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ABSTRACT 

Background and aim: The COVID-19 pandemic is putting extraordinary pressure on 

emergency departments (EDs). To support decision making about hospital admission, we 

aimed to develop a simple and valid model for predicting mortality and need for admission 

to an intensive care unit (ICU) in suspected-COVID-19 patients presenting at the ED. 

Methods: For model development, we included patients that presented at the ED and were 

admitted to 4 large Dutch hospitals with suspected COVID-19 between March and August 

2020, the first wave of the pandemic in the Netherlands. Based on prior literature we 

included patient characteristics, vital parameters and blood test values, all measured at ED 

admission, as potential predictors. Logistic regression analyses with post-hoc uniform 

shrinkage was used to obtain predicted probabilities of in-hospital death and of being 

admitted to the ICU, both within 28 days after admission. Model performance (AUC; 

calibration plots, intercepts and slopes) was assessed with temporal validation in patients 

who presented between September and December 2020 (second wave). We used multiple 

imputation to account for missing predictor values. 

Results: The development data included 5,831 patients who presented at the ED and were 

hospitalized, of whom 629 (10.8%) died and 5,070 (86.9%) were discharged within 28 days 

after admission. A simple model – named COVID Outcome Prediction in the Emergency 

Department (COPE) – with linear age and logarithmic transforms of respiratory rate, CRP, 

LDH, albumin and urea captured most of the ability to predict death within 28 days. Patients 

who were admitted in the first month of the pandemic had substantially increased risk of 

death (odds ratio 1.99; 95% CI 1.61-2.47). COPE was well-calibrated and showed good 

discrimination for predicting death in 3,252 patients of the second wave (AUC in 4 hospitals: 

0.82; 0.82; 0.79; 0.83). COPE was also able to identify patients at high risk of needing IC in 

second wave patients below the age of 70 (AUC 0.84; 0.81), but overestimated ICU 

admission for low-risk patients. The models are implemented as a web-based application. 

Conclusion: COPE is a simple tool that is well able to predict mortality and ICU admission for 

patients who present to the ED with suspected COVID-19 and may help to inform patients 

and doctors when deciding on hospital admission. 
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BACKGROUND 

The COVID-19 pandemic is putting extraordinary pressure on emergency departments (EDs). 

Clinical prediction models have the potential to support decision making about hospital 

admission, but currently available models were assessed to contain a high risk of bias (1, 2). 

Most important reasons were non-representative selection of control patients, exclusion of 

patients who had not experienced the event of interest by the end of the study, high risk of 

model overfitting, and vague reporting. The description of the study population or intended 

use of the models was often missing, and calibration of the model predictions was rarely 

assessed.  

The recently proposed 4C Mortality Score is a positive exception, but was derived in a 

selected population of patients admitted to UK hospitals who were seriously ill (mortality 

rate of 32.2%) and included as predictors the number of comorbidities and the Glasgow 

Coma Scale, items that were not available in all Dutch databases, because they are not 

routinely measured for patients with suspected COVID-19 (3, 4).  

We aimed to develop and validate a simple and valid model for predicting mortality 

and the need for ICU in all patients who are suspected to have COVID-19 when presenting at 

the ED. To better enable implementation in clinical practice, we only included routinely 

measured patient characteristics, vital parameters and blood test values. 

 

 

METHODS 

Population 

19 large Dutch hospital were requested to supply data on COVID-19 patients who were 

admitted to their hospital. Of those hospitals, Catharina Hospital Eindhoven, Zuyderland 

Medical Center Heerlen, Isala Hospital Zwolle, Erasmus University Medical Center Rotterdam 

and Antonius Hospital Sneek actually supplied these data. The data from  Antonius Hospital 

Sneek were not used in the analyses, because of large proportions of missing predictor 

values.  

For model development, we included patients that presented at the ED and were 

admitted to the hospital with suspected COVID-19 in the first wave of the pandemic, that is 

until August 2020. Patients being transferred from or to other hospitals were excluded since 

information on predictors or outcomes was missing. For model validation we included 
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patients that presented at the ED and were admitted to the hospital with suspected COVID-

19 in the second wave of the pandemic, that is since September 2020. We used multiple 

imputation to account for missing predictor values. 

