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ABSTRACT 

Background: In the first study of its kind, we examine the association between growth and 

development in early life and DNAm age biomarkers in mid-life.   

Methods: Participants were from the Medical Research Council National Survey of Health 

and Development(n=1,376). Four DNAm age acceleration(AgeAccel) biomarkers were 

measured when participants were aged 53y:AgeAccelHannum, AgeAccelHorvath, 

AgeAccelLevine and AgeAccelGrim. Exposure variables included relative weight gain 

(standardised residuals from models of current weight z-score on current height, and previous 

weight and height z-scores) and linear growth (standardised residuals from models of current 

height z-score on previous height and weight z-scores) during infancy (0-2y, weight gain 

only), early childhood(2-4y), middle childhood(4-7y) and late childhood to adolescence(7-

15y), age at menarche and pubertal stage for men at 14-15y. The relationship between 

relative weight gain and linear growth and AgeAccel was investigated using conditional 

growth models. We replicated analyses from the late childhood to adolescence period and 

pubertal timing among 240 participants from The National Child and Development 

Study(NCDS).  

Results: A 1 SD increase in relative weight gain in late childhood to adolescence was 

associated with 0.50y(95% CI:0.20,0.79) higher AgeAccelGrim. This was replicated in 

NCDS (0.57y(95%CI:-0.01, 1.16). A I SD increase in linear growth during early childhood 

was associated with lower AgeAccelLevine(-0.39y [95% CI:-0.74,-0.04) however we did not 

have the data to replicate this finding in NCDS. There was no strong evidence that relative 

weight gain and linear growth in childhood was associated with any other AgeAccel 

biomarker. There was no relationship between pubertal timing in men and AgeAccel 
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biomarkers. Women who reached menarche ≥12y had 1.20y(95% CI:0.15,2.24) higher 

AgeAccelGrim on average than women who reached menarche <12y; however this was not 

replicated in NCDS.  

Conclusions: Our findings generally do not support an association between growth and 

AgeAccel biomarkers in mid-life. However, rapid weight gain during pubertal development, 

which we found to be related to older AgeAccelGrim and had previously been related to 

higher cardiovascular disease risk, warrants further investigation.   

Key words: epigenetic clock; cohort; longitudinal; biological ageing; biomarkers of ageing
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INTRODUCTION 

The demographic shift towards an ageing population is a recognised public health challenge. 

Despite increases in life expectancy, compression of morbidity is not evident and there is 

significant heterogeneity in the occurrence of age-related disease and functional capability 

among people of the same chronological age1. Definitions of healthy ageing include survival 

to old age, delaying the onset of age-related diseases, and maintaining function2. Ageing is a 

complex process involving changes at the molecular, cellular, physiological and functional 

level over time3.  Biomarkers of ageing, which combine information from one or more of 

these processes, have been proposed as tools to capture healthy ageing4. A suitable biomarker 

of ageing should be better at predicting survival, onset of age-related disease and functional 

capability at later ages than chronological age alone.  

Epigenetic mechanisms, specifically DNA methylation (DNAm) have been implicated in the 

ageing process5. A number of DNAm-based biomarkers of ageing have been developed6-11. 

The first generation of these biomarkers used a data-driven elastic net regression method to 

identify specific DNAm sites (CpGs) that are highly predictive of chronological age. These 

DNAm-based biomarkers of ageing include the blood-based Hannum and the multi-tissue 

Horvath clocks7,8.  The second generation of DNAm-based biomarkers of ageing, the Levine 

clock (also referred to as PhenoAge) and GrimAge, use information about age-related traits 

and mortality in addition to chronological age10.  The Levine clock was developed using 

composite age-related clinical physiological measures to identify associated CpGs from 

DNAm in whole blood10,11. GrimAge was created by combining surrogate DNAm-based 

plasma protein estimates, DNAm smoking pack years estimates and chronological age and 

sex as a function of mortality 11. It remains unclear exactly what aspects of ageing each of 

these biomarkers are capturing12. However, having a higher DNAm age independent of 

chronological age (denoted age acceleration, AgeAccel) for each of these biomarkers has 
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been shown to be associated with an increased risk of premature all-cause mortality, 

cardiovascular disease and cancer with AgeAccelLevine and AgeAccelGrim showing 

stronger associations than AgeAccelHannum or AgeAccelHorvath10,11,13-16. We have also 

recently demonstrated that AgeAccelLevine and AgeAccelGrim are associated with markers 

of age-related physical and cognitive performance17. 

Using a life course approach can provide novel insights into how biological, behavioural and 

psychosocial processes over time affect healthy ageing2.  Childhood is a sensitive period 

during which physiological changes can be initiated, leading to long-term health 

consequences in age-related physical and cognitive performance and age-related disease18.  

