
Error Rates in SARS-CoV-2 Testing Examined with
Bayesian InferenceI

P. M. Bentley PhD

European Spallation Source ESS ERIC, Box 176, SE-221 00 Lund, Sweden

Abstract

A literature review on SARS-CoV-2 reverse-transcription polymerase chain re-
action (RT-PCR) is used to construct a clinical test confusion matrix. A simple
correction method for bulk test results is then demonstrated with examples.
The required sensitivity and specificity of a test are explored for societal needs
and use cases, before a sequential analysis of common example scenarios is ex-
plored. The analysis suggests that many of the people with mild symptoms
and positive test results are unlikely to be infected with SARS-CoV-2 in some
regions. It is concluded that current and foreseen alternative tests can not be
used to “clear” people as being non-infected. Recommendations are given that
regional authorities must establish a programme to monitor operational test
characteristics before launching large scale testing; and that large scale testing
for tracing infection networks in some regions is not viable, but may be possible
in a focused way that does not exceed the working capacity of the laboratories
staffed by competent experts. RT-PCR tests can not be solely relied upon as
the gold standard for SARS-CoV-2 diagnosis at scale, instead clinical assessment
supported by a range of expert diagnostic tests should be used.

Keywords: SARS-CoV-2, RT-PCR, false positive, false negative, Bayesian
inference, correction

1. Introduction

During the ongoing SARS-CoV-2 pandemic, there have been understandable
calls for widely available testing procedures [1]. The primary use cases were:

1. Identifying infected people in the population as early as possible, ideally
before symptoms are exhibited, so that measures can be taken to avoid
spreading the disease to others.

2. Confirming SARS-CoV-2 infection in patients exhibiting symptoms, so
that they can be isolated, treated and/or studied separately from patients
with other illnesses.
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3. Ruling out SARS-CoV-2 infection, allowing a person to avoid isolation
when exhibiting the milder symptoms shared with other infections of the
respiratory tract.

A common, moderate cost and efficient SARS-COV-2 test is based around
the reverse-transcription polymerase chain reaction (RT-PCR) method. This
was, at the time of writing, referred to as the “gold standard” perhaps opti-
mistically. Indeed, efforts to validate serological testing [2] and computerised
tomography (CT)-based methods [3] have used RT-PCR as a reference of “con-
firmed cases” by which to measure other testing methods. RT-PCR is a rela-
tively simple method, requiring a swab sample that is sent to the lab for chemical
amplification.

Use case 1 would ideally involve a large number of tests being performed
on the general public, and a number of governments have expressed intention
to do this at scale. Use cases 2 and 3 are often performed on admission to
a clinical facility. Use case 3 is particularly important for critical workers in
society, allowing them to return to their duties without fear of spreading the
disease [4] and became a deployed strategy in some regions (e.g. the UK) early
in the pandemic.

These use cases, and the policies of many governments, assume low error
rates from the tests. The reality of any test, unfortunately, is that errors do
occur. Moreover, whilst the statistics of testing is a core component of under-
graduate scientific education, because even seasoned experts occasionally make
statistical mistakes it is worth expending a little patience to cover the ground-
work before tackling the main body of the problem.

This article will therefore summarise the known fundamentals of testing and
bayesian methods for a general readership. The contributions thereafter are the
derivation of a correction method for public data to replace the belief that “a
positive test equals a confirmed case”; before a review of clinical literature is
combined with these methods. There are logically new implications for SARS-
CoV-2 diagnosis; updated probabilities for various prognoses; suggestions for
public policy; and the validity of research relying on “confirmed” cases of SARS-
CoV-2 that are described as a consequence of this work.

1.1. Test Confusion Matrix

A confusion matrix conveniently encapsulates the reliability characteristics
of a test, shown in table 1. One column holds the positive condition (in this case,
“Infected”) and the other column holds the negative (in this case, “Healthy”).
Each row corresponds to a test result, either positive or negative. Thus one sees
that the confusion matrix is a table of test results that are true positive (tp),
true negative(tn), false positive (fp), and false negative (fn). These numbers
could be given as tallies of results, or they could be normalised so that each
column sums to unity and each matrix element represents a probability of that
test result being given for a given infection status.
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Infected Healthy
Test Negative fn tn
Test Positive tp fp

Table 1: Confusion matrix for a generic test.

In addition to estimates of variables one must also propagate the uncertainty,
error, or statistical accuracy of the values. This usually has the symbol σ, and is
given by the square root of the counts of the measured quantity. σ is widely used
in physics, but frequently in medicine one quotes the 95% statistical confidence
level, which is ∼ 1.96× σ. Considering a number of positive npos and negative
nneg test results from a total of n = npos+nneg tests, we estimate the probability
of returning a positive result, and it’s confidence range, with the following well-
known equations:

pest =
npos
n

(1)

err95%(pest) ≈ 1.96

n
√
n

√
nposnneg (2)

In other words, we have our best estimate of pest, and 95% confidence that p
actually lies betwen (pest − err) and (pest + err).

The test characteristics are often presented as well-known parameters. The
sensitivity, se, or true positive rate (TPR) measures how much of the “infected”
column is correctly identified. It is given by:

se =
tp

tp + fn
(3)

and the specificity, sp, or true negative rate (TNR) measures how much of the
“healthy” column is correctly identified. It is given by:

sp =
tn

tn + fp
(4)

These are related to the false negative rate (FNR) and false positive rate
(FPR) by

se = 1− FNR (5)

sp = 1− FPR (6)

The false positive and false negative rates are to some degree tuneable by the
test designer. This can be visualised as a “gain” control on an amplifier. Turning
up the gain makes it more likely to catch fainter, positive signals, (false negatives
decrease). The “gain” here in the amplification process is therefore correlated
very strongly with the statistical sensitivity. However, increasing sensitivity
therefore increases the noise (false positive rate increases). Conversely, turning
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down the gain reduces the noise (false positive rate goes down) but makes it more
likely that you miss weaker signals of interest (false negative rate increases).

Test designers therefore try to balance these two effects to minimise risk.
ROC curve analysis [5] can be used to tune test procedures quite accurately for
a given prevalence. Including cost/benefit analysis in the test design [6] allows
one to adjust the sensitivity of the test relative to the disease prevalence, which
was summarised very well by Kaivanto [7]. As a side note, it seems that some
batches of false positive results are likely to be related to incorrect sensitivity
for a particular use case, and not simply statistical anomalies or quality issues.

