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Abstract 
 
Nonpharmaceutical interventions, such as contact tracing and quarantine, are currently the 15 
primary means of controlling the spread of SARS-CoV-2; however, it remains uncertain which 
interventions are most effective at reducing transmission at the population level. Using serial 
interval data from before and after the rollout of nonpharmaceutical interventions in China, we 
estimate that the relative frequency of presymptomatic transmission increased from 34% before 
the rollout to 71% afterward. The shift touward earlier transmission indicates a disproportionate 20 
reduction in transmission post-symptom onset. We estimate that, following the rollout of 
nonpharmaceutical interventions, transmission post-symptom onset was reduced by 82% 
whereas presymptomatic transmission decreased by only 16%. These findings suggest that 
interventions which limit opportunities for transmission in the later stages of infection, such as 
contact tracing and isolation, may have been particularly effective at reducing transmission of 25 
SARS-CoV-2.  
 
Keywords: COVID-19, SARS-CoV-2, presymptomatic transmission, nonpharmaceutical 
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 30 
Introduction 
 
In January 2020, in Wuhan, China, what began as a cluster of viral pneumonia cases rapidly 
spiraled into an epidemic of a new disease, COVID-19, caused by a novel coronavirus, 
designated SARS-CoV-2. As cases mounted in Wuhan and began cropping up elsewhere, 35 
China introduced a comprehensive set of measures, termed nonpharmaceutical interventions 
(NPIs), to contain the virus. On January 23, a lockdown was enacted in Wuhan, which shut 
down public transit and travel out of the city. Other cities throughout Hubei province (of which 
Wuhan is capital) announced similar lockdowns over the next few days [1]. The rest of China 
was subject to social distancing measures: mass transit and public gatherings were severely 40 
curtailed, and the New Year holiday (Chunyun) was extended, which kept most schools, 
workplaces, and businesses closed [1-3]. In addition, numerous measures were implemented to 
rapidly identify and isolate suspected cases. These included temperature checks at borders and 
travel hubs, quarantine of new arrivals, isolation of both confirmed and suspected cases, and 
contact tracing with quarantine and medical observation.  45 
 
China’s robust public health response was decidedly effective in controlling the spread of 
SARS-CoV-2 [4-7]. As of December 1, 2020, China had a cumulative incidence of 63 cases per 
million residents and cumulative mortality of 3 deaths per million, compared to 7937 cases and 
186 deaths per million persons globally [8]. Given the magnitude and intensity of the response 50 
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in China, which would be difficult to replicate in many settings, it would be useful to know which 
interventions were most effective in limiting the spread of the virus.  
 
Evaluating the effectiveness of specific NPIs has been a challenge throughout the COVID-19 
pandemic because multiple interventions are typically used concurrently. Several studies have 5 
estimated the combined impact of multiple NPIs [5-7, 9]; others have estimated the effect of 
specific control measures using statistical approaches [10-20] or modeling [21-25]. The majority 
of studies focus on the effectiveness of social distancing interventions, while relatively few 
explicitly consider the impact of quarantine or isolation measures. However, in China, the impact 
of isolation has been indirectly observed in a shift toward earlier transmission, reflected in 10 
shorter serial intervals [26]. Here, we use serial interval data and incidence data from China to 
show that, in the first few weeks after NPIs were implemented, presymptomatic transmission 
decreased slightly but transmission post-symptom onset declined dramatically. These results 
suggest that “post-onset” interventions, such as case isolation, may have been more effective 
than other control measures at limiting transmission of SARS-CoV-2.  15 
 
Results 
 
We compiled published data, including symptom onset dates, for 873 infector-infectee pairs 
from China (see Methods) [27-30]. Among these case pairs, the majority of transmission events 20 
occurred outside Hubei, with 84% of secondary cases acquired in other provinces (Table S1). 
Symptom onset dates ranged from January 7 to February 29, 2020, a period that spans the 
rollout of nonpharmaceutical interventions in China. The mean serial interval, defined as the 
time between onset of symptoms in infector and infectee, was 4.64 days over the entire period, 
similar to published estimates [27, 28, 31, 32], but this distribution shifted markedly over time. A 25 
linear regression of serial intervals vs. symptom onset dates of primary cases reveals a 
significant decrease in the length of serial intervals (p = 4×10-34, Figure 1a), an observation also 
made by Ali et al. [26]. 
 
