age bin, separately by gender, ward, and slum status.

The estimated sensitivity of the chemiluminiscence immunoassay ranges from 90% (95% CI:

74.4%–96.5%) (56) to 96.9% (95% CI: 89.5%–99.5%) (52) while specificity in those studies was 100%

(95% CI: 95.4%–100%) and 99.90%, respectively. We estimated seroprevalence from seropositivity
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using the Rogan-Gladen correction ((54) to account for imperfect accuracy of tests. In the main

results, we used the midpoint of mean sensitivity estimates (93.45%) and the midpoint of corre-

sponding specificities (99.5%). As a sensitivity analysis, we replicated results with an upper bound

for seroprevalence based on the Abbott test’s lower bound of sensitivity (90.0%) and upper bound

of specificity (100%) (52) (Figure S7).

Denote the estimated number of infections in age bin a, gender g in sampled ward s as:

înfags=SPags×popags

where SPag,s is the estimated seroprevalence rate, and popag,s is population.

Estimating the number of infections in non-sampled wards.

BMC death data reported the ward of death, but not the ward of residence. Discussion with

government officials and review of the data indicated that the ward of death was not a reliable

indicator of ward of residence. This implied that calculating IFR by dividing the number of ward-level

deaths by the number of ward-level infections would overestimate deaths in wards with large hospitals

and underestimate them elsewhere. Instead, we used the seroprevalence surveys to generate estimates

of city-wide infection counts.

To estimate true number of infections in non-sampled wards, we drew on administrative ward-level

infection counts (which were universally available from city reports), and assumed that they were pro-

portional to actual infections at similar rates in different wards of the city. Effectively, this amounts to

assuming that the BMC underestimated the true population infection count at the same rate in sam-

pled and non-sampled wards within the same zone. This assumption is supported by Table S1, which

shows that in the three wards where we obtained seroprevalence data, case multipliers were very similar.

Thus, in each zone z, we calculated a case multiplier based on sampled ward s:

γz=

∑
a

∑
gînfag,s

BMC-reported casess
The multiplier indicates the under-reporting rate in each zone z. The numerator of the expression

is calculated from the seroprevalence surveys as above, and the denominator is taken from the BMC

reports. BMC-reported cases were measured as of July 19, the last day of seroprevalence sample
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collection. We then multiplied the BMC’s reported number of positive cases in non-sampled ward

n in zone z by γz. That is,

înfn,z=γz×BMC-reported casesn

The benefit of this approach is that it allows pandemic intensity to vary across wards, a realistic

assumption given significant ward-level variation in reported cases per capita and in the number

of containment zones.

This approach also implicitly assumes that the BMC under-reports cases in slums and non-slums

at the same rate, i.e. a ward’s case multiplier does not depend on share of population living in slums.

This assumption is also supported by the consistent multipliers reported in Supplement Table S1,

across three wards with different slum shares.

Estimating the number of infections in each age-gender group in non-sampled wards. We did

not observe the age and gender distribution of infections outside of the sampled wards, so it was

necessary to assume that non-sampled wards had the same age and gender distribution of infections

of sample wards. This was supported by similar age and gender distributions of infections in the three

wards with seroprevalence surveys. Figure S3 shows the calculated age and gender distribution of

infections; note that the distribution of infections measured with seroprevalence skews younger than

the number of reported positive cases, which we presume omits many infected but asymptomatic

young people. This approach would cause error if the age distribution varied substantially across

wards, but it is overall quite similar; even the median age gap between slums and non-slums was less

than one year.

The number of infections in non-sampled ward s for gender g in age a was thus calculated as:

înfag,n=

∑
sαag,s∑

s

∑
a

∑
gαag,s

×înfn,

where αag,s is the age-gender group’s share of total cases in sampled ward s.

Estimating the number of deaths.

To map seroprevalence numbers to death numbers, the time between infection and death and the
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time between infection and seroprevalence are needed. The literature suggests a distribution of delay

between symptom onset and death (36) that is wider than that between onset and seroconversion

(37) Linton et al. estimated a median time delay of 13 days (17 days with right truncation) between

illness onset to death. Stringhini et al. estimated a mean delay of 11.2 days between symptom onset

and seroconversion. Based on these estimates, we assumed that the delay between infection and death

is on average two days longer than the delay between infection and seroconversion. In the main results,

the number of deaths was therefore measured as the cumulative deaths reported in each Mumbai ward

as of July 21. This is likely to slightly overstate the IFR, since some deaths may have been associated

with individuals who contracted the virus after testing negative in the seroprevalence surveys.