The confusion matrix in table 1 allows us to write two simultaneous equations
for the situation where a number of tests are used in the field. Let us imagine
that in a testing programme, npos of these tests return positive results, and nneg
return negative results. How many are actually infected? Let us further imagine
that, before launching the mass testing programme, one took the essential step
of fully mapping the confusion matrix with a thorough clinical study (currently
lacking for SARS-CoV-2 testing). One can then establish, from the test result
totals, the actual number of infected patients Ni. We must first eliminate the
number of non-infected or healthy patients Nh from

nneg = Nifn +Nhtn (7)

npos = Nitp +Nhfn (8)

These are simply a symbolic representation of table 1. Solving these simultane-
ous equations for Ni then yields a simple equation to estimate for the number
of patients actually infected with SARS-CoV-2:

Ni =
nnegfp − npostn
fpfn − tptn

(9)

Instead of erroneously reporting npos as the number of infected people, Ni gives
the accurate result if the test has been properly characterised. This equation is
applied in sections 3.1 and 3.2.

1.2. Bayes’ Theorem and Base Rate Fallacies

If one would like to use a test to diagnose a patient, or to rule out possible
infection so that they can be safely released back into society or a work function,
the confusion matrix alone is insufficient. One must also consider the base rate,
or prevalence, in the context of the test. For example, a test that has a 90%
sensitivity incorrectly clears 10% of those infected. If we imagine an enclosed
group, for example a jail, filled with sick patients in their beds, it is intuitive
that any test results coming back negative from symptomatic patients in that
group should be treated with caution.

Conversely, if one used a test that has a 90% specificity, it still returns a false
positive 10% of the time. If one then attempts to screen millions of citizens
in an attempt to find individuals with a disease afflicting one in a thousand
people, then one intuitively knows that the infected cases will be buried amongst
hundreds of thousands of false positive results.
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Ignoring the prevalence of the phenomenon for which one is testing is a well
known statistical error called the base rate fallacy. Taking into account the base
rate, and the confusion matrix, one can introduce combinations of probabilities
to study common scenarios. For example, whether or not a person has symp-
toms, and is tested, what is the probability that the person is actually infected,
considering that there exist alternative diagnoses with similar symptoms, and
that some patients remain symptom free?

The key to tackling these scenarios rapidly, objectively, and conclusively,
is Bayes’ theorem. Bayesian inference has been applied in two forms: both
using continuous distribution functions or discrete variables. This article uses
the latter, i.e. probability functions of Boolean variables of disease evidence e.
The evidence e = 1 could be a positive test result, or exhibition of symptoms,
whilst e = 0 is the absence of this evidence. The disease status d = 1 indicates
infection, and d = 0 ⇒ ¬d = 1 indicates the lack of infection. In these terms,
Bayes’ theorem is:

p(d|e) =
p(e|d)× p(d)

p(e)
(10)

p(d|e) is the conditional probability that we are trying to establish: given
the evidence e, what is the probability that the person has the disease status
d? In maths and physics, this is known as the “posterior”, and in the medical
community it is known as the “posttest” probability.

p(e|d) is the likelihood of obtaining evidence e, assuming that the patient
has the disease. If the evidence is a positive test result, and one took all the
infected patients who had the disease, then p(e = 1|d = 1) is the fraction of
those patients that would be expected to return a positive test result: it is the
true positive rate of the test tp from section 1.1. If evidence e is a symptom of
the disease, then p(e|d = 1) is the fraction of infected patients who exhibit that
symptom, based on expert clinical studies of the disease.

p(d) is the (“prior”) probability, or base rate, of any individual having disease
status d, irrespective of the evidence e. In the medical community, it is called
the “pretest” probability.

Lastly, p(e) is the (“marginal”) likelihood of obtaining evidence e considering
both that the patient may have the disease or may not.

The marginal term p(e) is conveniently expanded using the law of total
probability:

p(e) = p(e|d)p(d) + p(e|¬d)(p(¬d)) (11)

= p(e|d)p(d) + p(e|¬d)(1− p(d)) (12)

where, for example, p(e = 1|d = 1) is the probability of an infected person yield-
ing a true positive result; and p(e = 1|¬d = 1) is the probability of obtaining
a false-positive test result e = 1 from a non-infected patient (fp in section 1.1):
these variables can be obtained from tables of test results from clinical studies,
as will be shown in tables 2 and 3. Equation 11 demonstrates the method of
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logical combinations of probabilities. If we imagine events P and Q that occur
independently, with probabilities p(P ) and p(Q) respectively, then:

• AND: p(P ∧ Q) = p(P )× p(Q)

• OR : p(P ∨ Q) = p(P ) + p(Q)

• NOT: p(¬P ) = (1− p(P ))

One can immediately see, then, why an impressive-sounding test likelihood
p(e|d) leads people into the base rate fallacy, i.e. forgetting to normalise by
multiplying with the base rate p(d) and dividing by the marginal term p(e). It
is also the current situation facing many with RT-PCR test results, compounded
by the use of laboratory rates of sensitivity and specificity rather than those in
the field.

The marginal term has one final noteworthy utility, that is to remove the
effect of time bracketing of illnesses, symptoms, or statistics gathering. Some
rates are given per day, per week, or per year, and the marginal allows us to
compare fairly disparate definitions of rates.

Bayes’ theorem can be applied sequentially to multiple scenarios, where the
“output” posterior probability of one assessment p(d|e) is used as the “input”
prior probability p(d) for a subsequent test, because combining multiple sce-
narios with logical AND is simply multiplication. This is known as bayesian
inference or bayesian updating, where each step adds a new fact that is used to
quantiatively adjust the confidence level of the hypothesis. This is also known
as Bayesian belief updating — or evidence accumulation — where “today’s pos-
teriors are used as tomorrow’s priors”.

1.3. Testing and Policy

Despite being refuted by clinical expert input [8], at the time of writing
the strategy of seeking a single negative RT-PCR test result to indicate an
absence of infection was in use in some areas. In Sweden, for example, the public
health agency — Folkhälsomyndigheten — stated [9] that “Testing people with
symptoms of covid-19 who work in socially important activities to be able to
rule out disease is important.” Which it is. The organisation then provided
links, via another organisation, identifying which jobs fell into this category.
It was then up to the regional powers to implement guidelines. At the time of
writing, people did not have to isolate after a negative test result once symptoms
disappear or after waiting for 7 days [10]. This strategy is a mistake because
it ignores false negatives: patients who are infected with SARS-CoV-2 but for
whom the test result is incorrect.

