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CONTRIBUTION TO THE LITERATURE 
 
What is already known on this topic 

 Prediction models have the potential to support decision making about hospital 
admission of patients presenting to the emergency department with suspected 
COVID-19  

 Most currently available models that were independently assessed contain a high risk 
of bias 

 Promising models were developed in different patient selections and included 
predictors that are not quickly and objective obtainable in emergency departments 

 
What this study adds 

 A simple and objective tool (“COPE”) is well able to predict mortality and need for 
ICU admission for patients who present to the ED with suspected COVID-19 

 COPE may support ED physicians to identify high-risk patients – i.e. those at high risk 
of deterioration and/or death – requiring treatment in the ICU, intermediate-risk 
patients requiring admission to the clinical ward, and low-risk patients who can 
potentially be sent home 
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ABSTRACT 

Background and aim: COVID-19 is putting extraordinary pressure on emergency departments 

(EDs). To support decision making in the ED, we aimed to develop a simple and valid model 

for predicting mortality and need for intensive care unit (ICU) admission in suspected COVID-

19 patients. 

Methods: For model development, we retrospectively collected data of patients who were 

admitted to 4 large Dutch hospitals with suspected COVID-19 between March and August 

2020 (first wave of the pandemic). Based on prior literature we considered quickly and 

objectively obtainable patient characteristics, vital parameters and blood test values as 

predictors. Logistic regression analyses with post-hoc uniform shrinkage was used to obtain 

predicted probabilities of in-hospital death and of the need for ICU admission, both within 28 

days after hospital admission. We assessed model performance (Area Under the ROC curve 

(AUC); calibration plots) with temporal validation in patients who presented between 

September and December 2020 (second wave). We used multiple imputation to account for 

missing values.  

Results: The development data included 5,831 patients, of whom 629 (10.8%) died and 5,070 

(86.9%) were discharged within 28 days after admission. ICU admission was fully recorded for 

2,633 first wave patients in 2 hospitals, with 214 (8%) ICU admissions within 28 days. A simple 

model – COVID Outcome Prediction in the Emergency Department (COPE) – with age, 

respiratory rate, C-reactive protein, lactic dehydrogenase, albumin and urea captured most of 

the ability to predict death. COPE was well-calibrated and showed good discrimination in 

3,252 second wave patients (AUC in 4 hospitals: 0.82 [0.78; 0.86]; 0.82 [0.74; 0.90]; 0.79 [0.70; 

0.88]; 0.83 [0.79; 0.86]). COPE was also able to identify patients at high risk of needing IC in 

706 second wave patients with complete information on ICU admission (AUC: 0.84 [0.78; 

0.90]; 0.81 [0.66; 0.95]). The models are implemented in web-based and mobile applications. 

Conclusion: COPE is a simple tool that is well able to predict mortality and need for ICU 

admission for patients who present to the ED with suspected COVID-19 and may help 

patients and doctors in decision making.   
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BACKGROUND 

The COVID-19 pandemic is putting extraordinary pressure on emergency departments (EDs), 

clinical wards and intensive care units (ICUs). Clinical prediction models for COVID-19 

outcomes have the potential to support decision making about hospital admission. But most 

currently available models that were assessed with the prediction model risk of bias 

assessment tool (PROBAST) contain a high risk of bias (1-3). The most common reasons were 

non-representative selection of control patients, exclusion of patients in whom the event of 

interest was not observed by the end of the study, high risk of model overfitting, and vague 

reporting. Additionally, the description of the study population or intended use of the 

models was often missing, and calibration of the model predictions was rarely assessed.  

The recently proposed 4C Mortality Score is probably at low risk of bias, but was 

derived from a selected population of patients admitted to UK hospitals who were seriously 

ill (mortality rate of 32.2%). Predictors included  the number of comorbidities and the 

Glasgow Coma Scale, items that are not easily and unambiguously obtained for patients with 

suspected COVID-19 at EDs everywhere (4, 5). Similarly, the promising risk scores VACO and 

COVID-GRAM – predicting 30-day mortality in positively tested patients and critical illness in 

hospitalized patients, respectively – require knowledge on pre-existing comorbidities (6, 7). 

The COVID-GRAM model also requires chest radiography results.  

We aimed to develop and validate a simple and valid model for predicting mortality 

and the need for ICU in all patients who are suspected to have COVID-19 when presenting at 

the ED. To facilitate implementation in clinical practice, we only included quickly and 

objectively obtainable patient characteristics, vital parameters and blood test values. 

 

 

METHODS 

Population 

19 large Dutch hospitals were requested to supply retrospective data on the cohorts of 

COVID-19 patients who were admitted to their hospital. Of those hospitals, Catharina 

Hospital Eindhoven, Zuyderland Medical Center Heerlen, Isala Clinics Zwolle, Erasmus 

University Medical Center Rotterdam and Antonius Hospital Sneek supplied these data. The 

data from Antonius Hospital Sneek were not used in the analyses, because of large 

proportions of missing predictor values.  
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For model development, we used the data of patients who presented at the ED and 

were admitted to the hospital with suspected COVID-19 in the first wave of the pandemic, 

that is from March up to and including August 2020. Patients being transferred to other 

hospitals were excluded since information on outcomes was missing. For model validation 

we used data of patients who presented at the ED and were admitted to the hospital with 

suspected COVID-19 in the second wave of the pandemic, that is from September up to and 

including December 2020. We used Multivariate Imputation by Chained Equations (R-

packages mice) for multiple imputation of missing predictor values (8, 9).  