There may be a specific period during childhood where growth has a lasting impact on a 

particular age-related health outcome. Birth weight, child and adolescent weight and height 

gain have been associated with a range of age-related and disease outcomes but patterns vary 

depending on the outcome19-24.  Similarly, the timing of puberty has exhibited differential 

associations with later life heath; for example younger age at puberty, particularly among 

women, is associated with higher risk of cardiovascular disease25 and all-cause mortality26 

but later puberty is associated with lower bone mineral density27.  

While a few studies in childhood and adolescence have examined how AgeAccelHorvath is 

associated with growth and pubertal timing (not vice-versa)28-30, to our knowledge, no study 

has examined how physical growth during childhood or pubertal timing is related to DNAm-

based biomarkers of ageing in later life. In the largest of these previous studies (n=1018), 

higher AgeAccelHorvath at birth was associated with higher average fat mass and faster 

growth in weight and BMI between birth and 17 years30. In a cross-sectional study of Finnish 

children aged 11 to 13 years (n=239), higher AgeAccelHorvath was associated with heavier 

weight-for-age, taller height-for-age and more advanced puberty based on Tanner Stage29. In 

a smaller longitudinal (n=94) study of Chilean girls aged 9 to 13 years, higher 
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AgeAccelHorvath was associated with earlier age at menarche28.  These studies suggest that 

higher AgeAccelHorvath in early life is associated with more rapid growth and earlier 

development28-30. It is not known if this association is similar for other AgeAccel biomarkers, 

if it tracks across adulthood or if growth and development in childhood has additional effects 

on AgeAccel that persist across the life course. 

In this exploratory study using data from a subsample of a nationally representative British 

birth cohort, we are the first to investigate the impact of birth weight and physical growth 

during infancy (birth to 2 years), early childhood (2 to 4 years), middle childhood (4 to 7 

years) and late childhood to adolescence (7 to 15 years) and pubertal timing on four DNAm-

based biomarkers of ageing in mid-life. We examine both linear growth and weight gain 

relative to linear growth to explore their potential separate effects31. Where possible we 

conducted a replication study among a sub-sample of participants from a British birth cohort 

born twelve years later.  

METHODS 

Participants 

Participants were from the Medical Research Council National Survey of Health and 

Development study (MRC NSHD, or 1946 British birth cohort).  NSHD is one of the longest 

running birth cohorts worldwide and participants have been followed up 24 times since birth. 

Details about this cohort have been published previously32-34. Briefly, the 5,362 original 

NSHD participants were singleton births born in one week in March 1946 to married parents 

in England, Scotland or Wales. While avoidable non-response in adulthood was highest 

among those with adverse socioeconomic circumstances and with low scores on childhood 

cognitive measures, study participants remain broadly representative of the native British 

population born in the early post-war years34-36. Of the 3,673 participants who were still alive 
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and resident in England, Scotland or Wales when they were 53 years old, 3,035 provided 

information during a home visit by a research nurse and blood samples were taken from those 

who consented.  The data collection at age 53 years received multicentre research ethics 

committee approval and informed consent was given by respondents to each set of questions 

and measures. A subset of participants at 53 years with blood samples who also had 

information on a wide range of health and age-related variables across the life course were 

selected for DNAm analyses (n=1,595). After quality control, 1,376 participants with DNAm 

information who also had weight and/or height measured at least once between birth and 15 

years were included in analyses. 

DNAm-based biomarkers of ageing  

DNAm from participant’s blood samples was measured at >850 000 CpG sites using 

Infinium MethylationEPIC BeadChips and processed using the ENmix package37 in R  to 

obtain methylation beta-values for quality control purposes. In addition, signals with a 

detection p-value > 1x10-6 and a number of beads <3 were set to missing. Samples with 

missing data in >5% of the CpGs were excluded. CpGs with missing data in >5% of the 

samples were excluded. Samples identified with outlier values (more than three standard 

deviations from the mean or three interquartile ranges below the first or above the third 

quartiles) in bisulfite intensity, total intensity, or beta-value distribution were excluded. 

Sample identity was verified by estimating the correlation (r>0.90) between the 59 SNPs 

included in the methylation beadchips and imputed genotype data.  