Meanwhile, the advice from the United States Centers for Disease Control
and Prevention stated [11] for a significant part of 2020 that a “positive test re-
sult means you have an infection”. The published threshold for detection at 95%
confidence by one major supplier of SARS-CoV-2 test kits was 136 copies/mL
[12], which evidently leads to confidence in the test results, and by which clinical
guidelines have been written that assert laboratory test specifications as being
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representative of operational specifications [13]. These both assumed, perhaps
prematurely, a negligible operational rate of false positives: patients who were
healthy and for whom the test result was incorrect.

During the writing of this article, the CDC have correctly updated their
guidelines [14]. Whilst they still stated that a positive test result “indicates
that RNA from SARS-CoV-2 was detected, and therefore the patient is infected
with the virus and presumed to be contagious” there were disclaimer clauses
encouraging clinical observations and context for positive test results, and that
negative test results do not rule out SARS-CoV-2.

The UK guidance, from the country’s National Health Service, specified [15]
that a person testing negative did not need to self isolate if “everyone you live
with who has symptoms tests negative”, amongst other criteria. However, with
a false negative rate of 35%, which is representative, just over 1 in 10 infected
households would return negative results for a couple, and more than 1 in 100
would return all negative for a family of four. The UK advice specified further
mitigating measures, including that a person who feels sick should still isolate
at home, but it did not offer guidelines as to how long.

In contrast, the French labour ministry specified a fairly rigorous quarantine
protocol [16]: that anyone who had encountered an elevated risk situation should
isolate for 7 days, then take a test. A positive test result required 7 further days
of isolation. Even with a negative result, a person who had symptoms must
continue isolation until 48 hours after the fever subsides. The public health
agency stated that in the case of a negative test the patient should inform the
doctor and respect their advice [17]. This is a sensible improvement over the
Swedish policy, leaving the possibility open for expert input to rule out false
negatives, but it carries possible inconsistency over a range of interpretations
and diagnoses.

All of the above is not to say that any specific country, or organisation, is
wrong to deploy tests with significant error rates. In an emergency situation,
it is correct that any test is better than no test at all. However, SARS-CoV-2
is no longer a new disease: the pandemic has been running for more than a
year. It is essential that the error rates are properly understood, to minimise
the impact of incorrect test results.

2. Existing Literature

It was identified at the early stages of the pandemic that RT-PCR tests used
outside the laboratory setting were underwhelming when used as a reference for
other clinical testing options [3]. Using Ai’s data, one can construct a confusion
matrix for RT-PCR tests relative to chest x-ray combined with diagnosis from
a qualified medical expert, which is summarised (as an example) in table 2.

One should note that those RT-PCR tests were performed in a clinical setting
by a trained medical worker, supported by an expert laboratory. Collecting the
test sample is not painful, but uncomfortable because it triggers a gag reflex
and a strong negative reaction to an object pushed into the nasal cavity. For
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Test Result Infected Healthy

Negative 308 105
Positive 580 21

Negative 0.35 (0.32–0.38) 0.83 (0.77–0.90)
Positive 0.65 (0.62–0.68) 0.17 (0.10–0.23)

Table 2: Confusion matrix for the RT-PCR test using data from hospital-administered tests of
more than 1000 patients, reported by Ai et al [3]. The lower upper two rows show Ai’s reported
data, the lower two rows convert these into rates. The ranges in parenthesis correspond to
the 95% confidence intervals.

a detailed overview and discussion, see Syal [18]. The end result is that for
home testing kits, drive-thru facilities, or similar, where the patient or a family
member collects the samples, and the processing of the kits is done at scale
by non-expert technicians, one should therefore anticipate additional adverse
effects — particularly an increase in false negatives.

There has been an effort to address the issues that are the primary subject
of this paper [13]. Whilst Watson et al used a sensitivity of 71%, which appears
consistent with the previously mentioned literature, their assumed specificity
of 95% was based on laboratory test data. Even if Watson’s assumption was
correct, the results of the present study remain valid. Nonetheless, it appears
that the confusion matrix of table 2 from Ai et al ’s study [3] is still the best
estimate of the characteristics of RT-PCR testing for SARS-CoV-2 in the field.
Moreover, it will still be shown in section 4.1 that Watson’s assumption, and the
USA specificity reverse-engineered in section 3.3, still lie below what is needed
for the use cases of the RT-PCR test.

2.1. False Negatives

The data from Ai revealed that more than 1/3 of infected people would be
expected to return a negative result and return to their usual routine. Even
if this person develops symptoms later, their negative test result provides false
security that may affect their behaviour towards the risk of spreading the disease.

False negatives can occur when not enough virus material is present in the
sample, either due to the biological response of the patient or the sampling.
They could also occur due to incorrect processing of the sample. The principal
danger with false negatives is that an infected patient is considered safe and
potentially infects others. There is evidence of multiple false negatives that
proved challenging and time consuming to diagnose [19] — repeating the test
may not be a valid solution (the statistical independence of multiple tests will
be addressed shortly).

It appears that there is some time dependence as one would expect, as
reported by Kucirca [20] and shown in figure 2.1. Virus shedding is extremely
low at the moment of infection, the sensitivity first passes above 50% around 4-5
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Figure 1: Time dependence of the probability of obtaining a negative RT-PCR result from an
infected patient, after Kucirca et al [20].

days after exposure, reaching a peak at 8 days, before decreasing slowly. This
goes some way to explain the challenges faced by multiple negative test results
in a patient admitted for hospital care [19]. The timing of the testing with
respect to the progression of the infection is therefore quite important, and is in
many ways linked with complex social factors. A test subject may be motivated
to seek or avoid testing at certain times; they may report erroneous timings of
symptom onset due to poor memory or optimistic estimation; or they may be
pressured to take a test at an inopportune moment. The worst-case scenario
from figure 2.1 is someone taking a test in the early stages of infection and
almost certainly receiving a negative result. They then believe themselves to
be free of the disease even as symptoms develop, and do not take the necessary
precautions to avoid spreading the infection to others. Even at the peak of
sensitivity, one could expect false negative rate of 21%.