 

Outcomes 

The outcomes of interest were in-hospital death and admission to ICU within 28 days after 

hospital admission. Transfer to a hospice was counted as death. 

 

Predictors 

Based on prior literature we included patient characteristics (sex, age, BMI), vital parameters 

(oxygen saturation, systolic blood pressure, heart rate, respiratory rate [RR], body 

temperature) and blood test values (C-reactive protein [CRP], lactic dehydrogenase [LDH], D-

Dimer, leucocytes, lymphocytes, monocytes, neutrophils, eosinophils, MCV, albumin, 

bicarbonate, sodium, creatinine, , urea), all measured at ED admission, as potential 

predictors (1). Furthermore, we included the month of admission to capture potential 

changes in outcomes over time.  

 

Model development 

Logistic regression was used to analyze associations between predictors and outcomes. We 

decided on including non-linear transformations of potential predictors on the basis of a full 

model with a restricted cubic spline  (3 knots; 2 regression coefficients) for each continuous 

predictor (10, 11). Based on Wald statistics, we selected the most promising predictors into a 

parsimonious model for easy use in clinical practice. To prevent overfitting, we used 

bootstrap validation – including the same variable selection strategy to mimic our modeling 

strategy – to estimate a uniform shrinkage factor (11). The regression coefficients of the final 

model were multiplied by this shrinkage factor, and the model intercept was adjusted to 
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ensure overall calibration of the model. We used the R-package rms (Regression Modeling 

Strategies) for regression analyses (8, 12). 

 

Model validation 

Model performance was assessed with temporal validation in second wave patients, in each 

of the 4 separate hospitals. We assessed discriminative ability with the area under the 

operator receiver characteristic curve (AUC) and calibration with calibration plots of five 

equally sized groups of predicted risk, calibration intercepts, and calibration slopes. The 

model-based concordance (mbc) was used to understand the impact of potential differences 

in case-mix heterogeneity between the development and validation data on discriminative 

ability (13). 

 

Patient and Public Involvement 

Patients were not directly involved in the design of this study. The outcome of interest and 

the potential predictors were selected up front by a group of hospital physicians caring for 

COVID-19 patients (ED, internal medicine, pulmonary medicine, ICU). Since we 

retrospectively collected data, patients were not burdened by our study. In future research,  

we will convene  multi-stakeholder panels of approximately 12 members including COVID-19 

patients, relatives, hospitals physicians caring for COVID-19 patients, palliative care 

physicians, and ethicists, with the aim to develop a full understanding of how the models 

may best support patients and clinicians in making critical patient-centered decisions.  

 

 

RESULTS  

Population and outcomes 

The database contained 5,912 patients who presented at the ED from March up to and 

including August 2020 and who were admitted to the hospital with a suspicion of COVID-19. 

Of those patients 81 (1.4%) were excluded because of a transfer to other hospitals (outcome 

not recorded). The development data included 5,831 patients of whom 629 (10.8%) died, 

5,070 (86.9%) were discharged within 28 days after hospital admission, and 132 (2.3%) were 

still in hospital at 28 days after admission. Patients who died – in comparison with patients 

who were discharged – tended to be more often male, at older age, with aberrant vital 
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parameters (higher RR and HR; lower oxygen saturation), higher blood levels of CRP, LDH, 

creatinine and urea and lower blood levels of lymphocytes and albumin (Table 1).  

Similar patterns were seen in 3.252 patients who were admitted to hospital in the 

second wave of the pandemic from September up to and including December 2020, of 

whom 326 (10.0%) died, 2,854 (87.8%) were discharged within 28 days after admission, and 

72 (2.2%) were still in hospital at 28 days after admission. Admission to ICU was fully 

recorded  – including ICU admissions at a later time point than the initial hospital admission 

– for 2,633 patients in 2 hospitals (214 ICU admissions within 28 days [8.1%]) in the first 

wave and in 1,466 patients (86 ICU admissions within 28 days [5.9%]) in the second wave of 

the pandemic.  

 

Prediction of death 

Patients who were admitted in the first month of the pandemic in the Netherlands, that is in 

March 2020, were at substantially increased risk of death (Table 2: multivariable odds ratio 

1.99; 95% confidence interval 1.61-2.47). All models included this correction factor for the 

first month, to avoid overestimation of risk after the first month of the pandemic. 

Consequently, to avoid overestimation of the discriminative ability, we limited validation of 

models in the development data to patients who were admitted from April 2020 onward.  