We used four DNAm-based biomarkers of ageing in this study: DNAm AgeHannum, DNAm 

AgeHorvath, DNAm AgeLevine and DNAm GrimAge7,8,10,11.  DNAm GrimAge and DNAm 

AgeLevine were developed using both the Infinium HumanMethylation450 BeadChip and 

the Infinium MethylationEPIC BeadChips while DNAm AgeHannum and DNAm 
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AgeHorvath used the Infinium HumanMethylation450 BeadChip only. Therefore participants 

included in this study have all CpGs for DNAm GrimAge and DNAm AgeLevine and are 

missing 6 CpGs for DNAm  AgeHannum and 19 CpGs for DNAm AgeHorvath. Previous 

studies have found DNAm age estimate is unaffected by platform differences38. Besides those 

CpG sites already expected to be missing, in this study very few DNAm age CpG sites 

among a small number of participants did not pass quality control. Each DNAm-based 

biomarker was calculated using freely available software 

(https://labs.genetics.ucla.edu/horvath/dnamage/) with the normalisation option and advanced 

analysis for blood samples. Input data were produced using ssNoob pre-processing of the 

DNA methylation arrays in minfi39 . Chronological age-independent DNAm-based 

biomarkers (residuals from a regression of DNAm age on chronological age) were calculated 

within this software to represent the difference between an individual’s DNAm Age and 

chronological age: AgeAccelHannum, AgeAccelHorvath, AgeAccelLevine and 

AgeAccelGrim (in units of a year). Estimated blood cell counts (naïve and exhausted CD8+ 

T-lymphocytes, CD4+ T-lymphocytes, B cells, natural killer cells, monocytes and 

granulocytes) were also calculated within this software.  

Weight and height  

Weight (kg) and height (cm) in childhood were measured using standardised protocols at 2, 4, 

7, 11 and 15 years.  Birth weight was extracted from birth records to the nearest quarter 

pound and converted to kg. Birth length was not recorded.  We conceptualised different 

periods of growth as: infancy (birth to 2 years), early childhood (2 to 4 years), middle 

childhood (4 to 7 years) and late childhood to adolescence (7 to 15 years which captures the 

full period of pubertal growth).  All weight and height measures were converted to sex-

specific z-scores using the mean and standard deviation to facilitate comparison of estimates 

between different ages.  
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Pubertal timing 

Pubertal stage for boys at age 14-15 years was based on physical examination by school 

doctors of four criteria: visibility of pigmented pubic hair, the visibility of axillary hair the 

development of genitalia, and whether the voice had broken 40. Based on responses to these 

questions boys were grouped into fully mature (i.e. those who experienced the earliest 

pubertal timing), advanced puberty, early puberty and pre-pubertal.  

Age at menarche for girls was obtained from mother’s reports when the girls were 14-15 

years. Of those who had not reached menarche at this date (n=188), age at menarche was 

obtained from self-report at 48 years (n=94).  

Individual patterns of height and weight growth during puberty were estimated using the 

SITAR model of growth curve analysis and used in sensitivity analyses 41. Briefly, the 

SITAR model summarises each individual’s growth curve in terms of three parameters: size, 

tempo and velocity, each expressed relative to the mean curve. The tempo parameter 

indicates the relative timing of puberty based on the age at peak velocity with higher scores 

reflecting later pubertal timing.  

Additional variables  

We selected a number of additional variables a priori for descriptive purposes. 

Socioeconomic position (SEP) at 53 years (or 43 years if missing) was based on occupation 

grouped according to the Registrar General’s social class and categorised into non-manual 

and manual. Similarly father’s SEP when the cohort member was 4 years old was categorised 

as non-manual or manual. Smoking status at 53 years was self-reported and categorised as 

current, ex-smoker or never smoker. 
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Statistical analyses 

All analyses were conducted in Stata 14 using the four AgeAccel biomarkers as outcomes. 

Further mention of AgeAccel refers to all four biomarkers unless specified. Models using 

AgeAccel as an outcome were adjusted for sex and age at home visit (in months) when DNA 

sample was taken.  

We assessed if participants characteristics differed between those included in our main 

analyses and those who responded to the 53 year data collection but were not included in our 

analyses using t-tests and chi-squared tests.  

In preliminary analyses we  investigated associations between weight and height from 

infancy to adolescence and AgeAccel. The relation of weight and height z-scores at each age 

with AgeAccel was examined using separate multiple regression models for each age for 

descriptive purposes. Models were mutually adjusted for weight or height z-scores. 

Interactions between sex and height or weight z-scores were tested to assess whether 

associations were different for men and women.  

For our main analyses, we used regression with conditional growth measures 42-45. This 

method involves computing a sex-specific conditional growth measure i.e. the standardised 

residuals from a regression of current size on the previous size measure. These conditional 

growth variables are, by definition, uncorrelated with size at the previous age and represent 

the deviation of a participant’s current size from that expected given their previous measure 

and the growth of the other participants in the sample. In order to examine the effects of both 

linear growth and relative weight gain, we used an approach described by Adair and 

colleagues 31. Conditional relative weight was calculated as the standardised residuals of 

current weight z-score accounting for previous weight and height z-score as well as current 

height z-score. Conditional height was calculated as the standardised residuals from a 
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regression of current height z-score on previous height and weight z-scores (but not current 

weight z-score).  For each period of childhood, linear regression models were used to 

examine the association between the conditional growth measure and AgeAccel.  