After 16 days, the sensitivity drops back below 50% again. Of course, at some
point the lack of measurable virus presence transitions from a “false negative”
to a status of recovered health. Many regions have assumed a 14 day quarantine
period, and a 14 day reporting statistical window, which are compatible with
this curve.
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The average of this curve is broadly consistent with Ai’s data, and so the
remainder of the study will use a single false negative rate for simplicity.

2.2. False Positives

The “Healthy” column of table 2 shows the specificity implied by the Ai et al
data. Almost 1/5 of healthy people would be incorrectly identified as infected.

False positives could occur with contamination and incorrect processing of
the sample, amongst other mechanisms [21]. Large “batches” of false positives
have been tied to specific test kits [22], and how they were used [23] (although,
as part of that explanation it appears that there is a misunderstanding of the
false negative rates). A major risk scenario is admitting a sick patient, who tests
positive, into a SARS-CoV-2 ward when they actually have a different illness,
a situation that was narrowly avoided in Japan recently [24]. Fortunately, a
clinical assessment intervened and the patient was separated from SARS-CoV-2
patients pending further investigation.

False positives are less dangerous in wide screening settings — unlike some
Kafkaesque drug testing scenarios, for example — but false positives raise anxi-
ety and carry social and economic costs that spread into the community around
those tested. There is a risk that a false positive result creates an understandable
yet mistaken belief in possessing some immunity, leading some to potentially
place themselves and their close contacts at increased risk of infection. False
positive test results might also affect plans for vaccination: if a significant frac-
tion of positively-tested patients have no detectable antibody level, this might
be misunderstood as a loss of immunity rather than incorrect test results. The
same applies for anecdotal stories of people who report having had mild SARS-
CoV-2 in spring, then recovering, only to suffer a severe SARS-CoV-2 illness
later in the year. Some of those cases may be false positive test results.

More recent indications of false positive rates [21] indicate possible improve-
ments may have been made, raising sensitivity and specificity above 95%. How-
ever, on further examination of the cited references (e.g. [25, 26]) one finds
that these are again laboratory studies rather than clinical studies. Mayers and
Baker [25] state that in the UK, the operational false positive rate is unknown.
Most recently, Cohen et al reviewed [27] the available literature and found two
clinical studies reporting false positives. The first by Albendin-Iglesias et al
[28] indicates clinical false positive rates of around 2.6% (CI 0.9-4.3%). The
second by Katz et al [29] reports the use of multiple tests and a clinical false
positive rate of 7.1% with disruption to planned medical procedures as a re-
sult. Unfortunately, in the Katz et al publication it does not appear that full
a data breakdown of cases and test results is given, with which to estimate the
confidence interval.

It will be shown in section 3.3 that the clinical specificity in the USA is
generally above 91% (i.e. the false positive rate is below 9%).

2.3. Working Confusion Matrix

The working confusion matrix for this study uses the sensitivity data im-
plied by Ai et al without modification. Regarding the clinical specificity, there
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Test Result Infected Healthy
Negative 0.35 0.83 – 0.974
Positive 0.65 0.17 – 0.026

Table 3: Working confusion matrix for the rest of this study. Specificity of 83% will be
called “pessimistic”, and 97.4% will be called “optimistic”. These data, obtained from the
most recent clinical results in the literature, are used as the p(e|d) and p(e|¬d) parameters in
equations 10 and 11.

appears to be more variation. One has a false positive rate of:

• 16.7% (CI 10–23%) from Ai et al [3]

• <9% from section 3.3

• 7.1% from Katz et al [29]

• 2.6% (CI 0.9–4.3%) from Albendin-Iglesias et al [28]

Henceforth, two figures will be generally given, as a range. The pessimistic is
the data of Ai (≡ P−#), and the optimistic is the data of Albendin-Iglesias
(≡ O−#).

2.4. Priors

Once one has established a confusion matrix for the test, one must then
estimate the prior, or pretest, probability of being infected (from the prevalence)
and some conditional probabilities of shared symptoms with other illnesses such
as colds and influenza.

One therefore requires answers to the following questions:

1. What is the prevalence of SARS-CoV-2, or what is the probability of being
infected by SARS-CoV-2 within a given time window (e.g. 14 days)?

2. Of those infected with SARS-CoV-2, how many have symptoms matching
colds or influenza?

3. Of those infected with SARS-CoV-2, how many have symptoms that are
unique indicators of SARS-CoV-2 infection?

4. What is the probability of being infected by colds or influenza within a
given time window (e.g. 14 days)

5. What is the probability of suffering serious symptoms (e.g. pneumonia,
CT anomalies) whilst infected with colds or influenza?

Regarding the first point (q. 1), the infection rate has been tracked by
ECDC. One assumes these data are mainly positive RT-PCR test results, and
at the time of writing these placed many western countries around 600 cases
per 100,000 citizens in a 14 day window at the autumnal “second wave” peak
in many western countries (= 0.006) [30]. This was still a low prevalence rate,
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far below the error rates of the test. The cumulative of the rate would be
proportional to the seroprevalence as studied by Eckerle and Meyer from several
hot-spots [31]. One sees at most a seroprevalence of just over 7% in Sweden, and
a somewhat higher level above 10% in the most infected areas around Madrid
and Geneva, after a few months of the disease spreading. In light of those
figures, an average 14 day infection rate of 600 cases per 100,000 citizens seems
reasonable.

Some of these other questions are partially answered by a study of passengers
aboard the cruise ship “Diamond Princess” [32]. Around 54% (CI 50–57%)
showed cold-like symptoms (q. 2) at the time of testing, around 10% (CI 7–
12%) required intensive care (q. 3) and 2.4% (CI 1–4%) died (note that there is
an error in their paper). These numbers are about to be challenged, somewhat,
in the next section.

In the absence of SARS-CoV-2, the symptoms of cough and fever together
would indicate influenza, but this correctly identifies influenza around 2/3 of the
time [33]. Clearly, the use of mild respiratory tract infection symptoms is not
reliable in distinguishing between SARS-CoV-2, common colds and influenza.

Regarding more unusual mild symptoms, a recent study by Bénézit et al
[34] linked positive corona tests in France with hyposmia and hypogeusia, with
a sensitivity of 42% and specificity of 95%. However, both of these symptoms
are not specific to SARS-CoV-2. Indeed, a study pre-SARS-CoV-2 by Henkin
et al [35] reported around 61% of influenza patients reporting anomalous taste
and smell effects. Moreover, Bénézit’s study filtered SARS-CoV-2 patients using
RT-PCR results! This study should be considered inconclusive in light of the
present article, but a similar study focussing on patients admitted to hospital
and subject to a more rigorous assessment would be most interesting.