 

Outcomes 

The outcomes of interest were in-hospital death and admission to ICU within 28 days after 

hospital admission. Transfer to a hospice was counted as death. 

 

Predictors 

Based on prior literature we included patient characteristics (sex, age, BMI), vital parameters 

(oxygen saturation, systolic blood pressure, heart rate, respiratory rate [RR], body 

temperature) and blood test values (C-reactive protein [CRP], lactic dehydrogenase [LDH], D-

Dimer, leucocytes, lymphocytes, monocytes, neutrophils, eosinophils, MCV, albumin, 

bicarbonate, creatinine, sodium, urea), all measured at ED admission, as potential predictors 

(1). Further we included month of admission to capture potential changes in outcomes over 

time.  

 

Model development 

Logistic regression was used to analyze associations between predictors and outcomes. 

Based on a full model with restricted cubic splines of all potential predictors, we decided on 

including non-linear transformations. We selected the most promising predictors into a 

parsimonious model for easy use in clinical practice. To prevent overfitting, we used 

bootstrap validation, including backward selection according to our modeling strategy, to 

estimate a uniform shrinkage factor (5). The regression coefficients of the final model were 

multiplied by this shrinkage factor, and the model intercept was adjusted to ensure overall 

calibration of the model.    

 

Model validation 

Model performance was assessed with temporal validation in second wave patients, in each 

of the 4 separate hospitals. We assessed discriminative ability with the area under the 

operator receiver characteristic curve (AUC) and calibration with calibration plots, calibration 

intercepts, and calibration slopes. The model-based concordance (mbc) was used to 
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understand the impact of potential differences in case-mix heterogeneity between first wave 

and second wave patients (6). 

 

We used R-packages mice and rms for imputation of missing values and for regression 

analyses, respectively (7-9). 

 

 

RESULTS  

Population and outcomes 

The development data included 5,831 patients who presented at the ED up until August 

2020 and who were admitted to hospital with a suspicion of COVID-19, of whom 629 (10.8%) 

died and 5,070 (86.9%) were discharged within 28 days after hospital admission. As 

expected, patients who died – in  comparison with patients who were discharged – tended 

to be more male, at older age, with worse vital parameters (higher RR and HR; lower oxygen 

saturation), higher blood levels of CRP, LDH, creatinine and urea and lower blood levels of 

lymphocytes and albumin (Table 1). Similar pattern were visible for 3.252 patients who were 

admitted to hospital in the second wave of the pandemic, of whom 326 (10.0%) died and 

2,854 (87.8%) were discharged within 28 days after admission. Admission to ICU was fully 

recorded for 2,633 patients in 2 hospitals (214 ICU admissions within 28 days [8.1%]) in the 

first wave and in 1,466 patients (86 ICU admissions within 28 days [5.9%]) in the second 

wave of the pandemic. 

 

Prediction of death 

Patients who were admitted in the first month of the pandemic in the Netherlands, that is in 

March 2020, had substantially increased risk of death (Table 2: odds ratio 1.99; 95% 

confidence interval 1.61-2.47). All models included this correction factor for the first month, 

to avoid overestimation of risk after the first month of the pandemic. Consequently, to avoid 

overestimation of the discriminative ability, we limited validation of models in the 

development data to patients who were admitted from April 2020 onward.  

D-dimer was not analyzed in the regression analysis, because 64% and 76% were 

missing in the development and validation data, respectively (Table 1). Based on a full model 

with restricted cubic splines of all potential variables, we decided to transform all 
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biomarkers and RR with the natural logarithm, while keeping all other predictor effects 

linear. The predictive ability of the resulting full multivariable regression model was mainly 

driven by age, LDH, urea, RR, CRP, Albumin, oxygen saturation and bicarbonate (ORs and 

Wald statistics in Table 2). A simple model – named COVID Outcome Prediction in the 

Emergency Department (COPE) – with linear age and logarithmic transforms of RR, CRP, LDH, 

albumin and urea captured most of the ability to predict death within 28 days (Table 2). 