However, this upward bias is partially balanced out by the fact that the time between seroconversion

and death is not uniform and is likely to be longer than 2 days for a non-trivial share of cases.

Rather than model non-uniform delays between infection and death, we bounded our IFR estimates

from above by choosing more conservative death dates. In sensitivity analyses reported below (Figure

S6), we replicated IFR estimates using deaths from one week (July 28) and two weeks (August

4) after the end of seroprevalence surveying, both of which plausibly overestimated the number of

deaths related to the seroprevalence surveys, given the context of steadily increasing case counts

in Mumbai from June to August.

The assumption that deaths measured 1 and 2 weeks later will lead to upward biased IFRs is

further strengthened by recent evidence from roughly 125,000 cases in two other Indian states, which

found that delays between case report and death were significantly shorter than delays found in

China (45) and the United States (57).

We used the age distribution of deaths as reported by the BMC up to the date used for measuring

deaths, and the gender distribution (65% male, 35% female) up to August 3 (51) (the gender

distribution of deaths was not included in earlier reports). This yields the estimated number of

city-wide deaths by age-gender group, dag.

Estimating city-wide IFR by age in Mumbai. Denote the final city-wide IFR in Mumbai, in age

bin a for gender g, as IFRag:
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IFRag=
dag∑

nsînfag,ns+
∑

sînfag,s

Standard errors of IFRs were calculated reflecting propagation of the design-based standard errors

of the age- and gender-specific seroprevalence estimates with a normal approximation.

Karnataka

Data

Data on seroprevalence were obtained from the Karnataka Seroprevalence Survey (hereafter KSS)

a state-wide representative sample of urban and rural areas in 20 out of 30 districts in Karnataka,

representing 5 broader regions (see Mohanan et al. (38) for a detailed survey description). The

sample was collected from June 15 to August 29, 2020. Collection times within individual regions

were significantly shorter. The study sample was drawn from an existing representative sample

of a panel survey—the Consumer Pyramids Household Survey (CPHS)—collected by the Center

for Monitoring Indian Economy (CMIE). Our analytical subsample consists of 1,196 tests for IgG

antibodies to the receptor binding domain (RBD) of the SARS-CoV-2 virus using an ELISA test

developed by Translational Health Science and Technology Institute, India. The sample was not

stratified by age and gender, an issue addressed below.

Data on confirmed COVID-19 deaths by district were drawn from Government of Karnataka

Department of Health and Family Welfare bulletins, which are released several times per week.

Data on the age distribution of total COVID-19 deaths were given by public reports from the state

COVID-19 task force. Data on the gender distribution of deaths by age group were obtained from an

individual-level dataset of confirmed COVID-19 deaths which was updated through July. The case-

level death data were parsed from covid19india.org. Age- and gender-disaggregated population

for districts and regions was drawn from the 2012 Socio-Economic and Caste Census (SECC).

Estimating IFR

Estimating the number of infections. The KSS dataset was designed to be representative of 5

broader regions in Karnataka. We therefore can take the ELISA positive test rate as an unbiased

measure of the region-level positivity rate. We pooled the data across regions to obtain a statewide
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test positivity rate in each age and gender group, weighting by region population in each age/gender

group.

We then corrected for the sensitivity (84.7%) and specificity (100%) of the ELISA imunoassay (55)

using the Rogan-Gladen correction (54). This yielded the estimated seroprevalence by age-gender

group SPag, which is multiplied by population popag in each age/gender bin to generate an estimated

number of infections înfag, as was done in Mumbai.

Estimating the number of deaths. The seroprevalence samples were collected at different times

in different regions, with the survey period spanning roughly two months (Table S2). To estimate an

IFR, we need to match the timing of deaths to the timing of seroprevalence surveying in each region.

Choice of dates for measuring deaths. As in Mumbai, we worked from an assumption that the

average time difference between seroconversion and death was two days, while testing sensitivity

to alternate assumptions (Figure S8). We therefore matched the estimated number of infections

calculated in each region to the number of deaths recorded in administrative data two days after the

last date of seroprevalence surveying. As in Mumbai, if the two-day delay between seroconversion

and death was uniform, this approach would overestimate the IFR, because it counts the deaths of

some people who may have been infected after recording negative seroprevalence tests.