There are some anecdotal links reported between dysgeusia and possible
SARS-CoV-2 infection, where a metallic/sour taste is experienced with the other
common cold symptoms (including by this author, which resulted in this article).
Lozada-Nur et al [36] and Aziz et al [37] have reviewed the literature on this
topic and suggest that it may be a rather common symptom, but unfortunately
these studies did not isolate dysgeusia specifically and bundled all the sensory
disturbances under a common bracket. One therefore, regretfully, must ignore
for now the symptoms as a distinguishing factor.

Question 4 is answered by Eccles [38], and is in the range 2-5 per year. The
calculations in the present study use 4/yr as a working number. Assuming each
cold/flu lasts on average a week, one can scale 4/yr to compare with 14 day
infection rates of SARS-CoV-2. This 14 day cold rate (15%) is the prior that
will be used for common colds and influenza.

Question 5 has been tracked by the US Centers for Disease Control and Pre-
vention (CDC) [39] where, for example, the 2017-2018 influenza season resulted
in a hospitalisation rate of 1.8% and a death rate of 0.14% out of a total of
around 44.8 million cases for influenza.

As mentioned earlier, a number of studies have used RT-PCR tests as a
“gold standard” reference, without referring to the matrix of confusion as given
in table 2. Therein lies our problem. For example, if the entire Diamond
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Princess population of 3711 people were healthy, then a RT-PCR test campaign
will nonetheless return approximately P-619 or O-96 positive results (all false).
In reality, 712 tests were returned positive, indicating a non-zero infection rate
on the ship, but the number of infected people was clearly not 712.

If one were to look at country data, for example Sweden, the European
Centre for Disease Control (ECDC) reports [30] that 1000-2500 tests were per-
formed per week per 100,000 population. Assuming the number is at the low
end of that range, this is a total of 100,000 tests per week for a population of
∼10 million. Were the whole population healthy, one would record 16,667 false
positives per week, which is P-2381 or O-371 false positives per day. This should
be compared with the daily reported case rate averaged over 14 days for the
same period, i.e. 4007 cases per day. Again we see that the actual infection rate
is non-zero, but the false positive rate of the RT-PCR test would suggest that
the real infection rate is lower than the reported cases.

3. Results

3.1. Correction of Diamond Princess Data
The pessimistic estimate of specificity is appropriate in this case, since the

work was done early in the pandemic and likely used similar RT-PCR kits to
those used by Ai et al. Using the correction equation 9 and the pessimistic
specificity, we are solving the simultaneous equations:

2999 = 0.347Ni + 0.833Nh (13)

712 = 0.653Ni + 0.167Nh (14)

Solving yields the total number of infected patients aboard Diamond Princess to
be Ni = 192; of which 37 patients required intensive care (≈19%, CI 14–25%)
and there were 9 deaths (≈5%, CI 2–8%). The remaining 189 symptomatic
patients were possibly suffering from a different infection spreading through the
ship. The false positive rate may also explain why passengers who had been
isolated in their rooms were reported to be testing positive — at the time the
air ventilation systems were hypothesised to be responsible for the transmission,
but for some of those patients it is likely that the false positive rate of the test
is a more plausible explanation.

Tabata et al [40] reported that 107 people were taken to a military hos-
pital after returning positive RT-PCR tests, and the fortunes of 104 patients
were followed after 3 withheld consent. 33/104 were asymptomatic at the end
of the observation period; 43/104 had mild symptoms and 28/104 had more
“severe” symptoms. Of the 33 asymptomatic people, 17 had abnormal radio-
graphical lung findings which are linked with SARS-CoV-2 diagnosis [3]. Of the
71 symptomatic patients with positive RT-PCR results, 52 (73%, CI 63–84%)
had abnormal lung radiographical findings.

From these data, it appears that Tabata et al ’s study has captured at least
52+17=69 of the ∼193 infected patients. These figures indicate that symptom-
free SARS-CoV-2 may be around 17/69=25% of cases (CI 14–35%) — and
conversely 75% (CI 65–86%) of patients exhibit symptoms, in answer to q. 2.
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3.2. Sweden

Likewise for the previous subsection, equation 9 yields Ni = 3336 infected
people per day, slightly lower than the official count of 4007. Swedish state
television reported daily intensive care admissions [41] at 190 per day at the
time of writing, which is 5.6% of cases. The death rate in Sweden was 19 per
day, suggesting 0.6% mortality rate. These are much less intimidating figures,
with a broader social demographic, in comparison to those of the cruise ship,
though the Swedish figures were increasing through an autumnal “second wave”
and both hospitalisation and death tend to be delayed [42], by a median of 12
days and 19 days respectively.

Taking these delays into account, one should look at the case rates over the
time window of 2-4 weeks prior, at which time there were a corrected Ni = 1147
infections per day at the start of November 2020, implying that around 17% of
patients will require intensive care, and a mortality rate of approximately 1.7%.
These are at the lower end of the range of confidence of the Diamond Princess
cases.

If one uses the optimistic specificity of 97.4%, the corrected infection rate
increases to Ni = 5797 per day, higher than the official 4007 case rate because
of the false negative rate. Time shifting 2-4 weeks prior, one obtains Ni = 4100,
coincidentally similar to the official up-to-date case rate. This would imply 4.6%
require intensive care, and a mortality rate of 0.5%. These seem anomalously
low. There are a few possible explanations:

• The test false positive rate in Sweden was much higher than the optimistic
rate (most likely explanation)

• Swedish medical care provided outlooks that are significantly superior to
the those of the Diamond Princess population (unlikely)

• The virus in Sweden had evolved to a less dangerous form than experienced
by those infected on Diamond Princess (unlikely)

From this, it seems logical to conclude that in Sweden the false positive rate
for RT-PCR is significantly higher than the optimistic rate, and closer to the
pessimistic values in section 2.3.