Based on internal bootstrap validation we applied a shrinkage factor of 0.93 to the 

regression coefficients. 

COPE was well-calibrated and showed good discrimination for predicting death in 

4,498 patients who were admitted from April 2020 in the first wave (Supplementary Figure 

1; AUC in 4 hospitals 0.85; 0.86, 0.81, 0.85) and, more importantly, in 3,235 patients in the 

second wave from September 2020 (Figure 2; AUC in 4 hospitals: 0.82; 0.82; 0.79; 0.83). The 

decrease in AUC was partly driven by less case mix heterogeneity – expressed by a lower 

mbc – of second wave patients (Figure 1; mbc in 4 hospitals: 0.81; 0.82; 0.81; 0.82) as 

compare to first wave patients (Supplementary Figure 1; mbc in 4 hospitals 0.82; 0.85, 0.83, 

0.84). 

 

Prediction of ICU admission 

The probability of being admitted to the ICU was decreasing with age after the age of 70, 

probably reflecting the decision not to admit older patients to the ICU. When adjusting for 

this decreasing age effect after the age of 70 – by including a linear spline with a knot at age 

70 the regression model (Supplementary figure 2) – the strongest predictors of death were 

also predictive of ICU admission within 28 days, but associations were generally weaker 

(Table 3 vs Table 2). In patients below the age of 70, admitted from April to August 2020, a 

model with the linear predictor of death calibrated to ICU admission had similar 

discriminative ability to a model that refitted all the predictor effects (AUC 0.71 for both 

models). For robustness, we implemented the calibrated model (calibration slope 0.60; 95% 

CI 0.49-0.70) into COPE for predicting ICU admission. To predict the need for ICU admission – 

rather than historically observed ICU admission – COPE ignores the decreasing age effect 

after the age of 70 when making future predictions. Due to the weaker predictor effects, the 

discriminative ability of COPE was more moderate for predicting ICU admission than for 

predicting death in first wave patients below the age of 70 (Supplementary figure 3; AUC 
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0.66; 0.79). Although COPE overestimated ICU admission in 706 second wave patients below 

the age of 70, it was better able to identify the patients at high risk of needing IC in these 

patients (Figure 3; AUC 0.84; 0.81).  

 

Model presentation 

The resulting COPE model for predicting death as well as ICU admission within 28 days after 

hospital admission (formulas in  Figure 4) are implemented as a publicly accessible web-

based application https://mrpredicts.shinyapps.io/COPE/. For optimal transparency, the web 

application includes a detailed description of the derivation of COPE (Supplement 1), 

descriptions of the data that was used for development and validation of COPE, and 

calibration plots of temporal validation in separate hospitals. 

 

 

DISCUSSION 

We developed COPE for prediction of in-hospital death and need for intensive care when 

patients with suspected COVID-19 present at the Emergency Department. Developed in 

patient data from the first wave of the pandemic, based on six routinely measured 

predictors – age, respiratory rate, LDH, CRP, albumin and urea – COPE discriminated well and 

was well-calibrated in patients admitted to hospital in the second wave of the pandemic, 

both for predicting in-hospital death and for ICU admission.    

External validation is considered optimal, that is validation of COPE in hospitals that 

were not present in the development data (10). However, the combination of temporal – in 

second wave patients – and geographic – in separate hospitals – validation is a strength of 

this study (11). 

Although COPE already performed very well when validated in time and space, future 

research should focus on analyses of potential time trends not captured by the predictors, 

potential changes in predictor effects in time (interactions between predictors and time), 

and the impact of potential differences in patient case mix in countries other than the 

Netherlands (international validation). These case mix differences will primarily affect 

calibration, requiring an update of the model intercept.  

In conclusion, a simple model, based on 6 routinely measured predictors in the ED, is 

well able to predict mortality and ICU admission for patients who present to the ED with 
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suspected COVID-19. The model may help to inform patients and doctors when deciding on 

hospital admission. 
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Table 1   Baseline characteristics of development and validation patient cohorts     Median and quartile range 

are presented for all continuous variables. Status, “All patients”, “Discharged”, “In hospital” and “Dead” are 

measured at 28 days after hospital admission. 