In all regions except Bangalore, seroprevalence surveying was conducted over a three week period

or less, making it straightforward to match test data to death data. In Bangalore, surveying was

begun in mid-June but was interrupted by a lockdown. Survey teams returned to finish sampling in

the last week of August. Matching Bangalore deaths to the last date of seroprevalence surveying is

therefore likely to overestimate the IFR, because a number of those deaths may have been associated

with individuals contracting SARS-CoV-2 after testing negative. It was not possible to disaggregate

the early and late surveys because death reporting was at the district level, and the early and late

survey groups were not representative in and of themselves. To adjust for increased uncertainty

regarding the number of infections in Bangalore, we therefore report a sensitivity analysis for all

of Karnataka excluding Bangalore (Figure S9).

On some days, official deaths were not reported; in those cases, we used deaths from the following
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day.1

Estimating the number of deaths in each demographic group:

The Karnataka state government released total death counts on a daily basis, but only intermit-

tently published the age distribution of state-wide deaths. To attribute daily deaths to age and

gender groups, we used the age distribution of deaths from the nearest date that was available. The

largest period between the date used for deaths and the date used for age-shares was 13 days.

Government reports provided age shares of deaths in 10-year bins in the form (e.g.) 51-60, while

the seroprevalence surveys provided age bins in the form (e.g.) 50-59. To harmonize the age groups,

we use the medians of the provided bins (e.g. median of 51-60 is 55.5) to interpolate death data

to match the age bins in the seroprevalence data, using an inverse distance weighted average method

via the mipolate Stata package. Because the target age bins were very close to the available age

bins, the risk of error here is small. The fit of the interpolation is displayed in Figure S4). As a

sensitivity test, we replicated IFRs using piecewise cubic Hermite interpolation (see Figure S5 for

the interpolation and Figure S10 for IFR estimates under the cubic interpolation. For more details,

see the discussion on interpolation in Mumbai.

In the absence of death data disaggregated by age and gender on most dates, we assumed that,

within age group, the gender distribution of deaths was uniform across regions and equal to the

state-wide gender distribution of deaths reported between April and July. This assumption is

supported by the finding that IFRs among men were approximately double those among women,

consistent with reports from other countries.

Standard errors of IFRs reflect propagation of design-based standard errors of the age- and

gender-specific seroprevalence estimates with a normal approximation.

1In Belgaum, the target date was July 27th; we used July 28. In the sensitivity test, we used August 11 instead
of August 10, which was unavailable.
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Figure S1
Mumbai:

Interpolation of ward-slum seropositivity using inverse distance weighted average
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Graphs by Slum (0/1) and Mumbai ward

Seropositivity data was provided in four coarse age bins 12-24, 25-39, 40-60, 61+. The figure shows the result of

interpolating seropositivity in 10-year age groups from coarse groups using an inverse distance weighted average of

known values. All values were interpolated using the median of the age group. Solid markers indicate seropositivity in

coarse bins, and hollow markers indicate the interpolated values, to match the age groups in the BMC’s deaths data.
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Figure S2
Mumbai:

Interpolation of ward-slum seropositivity using piecewise cubic Hermite function
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The figure is the same as Fig. S1; the sole difference is that it fits a piecewise cubic Hermite function for

interpolation.
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Figure S3
Age-gender cohorts’

share of positive cases from sampled wards in Mumbai seroprevalence survey
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“Total positive cases” refers to the estimated number of total infections in Mumbai, multiplying age- and gender-

specific seroprevalence rate by group population, summed across age-gender groups and wards. The age- and

gender-share of total cases refers to estimated number of infections in age-gender group ag, divided by estimated total

infections. Age bins are 0-19, 20-29, ...60-69, and 70+.
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Figure S4
KA: Interpolation of agebin share of deaths using inverse distance weighted average
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Data on age-shares of state-wide deaths were provided by the Karnataka Government in age groups of the form

0–10, 11–20, 21–30, etc. The figure shows the result of interpolating age-share of deaths in age groups of the form 0–9,

10–19, 20–29, etc, to match age groups of the seroprevalence data. The interpolated values were estimated using an

inverse distance weighted average of the given values. Because we use the age-shares of deaths closest to the date of

measured seroprevalence in each region, two dates near the beginning and end of sample collection are provided. Solid

markers indicate given values, while hollow markers indicate interpolated values.
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Figure S5
KA: Interpolation of agebin share of deaths using piecewise cubic Hermite function
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The figure is the same as Fig. S4; the sole difference is that it fits a piecewise cubic Hermite function for

interpolation.
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Figure S6
Mumbai: sensitivity analysis using number

of COVID deaths from 1 and 2 weeks after date of deaths in main estimation
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“Date of death” refers to the day on which we measured cumulative deaths as reported by the city government

(BMC). The main date specification measured deaths two days after the end of seroprevalence sample collection.