3.3. USA

The US CDC [11] reported 79,611,982 tests, of which 6,873,739 were positive.
Applying equation 9 to these data with the pessimistic specificity indicates a
negative Ni. This can only happen if the model false positive data are too high
for the USA. This is encouraging. Calculating Ni as a function of specificity, one
sees that Ni first becomes positive for a specificity just above 91%, suggesting
that — in the USA at least — the false positive rate is less than half of the
pessimistic estimate in section 2.3, and that the approach proposed by Watson et
al [13] to use the laboratory specificity rates of 95% are close to the operational
parameters in that case.

The optimistic specificity yields a solution Ni = 7, 659, 736, again this is
higher than the official count because it corrects for the false negative rate.
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Parameter Symbol Value
14d Cvd Rate rc 0.006
14d Cold/flu Rate rf 0.15
Cvd Symptoms if infected sc 0.75
Cvd hospitalisation rate hc 0.19
Flu hospitalisation rate hf 0.018

Table 4: Parameters used in the Bayesian analysis. “Cvd” here denotes SARS-CoV-2. rc of
0.006 corresponds to 600 cases per 100,000 people in a two week period.

3.4. Bayesian Inference

3.4.1. Summary of Priors

The accumulated prior probabilities from the first half of this article are
summarised in table 4. Note that the entry “Cold/flu Rate” combines both the
illness rate and the probability of exhibiting symptoms.

Armed with these data, one can proceed to examine scenarios such as “If
someone has a cough, and receives a negative RT-PCR test result, how probable
is it that they do not have SARS-CoV-2 and are able to return to work?” or
“If we test a person who appears healthy, and they test positive, what is the
probability of infection?”

3.4.2. Corrected RT-PCR Test Curves

Taking into account the base rate and marginal probability, and using the
pessimistic specificity in section 2.3, the probability of a correct test result vs
the SARS-CoV-2 prevalence is shown in figure 2. There one can see that, at
a prevalence causing alarm (600 cases per 100k population), the positive RT-
PCR tests almost always yield incorrect results. The negative curve, on the
other hand, matches that of Woloshin et al, and they have a good online figure
for interested readers to explore the maths with different levels of sensitivity
and specificity.

These curves are “blind tests”: one tests everyone, irrespective of symptoms
or other factors. In the following sections, Bayesian inference will be applied to
combine sequentially the effects of reporting symptoms in combination of taking
tests for some scenarios of interest.

3.4.3. Mild Symptoms and Positive Test Result

The first example is a person from a social pool with 600 cases per 100k
population, who has only mild symptoms and either they are requested to take
a test because of employment, or they are worried. The analysis is shown in
table 5. Without a test, they have a 2% probability of being infected by SARS-
CoV-2, and with a positive test result this increases to an 11–42% probability
of being infected, depending on whether one uses the pessimistic or optimistic
false positive rate respectively. As a result, 58–89% of such people will believe
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Figure 2: The probability of a correct RT-PCR test result, for both positive and negative
test results, vs the prevalence of SARS-CoV-2 in the test pool per 100k population. Two
curves are given for each, where (P) indicates a pessimistic 17% false positive rate, and (O)
indicates optimistic 2.6% false positive rate. At the time of writing, many western countries
are experiencing a prevalence of 0.6% (600 cases per 100k population in a 2 week period).

they have corona without actually having the disease. Any antibody studies
performed on these individuals later will be erroneous, because it is unlikely
that any antibodies will be detected.

3.4.4. No Symptoms and Positive Test Result

The next patient to consider is someone from a social pool with 600 cases
per 100k population who has no symptoms, but they take a test either as a
mass-screening project or because through a tracing system someone they have
contacted was identified as being positive for SARS-CoV-2. The analysis is
shown in table 6. Before testing, this person has a 0.1% probability of being

Description Posterior Likelihood Prior Marginal
Baseline / prior 0.006
+ Cold/flu symptoms 0.0286 0.754 0.006 0.16
+ Positive test (P) 0.11 0.653 0.0286 0.181
+ Positive test (O) 0.42 0.653 0.0286 0.0439

Table 5: Bayesian inference of a positive SARS-CoV-2 test on a person with cold/flu symp-
toms, assuming 600 cases per 100k population. The final, posterior probability of SARS-CoV-2
infection is 11% with the pessimistic false positive rate, and 42% with the optimistic number.
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Description Posterior Likelihood Prior Marginal
Baseline / prior 0.006
+ No symptoms 0.00148 0.246 0.006 0.995
+ Positive test (P) 0.00580 0.653 0.00148 0.167
+ Positive test (O) 0.0360 0.653 0.00148 0.0269

Table 6: Bayesian inference of a positive SARS-CoV-2 test on a person with no symptoms,
assuming 600 cases per 100k population. The final, posterior probability of SARS-CoV-2
infection is 0.6% with the pessimistic false positive rate, and 4% with the optimistic false
positive rate.

Description Posterior Likelihood Prior Marginal
Baseline / prior 0.006
+ Severe symptoms 0.294 0.192 0.006 0.0039
+ Positive test (P) 0.620 0.653 0.294 0.310
+ Positive test (O) 0.913 0.653 0.294 0.211

Baseline / prior 0.006
+ Severe symptoms 0.294 0.192 0.006 0.0039
+ Negative test (P) 0.145 0.347 0.294 0.690
+ Negative test (O) 0.129 0.347 0.294 0.789

Table 7: Bayesian inference of a positive or negative SARS-CoV-2 test result from a person
admitted to hospital with severe symptoms, assuming 600 cases per 100k population. The
final, posterior probability of SARS-CoV-2 infection is 62–91% for the positive test result,
and 13–15% for the negative test result, depending on whether one is pessimistic or optimistic
regarding false positives, respectively.

infected. After a positive test, they have a 0.6% – 4% probability of being in-
fected. This person also represents a spurious data point in any future research,
since they most likely do not possess any immunity.

3.4.5. Severe Symptoms

This patient from a social pool with 600 cases per 100k population is ad-
mitted to hospital complaining of severe symptoms and are immediately given
a test. The analysis is shown in table 7. Before testing, the patient has a 29%
probability of being infected. If the test returns a positive result, they have a
62–91% probability of being infected (depending on the false positive rate), and
if negative they have a 13–15% probability of being infected.