D-dimer was not analyzed in the regression analysis, because 64% and 76% were 

missing in the development and validation data, respectively (Table 1). Based on a full model 

with restricted cubic splines of all potential variables, we decided to transform all 

biomarkers and RR with the natural logarithm, while keeping all other predictor effects 

linear. Some strong univariable associations with death – for example of lymphocytes and 

creatinine (Table 2; Wald statistics 48 and 133, respectively) – were very weak in 

multivariable analysis (Table 2; Wald statistics 0 and 4, respectively). The predictive ability of 

the resulting full multivariable regression model was mainly driven by age, LDH, urea, RR, 

CRP, Albumin, oxygen saturation and bicarbonate (ORs and Wald statistics in Table 2). A 

simple model – named COVID Outcome Prediction in the Emergency Department (COPE) – 

with linear age and logarithmic transforms of RR, CRP, LDH, albumin and urea captured most 

of the ability to predict death within 28 days (Table 2). Based on internal bootstrap 

validation we applied a shrinkage factor of 0.93 to the regression coefficients. 
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COPE showed good discrimination for predicting death in 4,498 patients who were 

admitted from April up to and including August 2020 in the first wave (Supplementary Figure 

1; AUC in 4 hospitals 0.85 [95% confidence interval: 0.81; 0.88]; 0.81 [0.71; 0.91]; 0.86 [0.82; 

0.90]; 0.85 [0.81; 0.88]) and, more importantly, in the validation sample of 3,235 patients 

who were admitted in the second wave from September up to and including December 2020 

(Figure 2; AUC in 4 hospitals: 0.82 [0.78; 0.86]; 0.82 [0.74; 0.90]; 0.79 [0.70; 0.88]; 0.83 [0.79; 

0.86]). The decrease in AUC over time was partly driven by less case mix heterogeneity – 

expressed by a lower model-based AUC (mbc) – of second wave patients (Figure 1; mbc in 4 

hospitals: 0.81; 0.82; 0.81; 0.82) as compared to first wave patients (Supplementary Figure 1; 

mbc in 4 hospitals 0.82; 0.85, 0.83, 0.84). COPE was well-calibrated in second wave patients 

of each of the 4 hospitals, both on average – expressed by hospital-specific calibration 

intercepts: 0.08 [-0.15; 0.30]; -0.17 [-0.65; 0.30]; -0.01 [-0.40; 0.39]; -0.12 [-0.30; 0.07] – and 

by predicted risk levels – expressed by hospital-specific calibration slopes: 1.09 [0.86; 1.31]; 

0.90 [0.49; 1.32]; 0.91 [0.57; 1.25]; 0.97 [0.79; 1.14] (Figure 2). 

 

Prediction of ICU admission 

The probability of being admitted to the ICU was decreasing with age after the age of 70, 

likely reflecting the decision not to admit older patients to the ICU. When adjusting for this 

decreasing age effect after the age of 70 – by including a linear spline with a knot at age 70 

in the regression model (Supplementary figure 2) – the strongest predictors of death were 

also predictive of ICU admission within 28 days, but associations were generally weaker for 

the latter (Table 3 vs Table 2). In patients below the age of 70, admitted from April up to and 

including August 2020, a model with the linear predictor of death calibrated to ICU 

admission had similar discriminative ability to a model that refitted all the predictor effects 

(AUC 0.71 for both models). For robustness, we implemented the calibrated model and not 

the refitted model (calibration slope 0.60; 95% confidence interval: 0.49; 0.70) into COPE for 

predicting ICU admission. To predict the need for ICU admission – rather than historically 

observed ICU admission – COPE ignores the decreasing age effect after the age of 70 when 

making predictions for future patients, since the observed ICU admission rate is probably an 

inaccurate estimate of the medical need for ICU admission. Thus, predictions of ICU 

admission after the age of 70 are based on an extrapolation of the observed age effect on 

ICU admission in patients below the age of 70. Due to the weaker predictor effects, the 
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discriminative ability of COPE was more moderate for predicting ICU admission than for 

predicting death (Supplementary figure 3; AUC in 2 hospitals: 0.66 [0.58; 0.74]; 0.79 

[0.69;0.88]). Although COPE significantly overestimated ICU admission in second wave 

patients (Figure 3; calibration intercept in 2 hospitals:  -0.41 [-0.77; -0.05]; -0.72 [-1.34; -

0.11]), it was better able to identify the patients at high risk of needing ICU admission, as 

expressed by higher discriminative ability (Figure 3; AUC in 2 hospitals: 0.84 [0.78; 0.90]; 0.81 

[0.66; 0.95]) and substantially stronger predictor effects (calibration slope in 2 hospitals: 1.55 

[1.03; 2.06]; 1.53 [0.60; 2.46]).  

 

Model presentation 

The resulting COPE model for predicting death as well as need for ICU admission within 28 

days after hospital admission (formulas in Figure 4) are implemented as a publicly accessible 

web-based application (https://mdmerasmusmc.shinyapps.io/COPE/) and as independent 

mobile apps (“COPE Decision Support”). For optimal transparency, the web and mobile 

applications include a detailed description of the derivation of COPE (Supplement 1), 

descriptions of the data that were used for development and validation of COPE, and 

calibration plots of temporal validation in the separate hospitals. 

According to the Transparent Reporting of a multivariable prediction model for 

Individual Prognosis Or Diagnosis (TRIPOD) checklist (Supplementary table 1), all relevant 

items are covered in this manuscript, except for the availability of data sets (14, 15). Data 

transfer agreements with each of the contributing hospitals preclude any sharing of data 

sets.  