We then divided case pairs into two time periods using the date of symptom onset in each 30 
primary case. Those with onset before January 23 - marking the lockdown of Wuhan and the 
start of a national rollout of nonpharmaceutical interventions – were denoted pre-lockdown (n = 
207) and the rest denoted post-lockdown (n = 666). Pre- and post-lockdown serial intervals 
were significantly different between the two time periods (p = 4×10-19, Figure 1b), with a mean of 
7.57 days (standard deviation 5.13 days) before the lockdown and a mean of 3.73 days 35 
(standard deviation 4.93 days) afterward. 
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Fig. 1 Serial intervals of case pairs in China. (a) Serial interval vs. date of symptom onset in the primary case of each 
pair. Shading reflects the number of overlapping points, with darker colors indicating higher numbers. Dashed vertical 
line indicatesJan 23, the date of the initial lockdown in Wuhan. (b) Serial interval histograms and best-fit normal 
distributions for primary cases with symptom onset before Jan 23 (pre-lockdown; blue, hatched bars and dashed line) 5 
and on/after Jan 23 (post-lockdown; red, solid bars and solid line).  
 

Next, we used a Markov chain Monte Carlo (MCMC) approach to estimate the distribution of the 
generation interval for each time period by fitting to serial interval data. We replicated this 
analysis using three different priors for the incubation period distribution (Table S2), based on 10 

work by Lauer et al. [33], Zhang et al. [30]; and Backer et al. [34]; we also used two different 
models for the generation interval distribution. Under the incubation-independent model, all 
generation intervals are drawn from a single gamma distribution; under the incubation-
dependent model, the generation interval is still gamma-distributed but the probability 
distribution for each case is horizontally “stretched” in proportion to the incubation period, which 15 

means that cases with longer incubation periods will tend to have longer generation intervals. 
We used a modified deviance information criterion [35] to assess model fit (S1 Text) and found 
that the best model for both time periods was the incubation-independent model – which, 
somewhat surprisingly, suggests generation intervals do not increase with incubation period - 
paired with the prior based on Lauer et al. (Table S3).  20 

 
As expected, the fitted generation interval distributions had similar means but smaller variances 
than the serial interval distributions [36]. Under the best model, pre-lockdown generation 
intervals had a mean of 7.50 days (standard deviation 3.95 days) while post-lockdown 
generation intervals had a mean of 3.90 days (standard deviation 3.15 days). Under the 25 

remaining models, mean generation intervals ranged from 7.49 to 7.64 days for the pre-
lockdown period and from 3.84 to 4.04 days for the post-lockdown period (Table S4).  
 
Using the inferred generation interval distributions, we estimated the relative frequency of 
presymptomatic transmission under each model by calculating the probability of the generation 30 

interval being shorter than the incubation period. Under the best model, the frequency of 
presymptomatic transmission was estimated to be 34.4% in the pre-lockdown period (95% 
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credible interval 28.3% - 41.3%) and 71.0% in the post-lockdown period (95% CI 67.6% - 
74.2%) under the best model (Figure 2). Across all models, the estimated frequency of 
presymptomatic transmission ranged from 30.7% to 47.0% for the pre-lockdown period, with 
95% CIs collectively extending from 24.0% to 53.7% (Table S5). For the post-lockdown period, 
estimates ranged from 68.1% to 80.6%, with 95% CIs extending from 64.5% to 83.5%. We note 5 

that the estimates for the pre-lockdown period are lower than many published estimates of the 
frequency of presymptomatic transmission [27, 29, 37-40], which raises the possibility that many 
estimates might be inflated by the effects of nonpharmaceutical interventions.  
 