3.4.6. Exposed Person No Symptoms

This person was taken from an outbreak pool where 2/3 of people are in-
fected. The analysis is shown in table 8. Before testing, the patient has a 36%
probability of being infected. After a negative test result, they have a 17–19%
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Description Posterior Likelihood Prior Marginal
Baseline / prior 0.666
+ No symptoms 0.361 0.246 0.666 0.450
+ Negative test (P) 0.190 0.347 0.361 0.658
+ Negative test (O) 0.167 0.347 0.361 0.658

Baseline / prior 0.666
+ No symptoms 0.361 0.246 0.666 0.450
+ Positive test (P) 0.689 0.653 0.361 0.342
+ Positive test (O) 0.934 0.653 0.361 0.252

Table 8: Bayesian inference of a SARS-CoV-2 test on a person taken from a social group with
high prevalence and no symptoms. The final, posterior probability of SARS-CoV-2 infection
is 17–19% for a negative test result, and 67–93% for a positive test result, depending if one
assumes a pessimistic or optimistic false positive rate, respectively.

probability of being infected, depending on the false positive rate. Almost 1/5
of the “cleared” patients will actually have the infection. On the other hand,
a positive test result indicates a 69–93% probability of being infected for pes-
simistic and optimistic false positive rates respectively.

3.4.7. Exposed Person With Symptoms

This person with symptoms was taken from an outbreak pool where 2/3 of
people are infected. The analysis is shown in table 9. Before testing, the pa-
tient has a 91% probability of being infected. After a negative test, they have
a 77–80% probability of being infected. This is perhaps the most challenging
scenario. This person could be “cleared” by the test under some current pol-
icy scenarios. Keeping them quarantined protects others, but 20–23% of the
patients are expected to be clear of SARS-CoV-2 and holding them back puts
them at risk of infection.

On the other hand, after a positive test, they have a 97–99.5% probability
of being infected.

4. Discussion

It is a known fact that low prior probabilities have a significant impact on
posterior probabilities, but nonetheless the worked examples should be a guide
to informed decision making for likely scenarios.

At low prevalences, even if the test result is positive and one assumes that
the false positive rate is at the most optimistic end of the range, whether the
patient has symptoms of respiratory tract infection is the differentiating factor,
taking the infection probability from 3.6% to 42%, as shown in tables 5 and 6.
Nonetheless, more than half of those testing positive and having mild symptoms
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Description Posterior Likelihood Prior Marginal
Baseline / prior 0.667
+ Symptoms 0.905 0.754 0.667 0.550
+ Negative test (P) 0.798 0.347 0.905 0.393
+ Negative test (O) 0.772 0.347 0.905 0.407
Baseline / prior 0.667
+ Symptoms 0.905 0.754 0.667 0.550
+ Positive test (P) 0.974 0.653 0.905 0.607
+ Positive test (O) 0.995 0.653 0.905 0.593

Table 9: Bayesian inference of a negative SARS-CoV-2 test on a person with symptoms taken
from an infected group with high prevalence. The final, posterior probability of SARS-CoV-2
infection is 77–80% with a negative test, and 97–99.5% with a positive test, depending on a
pessimistic or optimistic assumed false positive rate, respectively.

will still not be infected! Scientific studies using these patients can not be relied
upon, unless some other expert input has been given in the diagnosis. Such a
clinical diagnosis might include, for example, taking into account contact with
a person who has exhibited more severe SARS-CoV-2 symptoms and had a
positive test.

At the other end of the prevalence scale, one sees that in a group with 2/3
assumed infection prevalence, a negative test result with no symptoms carries
just less than 20% risk of infection, whilst mild symptoms with a negative test
result indicates just under 80% infection risk. Once again, it is the presence
of symptoms that affects the probabilities more than the test result alone, and
knowing that there is a delay of almost a week before the onset of symptoms
those patients should still be quarantined. For positive test results in this pool,
the presence or not of symptoms becomes irrelevant.

There are anecdotal stories of people being offered repeat tests in order to
reduce the error rate for the combined results. For example, let us assume that
the false negative rate is 35% and the first test is negative (ignoring prevalence
and symptoms). The test is repeated and it is also negative. The assumption
at this stage is that the false negative rate is 0.35 × 0.35 = 0.123. This is
incorrect, because the false negative rate may be a systematic error due to the
virus shedding mechanics [20], collection of sample, and its processing — the
two tests are not stochastically independent. The same is true in the effort to
guard against false positives: if the test kits both come from the same batch,
are processed by the same people, in the same facility, using the same “black
box” procedure, then they are unlikely to be stochastically independent and
the errors in both tests are correlated. It is a standard procedure in science
and engineering that the validation of any result be truly independent, for this
reason. It would take an expert eye with experience in RT-PCR to look at the
fluorescence vs cycle curves to guard against the false positives in this scenario,
which appears to be the key to Australia’s successful testing programme (see
next section).

From figure 2, one might think that as the disease spreads the positive test

19

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 27, 2021. ; https://doi.org/10.1101/2020.12.17.20248402doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.17.20248402


Figure 3: With even a relatively high prevalence of 600 cases per 100k population, these
curves show that a false positive rate of < 0.001 is needed for a useful test, i.e. a specificity
of > 99.9%. This result is not strongly affected by the true positive rate, as shown by the two
curves indicating a perfect test or with the true positive rate of 0.65 as used in the rest of this
paper.

results will become more reliable. Whilst that is true, bear in mind that, in
February 2020, the total adult critical care capacity of England was 4122 beds
[43]. If one takes the ICU rate, computed for Sweden at around 17%, and from
figure 2 a prevalence of 5,000 – 20,000 cases per 100,000 population (=2.7–
10.8 million cases in the UK) then ∼460,000 – 1.8 million ICU admissions would
be needed for half of the positive test results to be accurate in a general mass
testing campaign. This does then beg the question as to what kind of test
characteristics one needs?

4.1. Alternatives and Required Test Characteristics

There are two primary use cases:

1. Reliably identifying infected people in the low prevalence population to
isolate and reduce the spreading of the disease.

2. Reliably clearing non-infected people, in high prevalence settings, to allow
them to escape from the high risk situation, or to return to essential work
or education.

For use case 1: the null hypothesis is that the person is not infected, the
test procedure aims to provide sufficient evidence to reject the null hypothesis
and demonstrate a high probability of infection. This means that the satistical
coincidence of healthy people testing positive needs to be low. The requirements
for this test are shown in figure 3, where one sees that a false positive rate needs
to be far below the prevalence — the intuitive result. A false positive rate of
< 0.001 is needed to identify positive cases reliably, which corresponds to a
specificity of > 99.9%.