 

 

DISCUSSION 

We developed COPE for prediction of in-hospital death and need for intensive care when 

patients with suspected COVID-19 present at the Emergency Department. Developed in 

patient data from the first wave of the pandemic, based on six quickly and objectively 

obtainable predictors – age, respiratory rate, LDH, CRP, albumin and urea – COPE 

discriminated well and was well-calibrated in patients admitted to hospitals in the second 

wave of the pandemic, both for predicting in-hospital death and for ICU admission.    
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The clinical presentation of COVID-19 is broad and varies from asymptomatic to 

critical disease. Some patients who initially have mild symptoms progress to severe disease 

within one week (16). In the ED physicians need to identify high-risk patients – i.e. those at 

high risk of deterioration and/or death – requiring treatment in the ICU, intermediate-risk 

patients requiring admission to the clinical ward, and low-risk patients who can potentially 

be sent home. Since COPE is based on data that are routinely measured, or at least readily 

available in the ED, it can act as a tool to support such decisions. Hospitalized patients who 

are at high risk for mortality or need for ICU admission should be more intensively watched, 

and when a high load of high-risk patients occurs in the ED, this should be taken into account 

in the ICU capacity planning. 

We requested 19 large Dutch hospitals to supply retrospective data on the cohorts of 

COVID-19 patients who were admitted to their hospital. This request for data was sent out 

very early in the pandemic and was greeted with enthusiasm. Probably due to the enormous 

pressure on health care at that time, 4 hospitals supplied useable data for the analysis. The 

contributing hospitals were well-spread over the Netherlands, with one in the west, two in 

the south, and one in the east of the country, and are a mix of academic and large teaching 

hospitals. we believe they are representative for health care in the Netherlands. Although 

the consistently good performance of COPE across the hospitals may support its 

generalizability to other countries, geographic validation would be additionally reassuring, 

since the epidemic, and clinical practice for this novel disease, may have substantial inter-

country variability.  

COPE was developed based on 5,831 patients of whom 629 died within 28 days. This 

effective sample size of 629 events was ample to start the development process with a full 

model of 45 regression coefficients (14 events per variable) , that is one binary predictor 

(sex) and 22 continuous predictors with 2 regression coefficients – due to using non-linear 

terms – each (17). To prevent too extreme predictions of COPE in new data, we applied a 

shrinkage factor to its regression coefficients, based on a bootstrap procedure with 

backward selection starting from the full model (11).  

Our explicit aim was to develop a score based on quickly and objectively obtainable 

predictors at presentation at the ED. Consequently, pre-existing comorbidities, the level of 

consciousness  measured by the Glasgow Coma Scale, and chest radiography results – 

although predictive for outcomes of COVID patients in other studies – were not considered 
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here (4, 6, 7). Some predictors were promising in univariable analysis, such as lymphocytes 

and creatinine, but had negligible effects in multivariable analysis, because of strong 

correlations with other, more important predictors. Other predictors, such as oxygen 

saturation and bicarbonate, were significantly associated with death in multivariable 

analysis, but were not selected into the final model, since our explicit aim was to develop a 

simple model and the incremental value of these predictors was minimal. To achieve this 

aim, we only selected the strongest predictors – age, respiratory rate, LDH, CRP, albumin and 

urea – resulting in a parsimonious but well-performing model.  

Besides mortality, we aimed to predict the need for ICU admission. A limitation of our 

study is that the need for ICU admission differs from the observed decisions on ICU 

admission, and is inherently difficult to model, because recorded ICU admissions express 

historical decisions at national, regional, hospital or even intensivist level. As a robust 

solution, we exploited the strong correlation between need for intensive care and death, by 

calibrating our model for predicting death to the observed ICU admissions, adjusting for a 

linear decrease with age after the age of 70. Hence, we assumed a linear relationship 

between (the logarithm of the odds of) death and need for ICU admission, and that all 

patients below the age of 70 needing intensive care were actually admitted to the ICU, that 

is the need for ICU admission is well estimated by the observed decisions on ICU admission 

for patients below the age of 70. The latter is reasonable given the sufficiency of ICU beds 

for Dutch patients throughout the pandemic. The discriminative ability of this re-calibration 

approach was very similar to that of a model that refitted all associations between COPE 

predictors and ICU admission. With temporal validation in 2 separate hospitals, we showed 

that COPE discriminated very well between patients at low and high risk of ICU admission 

and that the predicted probability of ICU admission was well-calibrated for the 20% highest-

risk patients. Nevertheless, recalibration of COPE for predicting need for ICU admission to 

local circumstances may be necessary. 

The absence of external validation in our study – measuring the predictive 

performance of COPE in hospitals that were not present in the development data – may be 

considered a limitation of this study (18). However, the combination of temporal validation – 

in second wave patients – and geographic validation – in separate hospitals – is a strength of 

this study (19). Although COPE already performed very well when validated across time and 

space, future research should focus on analyses of potential time trends not captured by the 
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predictors – e.g. decreases in mortality thanks to improvements in treating COVID-19 

patients (20) –, potential changes in predictor effects in time (interactions between 

predictors and time), and the impact of potential differences in patient case mix in countries 

other than the Netherlands (international validation). These case mix differences should 

primarily affect calibration, requiring an update of the model intercept, but not 

discrimination.  