% missing All patients Discharged In hospital Dead 
A. Development data n = 5831 n = 5070 n = 132 n = 629 
    Male sex 0   57 % 56 % 64 % 64 % 
    Age (years) 0   70 58 - 80 69 56 - 78 71 62 - 79 78 70 - 84 
    BMI (kg/m²) 58   26 23 - 30 26 23 - 30 25 23 - 29 26 23 - 30 
    HR (bpm) 39   90 78 - 103 90 78 - 103 87 76 - 99 93 80 - 107 
    SBP (mmHg) 42   133 118 - 150 133 119 - 151 136 115 - 152 131 114 - 145 
    RR (/min) 42   19 16 - 23 19 16 - 23 20 17 - 24 23 19 - 28 
    Saturation (%) 41   95.8 94.0 - 97.5 96.0 94.3 - 97.8 95.4 93.6 - 97.0 94.1 91.9 - 96.0 
    Temperature (°C) 40   37.3 36.7 - 38.1 37.3 36.7 - 38.0 37.5 37.0 - 38.1 37.4 36.7 - 38.1 
    CRP (mg/L) 7   48 10 - 118 43 8 - 110 85 34 - 160 91 41 - 180 
    D.dimer (µg/L) 64   1100 527 - 2545 1028 504 - 2300 1950 719 - 8110 2100 949 - 4772 
    LDH (U/L) 18   244 200 - 322 237 197 - 302 300 234 - 422 338 253 - 492 
    Leucocytes (x10^9/L) 7   9.1 6.7 - 12.7 9.1 6.7 - 12.6 9.4 6.5 - 12.5 9.2 6.4 - 14.0 
    Lymphocytes 16   1.04 0.66 - 1.6 1.10 0.7 - 1.7 0.80 0.54 - 1.3 0.80 0.51 - 1.3 
    Albumin (g/L) 15   39 35.5 - 42 39.8 36 - 42.8 37 34 - 41 36 33 - 39 
    Bicarbonate (mmol/L) 45   23.6 21 - 26 23.8 22 - 26 22.8 21 - 26 22.3 20 - 25 
    Creatinine (µmol/L) 8   84 66 - 111 82 65 - 107 89 66 - 111 102 75 - 153 
    Eosinophils (x10^9/L) 26   0.03 0.00 - 0.10 0.03 0.01 - 0.10 0.03 0.00 - 0.10 0.01 0.00 - 0.10 
    MCV (fL) 7   90 87 - 94 90 86 - 94 90 88 - 94 91 87 - 96 
    Monocytes (x10^9/L) 30   0.67 0.44 - 0.95 0.68 0.45 - 0.95 0.59 0.33 - 0.83 0.61 0.33 - 0.94 
    Neutrophils (x10^9/L) 16   5.6 2.2 - 9.0 5.6 2.2 - 8.9 7.0 4.0 - 10.3 5.5 1.8 - 9.1 
    Sodium (mmol/L) 9   138 135 - 140 138 135 - 140 137 133 - 141 137 134 - 140 
    Urea (mmol/L) 9   6.5 4.6 - 9.7 6.2 4.5 - 9.0 7.4 5.1 - 11.0 9.6 6.6 - 15.0 