 10 
Fig. 2 Estimated relative frequency of presymptomatic transmission before and after the first lockdown on January 
23. Points and lines show posterior means and 95% credible intervals, respectively. Colors denote time periods (blue, 
pre-lockdown; red, post-lockdown), shades denote generation interval distribution models (light, incubation-
dependent model; dark, incubation-independent model), and symbols denote sources for incubation period prior 
distributions (squares, Lauer et al. [33]; circles, Zhang et al. [30]; triangles, Backer et al. [34]). Estimates from the best 15 
model are highlighted in gray.  
 

The shift toward presymptomatic transmission following the rollout of NPIs suggests a 
disproportionate reduction in transmission post-symptom onset. We therefore estimated the 
change in transmission during each phase of the infection (before and after symptom onset) 20 

following the implementation of control measures. To do so, it was first necessary to estimate 
the total reduction in transmission of SARS-CoV-2. For this, we used province-level incidence 
data for all of China, combining the numbers for all provinces except Hubei because the 
transmission events represented in the case-pair data mostly occurred outside Hubei. We 
calculated the daily case reproduction number (𝑅௧), shown in Figure 3, using a version of the 25 

Wallinga-Teunis method [41] which was modified to allow for time-varying serial intervals, as 
changes in the serial interval distribution have been shown to affect inference of reproduction 
numbers [26].   
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Fig. 3 Daily reproduction numbers estimated using incidence data from all Chinese provinces except Hubei. Dashed 
vertical line, start of initial lockdown in Wuhan on Jan. 23; gray shading, region in which 𝑅௧ is likely to be 
underestimated due to right-truncation.   5 
 
We used the estimated 𝑅௧ values to calculate the mean reproduction numbers for the pre- and 
post-lockdown periods; estimates past February 20 were not used due to the potential for 
underestimation of 𝑅௧ as a result of right-truncation (Figure 3) [42]. The mean reproduction 
numbers were estimated to be 1.64 for the pre-lockdown period and 0.666 for the post-10 
lockdown period, corresponding to a 59.4% reduction in overall transmission. Treating this net 
change as a weighted average of the changes in presymptomatic transmission and 
transmission post-symptom onset, we calculated the change in the absolute frequency of 
transmission during each phase of the infection. Under the best model, we estimate that 
presymptomatic transmission decreased by 15.5% (95% CI: -30.6% to +2.56%) while 15 
transmission post-symptom onset decreased by 82.0% (95% CI: -84.5% to -79.0%; Figure 4). 
Across all models, estimates of the change in presymptomatic transmission ranged from -29.9% 
to -8.62%, with 95% CIs extending from -39.4% to +16.3% (Table S6). Estimates of the change 
in transmission post-symptom onset ranged from -85.1% to -81.3%, with 95% CIs extending 
from -87.9% to -78.3%.  20 
 
One hypothesis to explain the disproportionate reduction in transmission post-symptom onset is 
that “post-onset” interventions, such as case isolation, were highly effective at preventing 
transmission in the later stages of infection; however, several alternative explanations must be 
considered. One possibility is that travel restrictions reduced the frequency of case pairs with 25 
different infection locations (primary and secondary cases infected in different cities), which 
might be expected to have longer-than-average serial intervals. Although the proportion of case 
pairs infected in different cities decreased after the lockdown (p=1×10-4; Table S7), a two-way 
ANOVA found no significant effect of location matching on serial intervals (p>0.05).  
 30 
Another possibility is that social distancing increased time spent at home, with more frequent 
exposure leading to earlier transmission between family members or household contacts – 
similar to the relationship between force of infection and age of first infection. The proportion of 
transmission events occurring between family members increased following the lockdown 
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(p=3×10-5), although there was no change in the proportion of transmission events taking place 
within households (p=0.09; Table S7). However, neither familial relationship nor household 
contact had a significant effect on serial intervals, nor did either factor have a significant 
interaction with time period (p>0.05).  
 5 

 
Fig. 4 Estimated percent change in absolute frequency of presymptomatic transmission and transmission post-
symptom onset. Points and lines show posterior means and 95% credible intervals, respectively. Orange, 
presymptomatic transmission; green, transmission post-symptom onset; closed symbols, incubation-dependent 
model; open symbols, incubation-independent model. Symbol shapes denote sources for incubation period prior 10 
distributions (squares, Lauer et al. [33]; circles, Zhang et al. [30]; triangles, Backer et al. [34]). Estimates from the best 
model are highlighted in gray.  
 