In conclusion, COPE, a simple model based on 6 quickly and objectively obtainable 

predictors in the ED, is well able to predict mortality and need for ICU admission for patients 

who present to the ED with suspected COVID-19. COPE may support patients and doctors in 

decision making. 
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Table 1   Baseline characteristics of development and validation patient cohorts     Median (“M”) and quartile 

range (“Q1” = first quartile; “Q3” = third quartile) are presented for all continuous variables. Status, “All 

patients”, “Discharged”, “In hospital” and “Dead” is measured at 28 days after hospital admission. 

 % missing All patients Discharged In hospital Dead 
A. Development data  n = 5831 n = 5070 n = 132 n = 629 
 Male sex 0   57 %  56 %  64 %  64 %  

  M Q1 Q3 M Q1 Q3 M Q1 Q3 M Q1 Q3 
 Age (years) 0   70 58 80 69 56 78 71 62 79 78 70 84 
 BMI (kg/m²) 58   26 23 30 26 23 30 25 23 29 26 23 30 
 HR (bpm) 39   90 78 103 90 78 103 87 76 99 93 80 107 
 SBP (mmHg) 42   133 118 150 133 119 151 136 115 152 131 114 145 
 RR (/min) 42   19 16 23 19 16 23 20 17 24 23 19 28 
 Saturation (%) 41   95.8 94.0 97.5 96.0 94.3 97.8 95.4 93.6 97.0 94.1 91.9 96.0 
 Temperature (°C) 40   37.3 36.7 38.1 37.3 36.7 38.0 37.5 37.0 38.1 37.4 36.7 38.1 
 CRP (mg/L) 7   48 10 118 43 8 110 85 34 160 91 41 180 
 D dimer (µg/L) 64   1100 527 2545 1028 504 2300 1950 719 8110 2100 949 4772 
 LDH (U/L) 18   244 200 322 237 197 302 300 234 422 338 253 492 
 Leucocytes (x10^9/L) 7   9.1 6.7 12.7 9.1 6.7 12.6 9.4 6.5 12.5 9.2 6.4 14.0 
 Lymphocytes 16   1.04 0.66 1.6 1.10 0.7 1.7 0.80 0.54 1.3 0.80 0.51 1.3 
 Albumin (g/L) 15   39 35.5 42 39.8 36 42.8 37 34 41 36 33 39 
 Bicarbonate (mmol/L) 45   23.6 21 26 23.8 22 26 22.8 21 26 22.3 20 25 
 Creatinine (µmol/L) 8   84 66 111 82 65 107 89 66 111 102 75 153 
 Eosinophils (x10^9/L) 26   0.03 0.00 0.10 0.03 0.01 0.10 0.03 0.00 0.10 0.01 0.00 0.10 
 MCV (fL) 7   90 87 94 90 86 94 90 88 94 91 87 96 
 Monocytes (x10^9/L) 30   0.67 0.44 0.95 0.68 0.45 0.95 0.59 0.33 0.83 0.61 0.33 0.94 
 Neutrophils (x10^9/L) 16   5.6 2.2 9.0 5.6 2.2 8.9 7.0 4.0 10.3 5.5 1.8 9.1 
 Sodium (mmol/L) 9   138 135 140 138 135 140 137 133 141 137 134 140 
 Urea (mmol/L) 9   6.5 4.6 9.7 6.2 4.5 9.0 7.4 5.1 11.0 9.6 6.6 15.0 
B. Validation data  n = 3252 n = 2854 n = 72 n = 326 
 Male sex 0   56 %  56 %  46 %  61 %  

  M Q1 Q3 M Q1 Q3 M Q1 Q3 M Q1 Q3 
 Age (years) 0   71 58 80 69 55 79 72 58 82 79 73 85 
 BMI (kg/m²) 59   26 23 30 26 23 30 26 24 30 25 22 29 
 HR (bpm) 40   90 78 105 90 78 104 84 75 106 92 78 105 
 SBP (mmHg) 43   134 119 151 135 120 152 134 122 149 129 110 141 
 RR (/min) 43   20 16 24 20 16 24 20 17 26 23 19 27 
 Saturation (%) 40   95.7 94.0 97.5 96.0 94.0 97.7 95.5 94.0 97.0 94.8 92.3 96.5 
 Temperature (°C) 42   37.3 36.7 38.1 37.3 36.7 38.1 37.3 36.8 38.1 37.2 36.4 38.0 
 CRP (mg/L) 9   57 16 124 54 15 120 76 21 169 80 33 159 
 D dimer (µg/L) 76   1060 531 2170 1013 490 2012 1080 640 2570 1495 870 3724 
 LDH (U/L) 22   247 203 334 242 200 317 281 226 390 315 238 489 
 Leucocytes (x10^9/L) 10   9.4 6.6 12.9 9.4 6.6 12.9 9.6 7.0 13.2 9.5 6.8 13.3 
 Lymphocytes 20   0.98 0.62 1.50 1.00 0.64 1.50 1.10 0.72 1.53 0.71 0.48 1.20 
 Albumin (g/L) 20   38.7 34.9 41.8 39 35 42 35.95 32 38.9 36.2 31.9 40 
 Bicarbonate (mmol/L) 50   23.5 21 26 23.6 21 26 22.8 20 27 22.8 20 25 
 Creatinine (µmol/L) 10   84 66 116 83 65 111 80 58 118 103 74 158 
 Eosinophils (x10^9/L) 27   0.03 0.01 0.10 0.03 0.01 0.10 0.03 0.01 0.09 0.03 0.00 0.04 
 MCV (fL) 10   90 87 94 90 87 94 92 88 95 91 88 96 
 Monocytes (x10^9/L) 30   0.67 0.43 0.98 0.67 0.44 0.98 0.57 0.38 1.00 0.58 0.36 0.97 
 Neutrophils (x10^9/L) 21   5.8 2.4 9.4 5.8 2.4 9.4 6.6 3.3 9.1 5.6 2.2 9.4 
 Sodium (mmol/L) 11   137 134 139 137 134 139 136 133 139 137 133 140 
 Urea (mmol/L) 11   6.9 4.9 10.4 6.6 4.7 9.8 7.3 5.3 11.8 10.3 7.4 17.0 
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Table 2   Univariable and multivariable associations between predictors and death within 28 days   Odds 