B. Validation data n = 3252 n = 2854 n = 72 n = 326 
    Male sex 0   56 % 56 % 46 % 61 % 
    Age (years) 0   71 58 - 80 69 55 - 79 72 58 - 82 79 73 - 85 
    BMI (kg/m²) 59   26 23 - 30 26 23 - 30 26 24 - 30 25 22 - 29 
    HR (bpm) 40   90 78 - 105 90 78 - 104 84 75 - 106 92 78 - 105 
    SBP (mmHg) 43   134 119 - 151 135 120 - 152 134 122 - 149 129 110 - 141 
    RR (/min) 43   20 16 - 24 20 16 - 24 20 17 - 26 23 19 - 27 
    Saturation (%) 40   95.7 94.0 - 97.5 96.0 94.0 - 97.7 95.5 94.0 - 97.0 94.8 92.3 - 96.5 
    Temperature (°C) 42   37.3 36.7 - 38.1 37.3 36.7 - 38.1 37.3 36.8 - 38.1 37.2 36.4 - 38.0 
    CRP (mg/L) 9   57 16 - 124 54 15 - 120 76 21 - 169 80 33 - 159 
    D.dimer (µg/L) 76   1060 531 - 2170 1013 490 - 2012 1080 640 - 2570 1495 870 - 3724 
    LDH (U/L) 22   247 203 - 334 242 200 - 317 281 226 - 390 315 238 - 489 
    Leucocytes (x10^9/L) 10   9.4 6.6 - 12.9 9.4 6.6 - 12.9 9.6 7.0 - 13.2 9.5 6.8 - 13.3 
    Lymphocytes 20   0.98 0.62 - 1.50 1.00 0.64 - 1.50 1.10 0.72 - 1.53 0.71 0.48 - 1.20 
    Albumin (g/L) 20   38.7 34.9 - 41.8 39 35 - 42 35.95 32 - 38.9 36.2 31.9 - 40 
    Bicarbonate (mmol/L) 50   23.5 21 - 26 23.6 21 - 26 22.8 20 - 27 22.8 20 - 25 
    Creatinine (µmol/L) 10   84 66 - 116 83 65 - 111 80 58 - 118 103 74 - 158 
    Eosinophils (x10^9/L) 27   0.03 0.01 - 0.10 0.03 0.01 - 0.10 0.03 0.01 - 0.09 0.03 0.00 - 0.04 
    MCV (fL) 10   90 87 - 94 90 87 - 94 92 88 - 95 91 88 - 96 
    Monocytes (x10^9/L) 30   0.67 0.43 - 0.98 0.67 0.44 - 0.98 0.57 0.38 - 1.00 0.58 0.36 - 0.97 
    Neutrophils (x10^9/L) 21   5.8 2.4 - 9.4 5.8 2.4 - 9.4 6.6 3.3 - 9.1 5.6 2.2 - 9.4 
    Sodium (mmol/L) 11   137 134 - 139 137 134 - 139 136 133 - 139 137 133 - 140 
    Urea (mmol/L) 11   6.9 4.9 - 10.4 6.6 4.7 - 9.8 7.3 5.3 - 11.8 10.3 7.4 - 17.0 
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Table 2   Multivariable associations between predictors and death within 28 days   Odds ratios (OR) with 95% 

confidence intervals (CI) for a model with all available predictors (columns “Full model”) and for a model with 

only the six strongest predictors (columns “Selected model”).  Variable importance is expressed with the Wald 

statistic (columns “Wald”). The odds ratios of the final model are based on the Selected model, with a uniform 

shrinkage factor of 0.93 (column “COPE”).   

 