Discussion 
 15 
Following the implementation of nonpharmaceutical interventions in China, the transmission of 
SARS-CoV-2 changed in two ways. Compared to the period preceding the lockdown of Wuhan 
on January 23, 2020, the post-lockdown period was characterized by a significant reduction in 
the reproduction number (𝑅௧), indicating decreased transmission, and a decrease in the length 
of generation intervals, reflecting earlier transmission. Specifically, we found that overall 20 
transmission of SARS-CoV-2 declined by 59.4% after the lockdown, while presymptomatic 
transmission expanded from 34% to 71% of all transmission events. The shift toward earlier 
transmission implies a disproportionate reduction in transmission following symptom onset; we 
estimate that presymptomatic transmission decreased by roughly 16% after the lockdown, 
whereas transmission post-symptom onset decreased by approximately 82%.  25 
 
Several factors might contribute to the observed shift toward earlier transmission: a reduction in 
the proportion of primary cases imported from other cities, eliminating a potential delay in 
transmission; increased time at home, resulting in more frequent exposure to infectious 
household contacts; and/or interventions that disproportionately reduce transmission in the later 30 
stages of infection. Our results do not support either of the first two possibilities: whether a 
linked pair of cases were infected in the same city was not a significant predictor of the serial 
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interval, nor was the existence of a shared household or familial relationship. The third 
possibility is indirectly supported by observed correlations between isolation delays and serial 
intervals, which suggest that case isolation is capable of shifting the serial interval distribution 
[25, 26, 43].  
 5 
Our findings therefore suggest that “post-onset” interventions, such as case isolation, may have 
been responsible for the dramatic reduction in transmisson post-symptom onset that followed 
the implementation of NPIs in China. If so, this would indicate that isolation and associated 
interventions, such as contact tracing, were among the largest contributors to the rapid 
reduction in transmission of SARS-CoV-2, while the comparatively modest reduction in 10 
presymptomatic transmission would indicate a relatively small impact of social distancing 
measures. However, it is possible that the effects of social distancing were offset by increased 
household transmission, an effect that might be expected to dissipate once most household 
transmission chains go extinct.  
 15 
A key limitation of this work is the lack of information regarding transmission from asymptomatic 
infections, which may comprise 40-45% of all SARS-CoV-2 infections [44]. Because the serial 
interval is defined by symptom onset dates, alternative methods are required to examine the 
impact of NPIs on asymptomatic transmission. For instance, data on exposure windows could 
be used to estimate the time of infection for primary cases, similar to the approach used for 20 
estimating incubation periods [30, 33, 34, 45, 46]; in conjunction with exposure or symptom 
onset dates for secondary cases, an approach similar to the one employed here could then be 
used to infer generation intervals for transmission pairs with asymptomatic primary cases.  
 
In summary, we find that the implementation of nonpharmaceutical interventions in China was 25 
followed not only by a rapid decrease in the rate of SARS-CoV-2 transmission, but a significant 
shift in the timing of viral transmission, with more transmission occurring in the presymptomatic 
(incubation) period. The leading hypothesis to explain these observations is that interventions, 
particularly case isolation, were highly effective in limiting transmission in the later stages of 
infection, while other measures, such as social distancing, had a more limited impact on 30 
transmission in the earlier stages. These findings suggest that rapid case detection and 
isolation, if rigorously implemented, may be a highly effective strategy for interrupting 
transmission of SARS-CoV-2. 
 