ratios (OR) with 95% confidence intervals (CI) for separate variables (columns “Univariable”), for a model with 

all available predictors (columns “Full model”) and for a model with only the six strongest predictors (columns 

“Selected model”).  Variable importance is expressed with the Wald statistic (columns “Wald”). The odds ratios 

of the final model are based on the Selected model, with a uniform shrinkage factor of 0.93 (column “COPE”). 

Associations are based on 5,831 patients of whom 629 died within 28 days. 

 

    Univariable Full model Selected model COPE 

Predictor Contrast OR 95% CI Wald OR 95% CI Wald OR 95% CI Wald OR 

Month ≥April vs <April 2.57 2.16 3.05 114 1.99 1.61 2.47 39 2.06 1.68 2.52 49 1.96 

Sex   male vs female 1.37 1.15 1.63 13 1.12 0.90 1.39 1      

Age (years) 80 vs 58 3.07 2.63 3.58 201 3.16 2.56 3.91 113 2.95 2.42 3.60 112 2.74 

BMI (kg/m²) 35 vs 25 1.07 0.89 1.28 1 1.09 0.90 1.34 1      

HR (bpm) 103 vs 78 1.16 1.05 1.29 8 1.19 0.97 1.45 3      

SBP (mmHg) 150 vs 118 0.76 0.65 0.89 12 0.86 0.73 1.01 3      

RR (/min) 23 vs 16 1.98 1.77 2.21 150 1.63 1.34 1.99 24 1.91 1.63 2.23 64 1.82 

Saturation (%) 97.5 vs 94 0.61 0.52 0.72 37 0.77 0.65 0.90 10      

Temperature (°C) 38 vs 37 1.16 1.02 1.32 5 1.05 0.87 1.27 0      

CRP (mg/L) 118 vs 10 2.76 2.35 3.25 149 1.54 1.22 1.93 14 1.57 1.27 1.93 18 1.52 

LDH (U/L) 322 vs 200 2.17 1.99 2.36 309 1.83 1.62 2.06 99 1.85 1.66 2.05 127 1.77 

Leucocytes (x10^9/L) 12.7 vs 6.7 1.01 0.92 1.11 0 0.88 0.75 1.02 3      

Lymphocytes (x10^9/L) 1.6 vs 0.66 0.67 0.60 0.75 48 1.03 0.90 1.19 0      

Albumin (g/L) 42 vs 36 0.58 0.53 0.62 191 0.80 0.71 0.90 14 0.77 0.69 0.86 21 0.78 

Bicarbonate (mmol/L) 25.9 vs 21.4 0.71 0.65 0.78 54 0.81 0.71 0.92 10      

Creatinine (µmol/L) 111 vs 66 1.58 1.46 1.71 133 0.85 0.72 1.00 4      

Eosinophils (x10^9/L) 0.1 vs 0.004 0.77 0.64 0.93 7 1.08 0.90 1.30 1      

MCV (fL) 94 vs 87 1.18 1.08 1.29 14 1.10 0.99 1.23 3      

Monocytes (x10^9/L) 0.95 vs 0.44 0.84 0.74 0.96 7 1.08 0.87 1.35 1      

Neutrophils (x10^9/L) 9 vs 2.2 0.97 0.88 1.07 0 0.94 0.82 1.08 1      

Sodium (mmol/L) 140 vs 135 0.98 0.96 1.01 1 1.03 0.98 1.09 1      

Urea (mmol/L) 9.7 vs 4.6 2.48 2.24 2.76 291 1.79 1.43 2.24 26 1.61 1.42 1.83 53 1.56 
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Table 3   Multivariable associations between predictors and ICU admission within 28 days   Odds ratios (OR) 

with 95% confidence intervals (CI) for separate variables (columns “Univariable”) and for a model with the six 

strongest predictors of death, corrected for a decreasing probability of ICU admission after the age of 70 

(columns “Multivariable”).  Variable importance is expressed with the Wald statistic (columns “Wald”).   

Associations are based on 2,633 patients of whom 214 were admitted to the ICU within 28 days. 