Such figures are not inconceivable. Australia has performed a total of
9 million tests, of which a total of 1% returned positive results, which implies
that under the right conditions the specificity of RT-PCR can be excellent.
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Figure 4: In an extremely high prevalence of 0.6 (60k cases per 100k population) such as in a
hospital, jail, or some other sealed outbreak cluster, these curves show that a false negative
rate of < 0.05 is needed for a useful test to rule out infection with 95% confidence, i.e. a
sensitivity of > 95%. This result is not strongly affected by the specificity, as shown by the
two curves indicating a perfect test (specificity = 1) or with the false positive rate of 0.17
(specificity = 0.83) as used in the rest of this paper.

Indeed, informal commentary from an Australian scientist [44] explains why
a black-box approach to test protocols with arbitrary thresholds will produce
erroneous results, whereas an expert in RT-PCR testing would use their judge-
ment and experience in running the apparatus. The variation in operational
test characteristics in section 2.3 might be a reflection of our attempts to scale
technical laboratory work beyond the hands of scientific competence, or issue
performance targets and instructions to “take shortcuts”, in order to deal with
an unusually high workload.

For use case 2: the null hypothesis is that the person is infected, and the
test procedure aims to provide sufficient evidence to reject the null hypothesis
and demonstrate a low probability of infection. The statistical coincidence of
infected people testing negative therefore must be low. The requirements for
this test are answered in figure 4. In this case, a high prevalence of 0.6 is used.
One can see that a false negative rate of < 0.05 is needed to clear non-infected
people at 95% confidence, matching the sensitivity of > 95%. This threshold
is also intuitive. Given the time dependence of the virus shedding reported
by Kucirka et al [20], such performance characteristics are inconceivable for
RT-PCR.

Recent discussions in the literature have since turned to alternatives to RT-
PCR. It is tempting, based on Ai’s study [3], to reach the uncomfortable conclu-
sion that CT and clinical diagnosis offer a more reliable protocol than RT-PCR,
a position that is refuted by Hope et al with good reasoning [45].

Antigen tests, whilst cheaper and faster than RT-PCR, are less sensitive
and perhaps comparable in specificity when compared using RT-PCR as a gold
standard [46]. This makes them useful for mass testing to estimate prevalence,
but little else.

One must face the possibility that, in the short term, and based upon the
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mathematical nature of the problem, it is unlikely that a test exists that can
reliably:

• Clear non-infected people from a pool of potentially infected people, given
the low sensitivity in the early stages of infection (e.g. clearing staff and
patients at medical facilities, passage at airports and regional borders)

• Identify and isolate infected people who are pre-symptomatic (e.g. finding
people early before they infect others)

This viewpoint is supported by similar conclusions in the literature [18].

4.2. Recommendations

In future clinical studies, general at-scale RT-RCP testing alone, and tests
with similar characteristics, should not be used as the ground truth SARS-CoV-
2 cases. It is imperative that a more reliable diagnostic method is used, before
other correlations and effects are calculated. Restricting studies to patients
with hospital admissions and thorough expert diagnosis, using dedicated labs
with testing experts, is likely to yield more reliable results than the non-expert,
mass-testing protocols that are being used in some geographical regions.

RT-RCP tests should not be used generally to “trace” infections through
individual members of the public. Whilst some countries may succeed at this
(e.g. Australia), it depends entirely on the bandwidth of expert labs. Scaling
mass testing outside expert workers [47, 48, 49] appears to be expensive and
futile. Governments would do better in this way:

Step 1 Ensure the existence and support of a rigorous, dedicated, central expert
group to monitor operational specificity and sensitivity of emergency use
testing programmes as early as possible, on behalf of the government /
region

Step 2 Use those data to correct data rates via equation 9 to monitor the
effectiveness of the strategy to inhibit the spread of the disease in real
time

Step 3 Focus the tracing efforts at targeted, critical sub-populations (e.g. med-
ical workers, care homes, outbreak clusters) using an expert laboratories
and teams dedicated to the task.

These suggestions may prove less expensive and produce more reliable re-
sults.

Negative test results (whatever the test) should not be used to “rule out”
SARS-CoV-2 infection of those with symptoms or significant probability of being
infected unless the test false positive rate is significantly below the prevalence.
If a person exhibits symptoms of a respiratory tract infection, they should treat
it with the respect it deserves and isolate themselves from society as best they
can, for a duration of time based on the advice of a medical professional in
their geographic location. Whether or not the infection is SARS-CoV-2, this
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will prevent the spread of SARS-CoV-2 and also minimise the spread of other
infections that represent an enormous cost. In addition to the economic impact
of the common cold, one should not forget that, globally, influenza kills millions
of people each year. Such a general, isolation strategy has the added benefit of
driving the circulating viruses towards lower virulence via natural selection. One
can but hope that the days of sick employees demonstrating their commitment
by attending work (and marketing campaigns for over-the-counter medication
targeted as such) are behind us.

5. Conclusions

The confusion matrix of RT-PCR tests for SARS-CoV-2 has been reviewed,
noting also that alternative testing kit technologies have comparable — or infe-
rior — error rates. A simultaneous equation correction procedure for estimat-
ing the true infection rates was demonstrated for two examples: the “Diamond
Princess” cruise ship and the country of Sweden in Autumn 2020, providing
corrected estimates for hospitalisation and mortality rates.

Discrete Bayesian inference was then demonstrated for a few likely scenarios.
It has been demonstrated that RT-PCR testing is not reliable for three

important use cases:

• RT-PCR alone can not reliably identify infected patients in a low preva-
lence social situation.

• RT-PCR alone can not reliably clear patients as being non-infected, if they
have symptoms and come from a high prevalence social situation.

• RT-PCR alone can not reliably filter patients for subsequent medical stud-
ies such as antibody tests, symptom correlations studies, or new test can-
didates.

The results of this study are not entirely discouraging. Recent concern over
the lifetime of SARS-CoV-2 antibodies, occasional anecdotes about repeat in-
fection, and the need for repeated vaccination, probably need to be adjusted to
take into account that many patients identified as recovered from SARS-CoV-2
who do not show measurable levels of SARS-CoV-2 antibodies are possibly as-
sociated with false positive test results in some regions (58–89% of people with
mild symptoms and positive RT-PCR test results, for example). This may lead
to real world antibody retention from vaccines exceeding initial expectations.
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