Methods  35 
 
Data sources 
 
We obtained data on serial intervals for linked pairs of cases reported in China in January and 
February 2020. We combined data that were previously collected and published by the following 40 
sources: Xu et al. with 679 case pairs, compiled from provincial and urban health commission 
reports [27]; Du et al. with 468 case pairs, compiled from provincial health agency reports [28]; 
He et al. with 41 case pairs, compiled from government and media reports [29]; and Zhang et al. 
with 35 case pairs, compiled from health agency and media reports [30]. We cross-checked all 
datasets and eliminated duplicate case pairs, which we identified as those with matching sex, 45 
age, and symptom onset date for both cases. This left a total of 873 unique case pairs for use in 
parameter estimation.  Among these, a majority of transmission events took place outside Hubei 
province (home to the city of Wuhan), with 84.2% of secondary cases infected outside Hubei 
(Table S1). 
 50 
Analysis of serial intervals 
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Since dates of transmission were unknown, we dated each serial interval using the date of 
symptom onset in the primary case. We used simple linear regression (serial interval versus 
date) to test the hypothesis that serial intervals declined over time. We then divided serial 
intervals into two time periods based on the date of symptom onset in the primary case of each 5 
pair. Case pairs were designated “pre-lockdown” if the primary case developed symptoms 
before the lockdown of Wuhan on Jan 23 (i.e. symptom onset occurred on or before Jan 22) 
and as “post-lockdown” otherwise. The terms pre-lockdown and post-lockdown refer here to the 
time periods preceding and following a specific event – the lockdown of Wuhan – rather than 
periods characterized by the presence or absence of lockdown measures; true lockdowns were 10 
not widely implemented beyond Hubei province. We used a two-sided Student’s t-test to test the 
hypothesis that the mean serial intervals differed between the pre- and post-lockdown periods.   
 
Generation interval distributions 
 15 
Consider a linked pair of cases, with the secondary case arising by transmission from the 
primary case. We denote the incubation periods of the primary and secondary cases by 𝜃ଵ and 
𝜃ଶ, respectively. We use 𝛿 to refer the serial interval and 𝜏 to denote the generation interval. The 
relationship between these quantities is given by 𝜏 = 𝛿 + 𝜃ଵ − 𝜃ଶ (Figure 5).  
 20 

 
Fig. 5 Diagram showing incubation period (𝜃), serial interval (𝛿), and generation interval (𝜏) for a linked pair of 

cases. Closed circle, time of infection; open circle, time of symptom onset; dot-dash arrow, transmission from primary 
case to secondary case.  

 25 
We assumed that the generation interval 𝜏 followed a gamma distribution 𝑓ఛ with unknown 
parameters 𝛼 and 𝛽. Due to uncertainty regarding the relationship between the incubation 
period and the generation interval, we used two different models for the generation interval 
distribution. In the incubation-independent model, we assumed that a single generation interval 
distribution, with shape parameter 𝛼 and rate parameter 𝛽, applied to all individuals, regardless 30 
of incubation period. In the “incubation-dependent” model, we assumed that individuals with 
longer incubation periods would tend to have longer generation intervals; specifically, for a 
primary case with incubation period 𝜃ଵ, we assumed that the generation interval followed a 
gamma distribution with shape parameter 𝛼 and rate parameter 𝛽/𝜃ଵ. This is equivalent to 
defining a new random variable 𝑋 = 𝜏/𝜃ଵ where 𝑋 follows a gamma distribution with shape 𝛼 35 
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and rate 𝛽. This formulation causes the generation interval distribution to be horizontally 
“stretched out” in proportion to 𝜃ଵ – for instance, it results in the expected generation interval 
being a fixed multiple of 𝜃ଵ, rather than a fixed length of time.  
 
Parameter estimation  5 
 
We used a Markov chain Monte Carlo (MCMC) algorithm to estimate the parameters of the pre- 
and post-lockdown generation interval distributions by fitting to serial interval data from each 
time period. Because an observed serial interval depends on the incubation period of each 
infection as well as the generation interval, we also estimated the unobserved incubation 10 
periods 𝜃ଵ and 𝜃ଶ for each pair of cases (data augmentation). The model assumed that the 
incubation periods were drawn from a prior 𝑓ఏ; we used three different priors drawn from the 
literature (see below). The generation interval was assumed to be drawn from a gamma 
distribution 𝑓ఛ with unknown parameters 𝛼 and 𝛽, with minimally informative priors 𝑓ఈ and 𝑓ఉ, 
respectively (Table S2). We can express the joint posterior density of the unknown parameters 15 
as follows:  