 

 

    Univariable Multivariable 

Predictor Contrast OR 95% CI Wald OR 95% CI Wald 

Month ≥April vs <April 2.06 1.51 2.81 21 1.63 1.16 2.28 8 

Age (years) 80 vs 58 1.96 1.47 2.62 21 1.76 1.32 2.35 15 

RR (/min) 23 vs 16 1.76 1.48 2.09 40 1.71 1.40 2.09 27 

CRP (mg/L) 118 vs 10 1.88 1.44 2.44 22 1.30 0.95 1.77 3 

LDH (U/L) 322 vs 200 1.73 1.52 1.98 66 1.44 1.25 1.67 24 

Albumin (g/L) 42 vs 36 0.75 0.64 0.88 13 0.95 0.78 1.17 0 

Urea (mmol/L) 9.7 vs 4.6 1.29 1.08 1.54 8 1.36 1.10 1.66 8 

Adjusted for: 
 

    
    

Max[Age-70, 0] (years) * 80 vs 58 0.20 0.13 0.30 57 0.17 0.11 0.27 65 

* In univariable regression, only the association of age with ICU admission was adjusted for Max[Age-70, 0]  
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Figure 1   Multivariable effects of continuous predictors of death within 28 days   Predictions of the logarithm 

of the odds by continuous predictor levels, with other predictor levels set to the median. Wald statistics are 

listed within each plot to express variable importance. 
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Figure 2   Temporal validation: Performance of COPE for predicting death in second wave patients   

Calibration plots of patients who were admitted since September 2020 in 4 separate Dutch hospitals. n is 

number of patients; a = calibration intercept; b = calibration slope; c = AUC; mb.c = model-based AUC.    
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Figure 3   Temporal validation: Performance of COPE for predicting ICU admission in second wave patients   

Calibration plots of patients who were admitted since September 2020 in 2 separate Dutch hospitals. n is 

number of patients; a = calibration intercept; b = calibration slope; c = AUC; mb.c = model-based AUC.    
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Figure 4   COPE definition   Implemented in web application https://mdmerasmusmc.shinyapps.io/COPE/  and 

mobile application “COPE Decision Support”. 

log = natural logarithm; exp = natural exponential 

 

Predictor Minimum Maximum 

Age = Age (years)  0 100 

RR = Respiratory rate (/min)  10 60 

CRP = C-Reactive protein (mg/L) 1 500 

LDH = Lactate dehydrogenase (U/L)  50 4000 

Albumin = Serum Albumin (g/L)  10 60 

Urea = Serum Urea (mmol/L) 1 80 

 

lp = -13.6 +   

 0.04575  Age +  

 1.654  log(RR) +  

 0.1688  log(CRP) +  

 1.197  log(LDH)  + 

 -1.585  log(Albumin) +  

 0.5953  log(Urea) 

 

 

Probability of death within 28 days = 1 / (1 + exp( -lp ))  

 

 

Probability of ICU admission within 28 days = 1 / (1 + exp(-( -0.08949 + 0.5970  lp ))) 
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Supplementary table 1   TRIPOD Checklist Prediction Model Development 
Section/Topic Item Checklist Item Page 

Title and abstract 

Title 1 
Identify the study as developing and/or validating a multivariable prediction model, the 
target population, and the outcome to be predicted. 

1 

Abstract 2 
Provide a summary of objectives, study design, setting, participants, sample size, 
predictors, outcome, statistical analysis, results, and conclusions. 

4 

Introduction 

Background and 
objectives 

3a 
Explain the medical context (including whether diagnostic or prognostic) and rationale for 
developing or validating the multivariable prediction model, including references to 
existing models. 

5 

3b 
Specify the objectives, including whether the study describes the development or 
validation of the model or both. 

5 

Methods 

Source of data 
4a 

Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), 
separately for the development and validation data sets, if applicable. 

5 

4b 
Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end 
of follow-up.  

5 

Participants 
5a Specify key elements of the study setting (e.g., primary care, secondary care, general 

population) including number and location of centres. 
5 

5b Describe eligibility criteria for participants.  5 
5c Give details of treatments received, if relevant.  N/A 

Outcome 
6a 

Clearly define the outcome that is predicted by the prediction model, including how and 
when assessed.  

6 

6b Report any actions to blind assessment of the outcome to be predicted.  N/A 

Predictors 
7a 

Clearly define all predictors used in developing or validating the multivariable prediction 
model, including how and when they were measured. 

6 

7b Report any actions to blind assessment of predictors for the outcome and other predictors.  N/A 
Sample size 8 Explain how the study size was arrived at. 5 

Missing data 9 
Describe how missing data were handled (e.g., complete-case analysis, single imputation, 
multiple imputation) with details of any imputation method.  

5 

Statistical analysis 
methods 

10a Describe how predictors were handled in the analyses.  5 

10b 
Specify type of model, all model-building procedures (including any predictor selection), 
and method for internal validation. 

6 

10d 
Specify all measures used to assess model performance and, if relevant, to compare 
multiple models.  

6 

Risk groups 11 Provide details on how risk groups were created, if done.  6 
Results 

Participants 

13a 
Describe the flow of participants through the study, including the number of participants 
with and without the outcome and, if applicable, a summary of the follow-up time. A 
diagram may be helpful.  

7 

13b 
Describe the characteristics of the participants (basic demographics, clinical features, 
available predictors), including the number of participants with missing data for predictors 
and outcome.  