    Full model Selected model COPE 

Predictor Contrast OR 95% CI Wald OR 95% CI Wald OR 

Month ≥April vs <April 1.99 1.61 2.47 39 2.06 1.68 2.52 49 1.96 

Sex   male vs female 1.12 0.90 1.39 1 

Age (years) 80 vs 58 3.16 2.56 3.91 113 2.95 2.42 3.60 112 2.74 

BMI (kg/m²) 35 vs 25 1.09 0.90 1.34 1 

HR (bpm) 103 vs 78 1.19 0.97 1.45 3 

SBP (mmHg) 150 vs 118 0.86 0.73 1.01 3 

RR (/min) 23 vs 16 1.63 1.34 1.99 24 1.91 1.63 2.23 64 1.82 

Saturation (%) 97.5 vs 94 0.77 0.65 0.90 10 

Temperature (°C) 38 vs 37 1.05 0.87 1.27 0 

CRP (mg/L) 118 vs 10 1.54 1.22 1.93 14 1.57 1.27 1.93 18 1.52 

LDH (U/L) 322 vs 200 1.83 1.62 2.06 99 1.85 1.66 2.05 127 1.77 

Leucocytes (x10^9/L) 12.7 vs 6.7 0.88 0.75 1.02 3 

Lymphocytes (x10^9/L) 1.6 vs 0.66 1.03 0.90 1.19 0 

Albumin (g/L) 42 vs 36 0.80 0.71 0.90 14 0.77 0.69 0.86 21 0.78 

Bicarbonate (mmol/L) 25.9 vs 21.4 0.81 0.71 0.92 10 

Creatinine (µmol/L) 111 vs 66 0.85 0.72 1.00 4 

Eosinophils (x10^9/L) 0.1 vs 0.004 1.08 0.90 1.30 1 

MCV (fL) 94 vs 87 1.10 0.99 1.23 3 

Monocytes (x10^9/L) 0.95 vs 0.44 1.08 0.87 1.35 1 

Neutrophils (x10^9/L) 9 vs 2.2 0.94 0.82 1.08 1 

Sodium (mmol/L) 140 vs 135 1.03 0.98 1.09 1 

Urea (mmol/L) 9.7 vs 4.6 1.79 1.43 2.24 26 1.61 1.42 1.83 53 1.56 
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Table 3   Multivariable associations between predictors and ICU admission within 28 days   Odds ratios (OR) 

with 95% confidence intervals (CI) for a model with the six strongest predictors of death, corrected for a 

decreasing probability of ICU admission after the age of 70.  Variable importance is expressed with the Wald 

statistic (columns “Wald”).   

 

    ICU admission 

Predictor Contrast OR 95% CI Wald 

Month ≥April vs <April 1.63 1.16 2.28 8 

Age (years) 80 vs 58 1.76 1.32 2.35 15 

RR (/min) 23 vs 16 1.71 1.40 2.09 27 

CRP (mg/L) 118 vs 10 1.30 0.95 1.77 3 

LDH (U/L) 322 vs 200 1.44 1.25 1.67 24 

Albumin (g/L) 42 vs 36 0.95 0.78 1.17 0 

Urea (mmol/L) 9.7 vs 4.6 1.36 1.10 1.66 8 

Adjusted for: 

Max[Age-70, 0] (years) 80 vs 58 0.17 0.11 0.27 65 
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Figure 1   Multivariable effects of continuous predictors of death within 28 days  Predictions of the logarithm 

of the odds by continuous predictor levels, with other predictor levels set to the median. Wald statistics are 

listed within each plot to express variable importance. 
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Figure 2   Temporal validation: Performance of COPE for predicting death in second wave patients   

Calibration plots of patients who were admitted since September 2020 in 4 separate Dutch hospitals. n is 

number of patients; a = calibration intercept; b = calibration slope; c = AUC; mb.c = model-based AUC.    
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Figure 3   Temporal validation: Performance of COPE for predicting ICU admission in second wave patients   

Calibration plots of patients who were admitted since September 2020 in 2 separate Dutch hospitals. n is 

number of patients; a = calibration intercept; b = calibration slope; c = AUC; mb.c = model-based AUC.    
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Figure 4   COPE definition   Implemented in web application https://mrpredicts.shinyapps.io/COPE/. 

log = natural logarithm; exp = natural exponential 

 

Predictor Minimum Maximum 

Age = Age (years)  0 100 

RR = Respiratory rate (/min)  10 60 

CRP = C-Reactive protein (mg/L) 1 500 

LDH = Lactatedehydrogenase (U/L)  50 4000 

Albumin = Serum Albumin (g/L)  10 60 

Urea = Serum Urea (mmol/L) 1 80 

 

lp = -13.6 +   

 0.04575  Age +  

 1.654  log(RR) +  

 0.1688  log(CRP) +  

 1.197  log(LDH)  + 

 -1.585  log(Albumin) +  

 0.5953  log(Urea) 

 

 

Probability of death within 28 days = 1 / (1 + exp( -lp ))  

 

 

Probability of ICU admission within 28 days = 1 / (1 + exp(-( -0.08949 + 0.5970  lp ))) 
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Supplementary figure 1  Apparent validation:  Performance of COPE for predicting death in first wave 

patients   Calibration plots of patients who were admitted from April until August 2020 in 4 separate Dutch 

hospitals. n is number of patients; a = calibration intercept; b = calibration slope; c = AUC; mb.c = model-based 