𝑓ఈ,ఉ|ఋഥ൫𝛼, 𝛽ห𝛿̅൯ ∝ ෑ 𝑓ఋ|ఈ,ఉ(𝛿|𝛼, 𝛽)𝑓ఈ(𝛼)𝑓ఉ(𝛽)

ே

ୀଵ

 

 

= ෑ ቌන න 𝑓ఋ|ఈ,ఉ(𝛿|𝛼, 𝛽, 𝜃ଵ, 𝜃ଶ)𝑓ఈ(𝛼)𝑓ఉ(𝛽)𝑓ఏ(𝜃ଵ)𝑓ఏ(𝜃ଶ)

ஶ



ஶ



𝑑𝜃ଵ𝑑𝜃ଶቍ

ே

ୀଵ

 

 20 

= ෑ ቌන න 𝑓ఛ|ఈ,ఉ(𝛿 + 𝜃ଵ − 𝜃ଶ|𝛼, 𝛽)𝑓ఈ(𝛼)𝑓ఉ(𝛽)𝑓ఏ(𝜃ଵ)𝑓ఏ(𝜃ଶ)

ஶ



ஶ



𝑑𝜃ଵ𝑑𝜃ଶቍ

ே

ୀଵ

 

 
 
We estimated the unknown quantities using a Metropolis-Hastings algorithm, with each iteration 
taking place in two parts. The parameters 𝛼 and 𝛽 were updated first, with proposed values 𝛼′ 25 

and 𝛽′ being accepted with probability min ൬1,
∏ ഓ|ഀ,ഁ(ఋାఏభ() ିఏమ()|ఈᇲ,ఉᇲ)ഀ (ఈᇲ)ഁ(ఉᇲ)ಿ

సభ

∏ ഓ|ഀ,ഁ(ఋାఏభ()ିఏమ()|ఈ,ఉ)ഀ (ఈ)ഁ(ఉ)ಿ
సభ

൰. The 

incubation periods 𝜃ଵ and 𝜃ଶ for each case pair were then updated, with proposed values 𝜃ଵ()′ 

and 𝜃ଶ()′ being accepted with probability min ൬1,
ഓ|ഀ,ഁ(ఋାఏభ()ᇱ ିఏమ()ᇱ|ఈ,ఉ)ഇ(ఏభ()ᇱ)ഇ(ఏమ()ᇱ)

ഓ|ഀ,ഁ(ఋାఏభ()ିఏమ()|ఈ,ఉ)ഇ(ఏభ())ഇ(ఏమ())
൰.  

 
We ran the algorithm for 250,000 iterations, discarded the first 50,000 and thinned the 30 
remainder by keeping every 10th iteration. The resulting set of 20,000 observations was used to 
approximate the joint posterior distribution of the parameters of interest. The aggregated 
posterior distributions of the incubation periods 𝜃ଵ and 𝜃ଶ for each model are illustrated in 
Figures S1-S4, while posterior means and 95% credible intervals for the generation interval 
parameters are reported in Tables S3-S4. We report the mean and standard deviation of the 35 
generation interval distribution alongside the parameters 𝛼 and 𝛽, since these latter quantities 
are difficult to interpret. For the incubation-independent model, the mean and variance are 
simply 𝛼/𝛽 and 𝛼/𝛽ଶ, respectively. For the incubation-dependent model, the mean generation 
interval is given by E[𝑋]E[𝜃], where 𝑋 = 𝜏/𝜃 follows a gamma distribution with shape 𝛼 and rate 
𝛽. The variance is given by (Var[𝑋] + E[𝑋]ଶ)(Var[𝜃] + E[𝜃]ଶ) − (E[𝑋]ଶ)(E[𝜃]ଶ). We calculated 40 
the mean and variance of the generation interval for each iteration in the converged and thinned 
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Markov chain in order to approximate posterior distributions, which we used to obtain posterior 
means and 95% credible intervals.  
 