Graphs by gender with 95% confidence intervals. Standard errors reflect propagation of error from design-based

uncertainty of seroprevalence estimates. IFRs are calculated in age bins 0-19, 20-29, ... 60-69, and 70+.
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Figure S7
Mumbai: sensitivity analysis,

using alternative estimate of seroprevalence and different interpolation method
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“Main seroprevalence estimates” use midpoint sensitivity estimate of the Abbott antibody test to calculate

seroprevalence from seropositivity in sampled wards, then interpolates seroprevalence to finer age bins with inverse

distance weighting (IDW). “High seroprevalence estimates” use minimum sensitivity of the Abbott test to calculate

seroprevalence from seropositivity and IDW interpolation. The final sensitivity analysis uses midpoint sensitivity, but

piecewise cubic Hermite interpolation to estimate seroprevalence in finer bins. Graphs by gender with 95% confidence

intervals. Standard errors reflect propagation of error from design-based uncertainty of seroprevalence estimates. IFRs

are calculated in age bins 0-19, 20-29, ... 60-69, and 70+.
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Figure S8
Karnataka: sensitivity analysis using number

of COVID deaths from 1 and 2 weeks after date of deaths in main estimation
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“Date of death” refers to the date on which we measured cumulative COVID-19 deaths. Main date of specification

was determined separately for each sampled region: two days after the median date of sample collection if sampling

duration exceeded 21 days, and two days after the last date of collection otherwise. Graphs by gender with 95%

confidence intervals. Standard errors reflect propagation of error from design-based uncertainty of seroprevalence

estimates. IFRs are calculated in age bins 0-9, ... 60-69, and 70+.
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Figure S9
Karnataka: sensitivity analysis isolating Bangalore from other sampled regions
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IFRs in main specification are calculated by pooling seroprevalence and death estimates from all five sampled

regions of Karnataka. IFRs excluding Bangalore pool from the four remaining regions. Graphs by gender with 95%

confidence intervals. Standard errors reflect propagation of error from design-based uncertainty of seroprevalence

estimates. Confidence intervals are not reported for Bangalore due to small sample size, and age-specific estimated

IFRs in Bangalore should not be interpreted as conclusive. IFRs are calculated in age bins 0-9, ... 60-69, and 70+.
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Figure S10
Karnataka: sensitivity analysis

using piecewise cubic Hermite interpolation to estimate age bin share of deaths
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Government reports provide age-shares of deaths in age bins of the form 11-20, 21-30, etc. To match seroprevalence

estimates, we interpolate age-shares of deaths in the form 10-19, 20-29, etc. Main specification uses the inverse distance

weighted average (IDW) to interpolate age shares. sensitivity analysis uses piecewise cubic Hermite interpolation.

Interpolation was done with Stata package mipolate. Graphs by gender with 95% confidence intervals. Standard

errors reflect propagation of error from design-based uncertainty of seroprevalence estimates. Confidence intervals are

not reported for Bangalore due to small sample size, and age-specific estimated IFRs in Bangalore should not be

interpreted as conclusive. IFRs are calculated in age bins 0-9, ... 60-69, and 70+.
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1 Supplementary Tables

Table S1
Zone-wise case

multipliers for main and higher seroprevalence estimates based on sampled wards

No. infections γz

Ward Zone BMC report main SP high SP main SP high SP

(1) (2) (3) (4) (5) (6) (7)

F North City 4,017 190,652 211,835 47.46 52.73

M West Eastern 2,965 139,791 155,322 47.15 52.39

R North Western 2,421 145,413 161,569 60.06 66.74

“Number of infections, main SP” refers to the estimated seroprevalence ( using the midpoint estimated sensitivity of

the antibody test) multiplied by population in each sampled ward. “Number of infections, high SP” uses lowest

bound sensitivity of the antibody test. Case multiplier “γz, main SP” (Column 6) was calculated by dividing Column

4 by Column 3. “γz, high SP” (Column 7) was calculated by dividing Column 5 by Column 3. Main SP indicates

seroprevalence estimated from midpoint of two published estimates of sensitivity of the antibody test. High SP

indicates seroprevalence was estimated using the minimum sensitivity and maximum specificity of the antibody test,

generating a upper-bound estimate.

Table S2
Karnataka: duration of sample collection by region

Region Duration of sample collection (days) Dates of sample collection

Bangalore 73 June 17 – August 29

Mysore 18 August 3 – August 21

Kannada 16 August 6 – August 21

Belgaum 17 July 8 – July 25

Gulbarga 10 July 21 – July 31
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