AUC.    
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Supplementary figure 2   Multivariable effects of continuous predictors of ICU admission within 28 days  

Predictions of the logarithm of the odds by continuous predictor levels, with other predictor levels set to the 

median. Age is modelled with a linear spline with a knot at age 70. Wald statistics are listed within each plot to 

express variable importance. 
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Supplementary figure 3   Apparent validation: Performance of COPE for predicting ICU in first wave 

Calibration plots of patients who were admitted from April until August 2020 in 2 separate Dutch hospitals. n is 

number of patients; a = calibration intercept; b = calibration slope; c = AUC; mb.c = model-based AUC.    
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Supplement 1   Description COPE web application 

 

Background and aim: The COVID-19 pandemic is putting extraordinary pressure on emergency 

departments (EDs). Clinical prediction models have the potential to support decision making about 

hospital admission, but currently available models were recently assessed to contain a high risk of 

bias. We aimed to develop a simple and valid model for predicting mortality and need for ICU in 

patients who are suspected to have COVID-19 when presenting at the ED. 

Methods: For model development, we included patients that presented at the ED and were admitted 

to 4 large Dutch hospitals with suspected COVID-19 between March and August 2020, the first wave 

of the pandemic in the Netherlands. Patients being transferred from or to other hospitals were 

excluded since information on predictors or outcomes was missing. The outcomes of interest were 

death and admission to ICU within 28 days. Based on prior literature we included patient 

characteristics (sex, age, BMI), vital parameters (oxygen saturation, systolic blood pressure, heart 

rate, respiratory rate [RR], body temperature) and blood test values (C-reactive protein [CRP], lactic 

dehydrogenase [LDH], D-Dimer, leucocytes, lymphocytes, monocytes, neutrophils, eosinophils, MCV, 

albumin, bicarbonate, creatinine, sodium, urea), all measured at ED admission, as potential 

predictors. Further we included month of admission to capture changes in outcomes over time. 

Logistic regression was used to obtain predicted probabilities of death and of being admitted to the 

ICU, both within 28 days after admission. Model performance was assessed with temporal validation 

in patients who presented between September and December 2020 (second wave). We assessed 

discriminative ability with the area under the operator receiver characteristic curve (AUC) and 

calibration with calibration plots, calibration intercepts, and calibration slopes. We used multiple 

imputation to account for missing predictor values. 

Results: The development data included 5,831 patients who presented and were admitted at the ED 

up until August 2020, of whom 629 (10.8%) died and 5,070 (86.9%) were discharged within 28 days 

after admission. A simple model – named COVID Outcome Prediction in the Emergency Department 

(COPE) – with linear age and logarithmic transforms of RR, CRP, LDH, Albumin and Urea captured 

most of the ability to predict death within 28 days. Patients who were admitted in the first month of 

the pandemic in the Netherlands had substantially increased risk of death (odds ratio 2.06; 95% 

confidence interval 1.68-2.52). COPE was well-calibrated and showed good discrimination for 

predicting death in 3,252 patients in the second wave (AUC in 4 hospitals: 0.82; 0.82; 0.79; 0.83). 

Admission to ICU was fully recorded for 2,633 first wave patients in 2 hospitals (214 ICU admissions 

within 28 days). The same predictors captured most of the ability to predict ICU admission within 28 

days. However, after the age of 70, the probability of being admitted to the ICU was decreasing with 

age, probably reflecting the decision not to admit older patients to the ICU. To predict the need for 
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ICU admission – rather than historically observed ICU admission – we kept a linear (decreasing) age 

effect after the age of 70 in the model, which will be ignored when making future predictions. COPE 

was well able to identify patients at high risk of needing IC in second wave patients below the age of 

70 (AUC 0.84; 0.81), but overestimated ICU admission for low-risk patients. The models are 

implemented as a web-based application. 

Conclusion: COPE, a simple tool based on 6 routinely measured predictors in the ED, is well able to 

predict mortality and ICU admission for patients who present to the ED with suspected COVID-19. 

COPE may help to inform patients and doctors when deciding on hospital admission. 
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