Incubation period distributions 
 5 
Since the incubation period distribution affects the inferred generation interval distribution, we 
replicated our analysis using three different priors (𝑓ఏ) for the incubation period. The 
distributions and their sources are as follows: a lognormal distribution with mean 5.52 days and 
standard deviation 2.41 days, based on Lauer et al. [33]; a lognormal distribution with mean 
5.21 days and standard deviation 2.59 days, based on Zhang et al. [30]; and a Weibull 10 
distribution with mean 6.49 days and standard deviation 2.35 days, based on Backer et al. [34]. 
The parameters for these distributions can be found in Table S2.  
 
Model fit 
 15 
We assessed model fit using a modified deviance information criterion (DIC) for data-
augmented models (S1 Text) [35]. Broadly speaking, DIC is a generalization of the Akaike 
information criterion (AIC); it penalizes model complexity as well as poor model fit (low likelihood 
of observing the data under the specified model). As with AIC, the “best” model is the one with 
the lowest DIC value.  20 
 
Pre-symptomatic transmission 
 
We next used the joint posterior distribution of the generation interval parameters to 
approximate the distribution of the percentage of transmission expected to take place prior to 25 
symptom onset, which we denote 𝜑. For the incubation-independent model, given 𝛼 and 𝛽, the 
proportion of transmission expected to occur before symptom onset is given by 𝜑 =

∫ ∫ 𝑓ఏ(𝑢)𝑓ఛ(𝑣)𝑑𝑣 𝑑𝑢
௨



ஶ


, where 𝑓ఛ is a gamma distribution with shape 𝛼 and rate 𝛽. For the 

incubation-dependent model, the expected proportion of transmission occurring before symptom 

onset is given by 𝜑 = ∫ 𝑓ఛ(𝑢)𝑑𝑢
ఏ


, where 𝑓ఛ is a gamma distribution with shape 𝛼 and rate 𝛽/𝜃. 30 

We calculated 𝜑 for each iteration in the converged and thinned Markov chain in order to 
approximate the posterior distribution of 𝜑, which we use to obtain posterior means and 95% 
credible intervals. 
 
Method to estimate reproduction numbers (𝑅௧) with time-varying serial intervals 35 
 
We introduce a modified version of the Wallinga-Teunis method of estimating the reproduction 
number at time 𝑡 (denoted 𝑅௧). In the basic method described by Wallinga & Teunis (2004), the 
probability that case 𝑖 was infected by case 𝑗 is given by  
 40 

𝑝 =
𝑤(𝑡 − 𝑡)

∑ 𝑤(𝑡 − 𝑡)ஷ
 

 
where 𝑡 is the time at which case 𝑖 developed symptoms, and 𝑤 the serial interval distribution. 
The reproduction number for case j is therefore given by 
 45 

𝑅 =  𝑝

ஷ
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and the reproduction number at time 𝑡 (𝑅௧) is equal to the reproduction number for any case 
with symptom onset at time 𝑡.  
 
We now present a modification of this approach, which allows for time-varying serial interval 
distributions. Rather than a fixed serial interval distribution 𝑤, let 𝑤௧ be the distribution of serial 5 
intervals for primary cases with symptom onset in the time window [𝑡 − 𝑧, 𝑡 + 𝑧]. Then the 
probability case 𝑖 was infected by case j is given by  
 

𝑝 =
𝑤௧ೕ

(𝑡 − 𝑡)

∑ 𝑤௧ೖ
(𝑡 − 𝑡)ஷ

 

 10 
and the reproduction number for case 𝑗 is similarly given by 𝑅 = ∑ 𝑝ஷ , which we can rewrite 
as follows:  
 

𝑅 = 
(𝑛௫ − 𝛿௫௧ೕ

)𝑤௧ೕ
(𝑥 − 𝑡)

∑ (𝑛௬ − 𝛿௫௬)𝑤௬(𝑥 − 𝑦)
௧max
௬ୀ௧min

௧max

௫ୀ௧min

 

 15 
where 𝑡min and 𝑡max are the first and last dates of symptom onset, 𝑛௧ is the number of cases with 
symptom onset at time 𝑡, and 𝛿 is the Kronecker delta function, with  
 