7 

Model 
development  

14a Specify the number of participants and outcome events in each analysis.  7 
14b If done, report the unadjusted association between each candidate predictor and outcome. 7 

Model 
specification 

15a 
Present the full prediction model to allow predictions for individuals (i.e., all regression 
coefficients, and model intercept or baseline survival at a given time point). 

10 

15b Explain how to the use the prediction model. 10 
Model 
performance 

16 Report performance measures (with CIs) for the prediction model. 8-9 

Discussion 

Limitations 18 
Discuss any limitations of the study (such as nonrepresentative sample, few events per 
predictor, missing data).  

10 

Interpretation 19b 
Give an overall interpretation of the results, considering objectives, limitations, and results 
from similar studies, and other relevant evidence.  

10 

Implications 20 Discuss the potential clinical use of the model and implications for future research.  10 
Other information 

Supplementary 
information 

21 
Provide information about the availability of supplementary resources, such as study 
protocol, Web calculator, and data sets.  

10 

Funding 22 Give the source of funding and the role of the funders for the present study.  14 
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Supplementary figure 1  Apparent validation:  Performance of COPE for predicting death in first wave 

patients   Calibration plots of patients who were admitted from April up to and including August 2020 in 4 

separate Dutch hospitals. n is number of patients; a = calibration intercept; b = calibration slope; c = AUC; mb.c 

= model-based AUC.    
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Supplementary figure 2   Multivariable effects of continuous predictors of ICU admission within 28 days  

Predictions of the logarithm of the odds by continuous predictor levels, with other predictor levels set to the 

median. Age is modelled with a linear spline with a knot at age 70. Wald statistics are listed within each plot to 

express variable importance. 
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Supplementary figure 3   Apparent validation: Performance of COPE for predicting ICU in first wave 

Calibration plots of patients who were admitted from April up to and including August 2020 in 2 separate Dutch 

hospitals. n is number of patients; a = calibration intercept; b = calibration slope; c = AUC; mb.c = model-based 

AUC.    
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Supplement 1   Description COPE web application 

 

Background and aim: The COVID-19 pandemic is putting extraordinary pressure on emergency 

departments (EDs). Clinical prediction models have the potential to support decision making about 

hospital admission, but currently available models were recently assessed to contain a high risk of bias. 

We aimed to develop a simple and valid model for predicting mortality and need for ICU in patients 

who are suspected to have COVID-19 when presenting at the ED. 

Methods: For model development, we included patients that presented at the ED and were admitted 

to 4 large Dutch hospitals with suspected COVID-19 between March and August 2020, the first wave 

of the pandemic in the Netherlands. Patients being transferred from or to other hospitals were 

excluded since information on predictors or outcomes was missing. The outcomes of interest were 

death and admission to ICU within 28 days. Based on prior literature we included patient 

characteristics (sex, age, BMI), vital parameters (oxygen saturation, systolic blood pressure, heart rate, 

respiratory rate [RR], body temperature) and blood test values (C-reactive protein [CRP], lactic 

dehydrogenase [LDH], D-Dimer, leucocytes, lymphocytes, monocytes, neutrophils, eosinophils, MCV, 

albumin, bicarbonate, creatinine, sodium, urea), all measured at ED admission, as potential predictors. 

Further we included month of admission to capture changes in outcomes over time. Logistic regression 

was used to obtain predicted probabilities of death and of being admitted to the ICU, both within 28 

days after admission. Model performance was assessed with temporal validation in patients who 

presented between September and December 2020 (second wave). We assessed discriminative ability 

with the area under the operator receiver characteristic curve (AUC) and calibration with calibration 

plots, calibration intercepts, and calibration slopes. We used multiple imputation to account for 

missing predictor values. 

Results: The development data included 5,831 patients who presented and were admitted at the ED 

up until August 2020, of whom 629 (10.8%) died and 5,070 (86.9%) were discharged within 28 days 

after admission. A simple model – named COVID Outcome Prediction in the Emergency Department 

(COPE) – with linear age and logarithmic transforms of RR, CRP, LDH, Albumin and Urea captured most 

of the ability to predict death within 28 days. Patients who were admitted in the first month of the 

pandemic in the Netherlands had substantially increased risk of death (odds ratio 2.06; 95% confidence 

interval 1.68-2.52). COPE was well-calibrated and showed good discrimination for predicting death in 

3,252 patients in the second wave (AUC in 4 hospitals: 0.82; 0.82; 0.79; 0.83). Admission to ICU was 

fully recorded for 2,633 first wave patients in 2 hospitals (214 ICU admissions within 28 days). The 

same predictors captured most of the ability to predict ICU admission within 28 days. However, after 

the age of 70, the probability of being admitted to the ICU was decreasing with age, probably reflecting 

the decision not to admit older patients to the ICU. To predict the need for ICU admission – rather than 
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historically observed ICU admission – we kept a linear (decreasing) age effect after the age of 70 in the 

model, which will be ignored when making future predictions. COPE was well able to identify patients 

at high risk of needing IC in second wave patients below the age of 70 (AUC 0.84; 0.81), but 

overestimated ICU admission for low-risk patients. The models are implemented as a web-based 

application. 

Conclusion: COPE, a simple tool based on 6 routinely measured predictors in the ED, is well able to 

predict mortality and ICU admission for patients who present to the ED with suspected COVID-19. 

COPE may help to inform patients and doctors when deciding on hospital admission. 
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