𝛿 = ൜
1     if  𝑖 = 𝑗

0     if  𝑖 ≠ 𝑗
 

 20 
such that case 𝑗 is subtracted from the set of potential infectees with symptom onset at time 𝑡. 
With 𝑅௧ assumed to be equal to the reproduction number for any case with symptom onset at 
time 𝑡, we can modify the above to get the final expression for 𝑅௧:  
 

𝑅௧ = 
(𝑛௫ − 𝛿௫௧)𝑤௧(𝑥 − 𝑡)

∑ (𝑛௬ − 𝛿௫௬)𝑤௬(𝑥 − 𝑦)
௧max
௬ୀ௧min

௧max

௫ୀ௧min

 25 

 
Estimation of time-varying serial interval distributions 
 
We used the serial interval data described above to estimate the time-varying serial interval 
distributions; we assumed serial intervals for primary cases with symptom onset at time 𝑡 30 
followed a normal distribution with mean and standard deviation calculated using serial intervals 
for primary cases with symptom onset in the window [𝑡 − 𝑧, 𝑡 + 𝑧] with 𝑧 = 3 (corresponding to a 
7-day moving window). For time windows extending beyond the range of primary case symptom 
onset dates, the nearest 7-day window falling within this range was used to estimate the serial 
interval distribution.  35 
 
Estimation of reproduction number (𝑅௧) using case incidence data 
 
The incidence data based on reported case pairs are less than ideal for estimation of 𝑅௧ due to 
small daily case numbers (median of 9 cases per day) as well as potential sampling biases. We 40 
therefore compared case pair incidence data to the incidence data for all of China minus Hubei 
province. Incidence curves for the two datasets were similar, although the non-Hubei curve was 
shifted to the right (Figure S5), presumably due to the delay between symptom onset and case 
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reporting (nationwide data did not include symptom onset dates). After shifting the non-Hubei 
incidence data back by 7 days to align the peaks of the two curves, we find good agreement 
between the case pair data and non-Hubei data (Figure S6).  
 
We estimated 𝑅௧ using both the case pair incidence data and the time-shifted non-Hubei 5 
incidence data, and find good agreement between the two sets of estimates (Figure S7). 
However, because the non-Hubei data feature larger case numbers, and presumably smaller 
sampling error, we use the 𝑅௧ estimates based on the these data for subsequent analysis.  
 
Estimating mean reproduction numbers before and after lockdown 10 
 
We used 𝑅௧ estimates from before and after the lockdown (before Jan. 23 and on/after Jan. 23, 
respectively) to estimate the mean reproduction numbers for the pre- and post-lockdown 
periods. In order to reduce the effects of sampling error, we only used 𝑅௧ estimates for days with 
at least 10 cases. In addition, because the Wallinga-Teunis method uses future case incidence 15 
to estimate the reproduction number, it will tend to underestimate 𝑅௧ toward the end of a time 
series due to right-truncation. We therefore calculated the probability of a secondary case 
developing symptoms by 𝑡max if the primary case developed symptoms at time 𝑡, given the serial 
interval distribution at time 𝑡 (Figure S8). We discarded 𝑅௧ estimates beyond the time point at 
which this probability dropped below 90%.  20 
 
Estimating reductions in presymptomatic and (post)symptomatic transmission 
 
Let 𝑅pre and 𝑅post denote the mean reproduction numbers for the prelockdown and 
postlockdown periods, respectively. Similarly, let 𝜑pre and 𝜑post denote the relative frequency of 25 

presymptomatic transmission for each time period. Then the change in the absolute frequency 
of presymptomatic transmission (from prelockdown to postlockdown) is given by  
 

𝑟presym =
𝜑post𝑅post − 𝜑pre𝑅pre

𝜑pre𝑅pre
 

 30 
and the change in the absolute frequency of (post)symptomatic transmission is given by 
 

𝑟postsym =
(1 − 𝜑post)𝑅post − (1 − 𝜑pre)𝑅pre

(1 − 𝜑pre)𝑅pre
 

 
Posterior distributions for the changes in presymptomatic and (post)symptomatic transmission 35 
were obtained using the posterior distributions for the relative frequency of presymptomatic 
transmission for each time period. 
 
Software 
 40 
All of the analysis for this study was conducted in R (version 3.6.1).  
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