Linear regression models were also used to examine the association between pubertal timing 

and AgeAccel. For girls, we used both continuous age at menarche and a dichotomised score 

of <12 years and ≥ 12 years to examine early menarche. For boys pubertal stage at 14-15 

years was assessed. 

Sensitivity analyses 

Since more participants had information on the SITAR variables than timing of puberty, we 

repeated the analysis using height-tempo.  

We adjusted the conditional growth models and timing of puberty for estimated cell counts 

(naïve and exhausted CD8+ T-lymphocytes, CD4+ T-lymphocytes, B cells, natural killer 

cells, monocytes and granulocytes). 

A subsample of participants in NSHD also had AgeAccel measures at 60-64 years (n=482). 

Therefore we investigated if the association between growth and development in early life 

and AgeAccel were consistent when AgeAccel was measured approximately ten years later.  

Replication 

We used data from the National Child and Development Study (NCDS; 1958 British birth 

cohort) to replicate findings where possible. This cohort has been described in detail 

previously 46. For this analysis we used data from a subsample of NCDS participants who had 

DNAm measured at 45 years (n=240). AgeAccel measures were obtained using the same 

methods as NSHD. Height and weight were measured at ages 7, 11 and 16 years. We used  

weight z-scores in NCDS at 7 and 16 years to replicate analyses for growth during the late 
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childhood to adolescence period and AgeAccel observed in NSHD using regression with 

conditional growth measures as outlined above.  

Pubertal stage among boys in NCDS was assessed by a physical examination by trained 

medical personnel when participants were 16 years. We used the following criteria to assign 

boys as fully mature (i.e. those who experienced the earliest pubertal timing) or later puberty 

for comparison with NSHD: visibility of pigmented pubic hair, the visibility of axillary hair, 

whether the voice had broken and the visibility of facial hair. Age at menarche was reported 

by the medical officer (or parent if missing) at the 16 year examination. Two women in the 

NCDS sample had not reached menarche by 16 years and were coded as greater than 16 

years.  

RESULTS 

Descriptive characteristics of participants included in the main analysis (n=1,376) are 

outlined in table 1. There were no major differences in body size, pubertal timing, smoking 

status or SEP among participants included in our main analysis versus all other NSHD 

participants responding to the 53 year data collection (n=1,659, supplementary table 1).   

The median absolute difference between DNAm AgeHannum, DNAm AgeHorvath, DNAm 

Levine and DNAm GrimAge and chronological age at 53 years was 11.1, 4.0, 14.7 and 2.8 

years respectively.  The correlation coefficients between the different AgeAccel biomarkers 

ranged from r=0.1 for AgeAccelHorvath and AgeAccelGrim to r=0.4 for AgeAccelLevine 

with AgeAccelHannum, AgeAccelHorvath and AgeAccelGrim.   
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Preliminary analyses: AgeAccel at 53 years and weight and height z-scores at each time 

point in childhood  

We find little evidence of any strong relationships between weight and height at each age 

separately with any AgeAccel biomarker at 53 years (figure 1). The largest differences in 

coefficients from one age to the next, which are indicative of the importance of change in 

size, are observed between 7 and 15 years for weight in relation to AgeAccelGrim and also 

with AgeAccelHannum and AgeAccelLevine. There were also differences in coefficients 

observed between 2 and 4 years and 4 and 7 years for height in relation to AgeAccelHanum 

and AgeAccelLevine. There was no consistent evidence for sex differences except for 

AgeAccelHorvath where there was evidence for an interaction between sex and birth weight 

z-score and weight z-score at 4 years (pinteraction≤0.03).  

Main analyses: AgeAccel at 53 years and conditional relative weight and linear growth in 

childhood 

There was no evidence that relative weight gain and linear growth during childhood was 

associated with AgeAccelHannum or AgeAccelHorvath (table 2).   

In the conditional growth models (table 2) a 1 SD increase in relative weight gain between 

the ages of 7 and 15 years was associated with 0.50 years (95% CI: 0.20, 0.79) higher 

AgeAccelGrim.  

For linear growth, there was modest evidence that more rapid growth between 2 and 4 years 

was associated with lower AgeAccelLevine (-0.39 years [95% CI: -0.74, -0.04]).  

Main analyses: AgeAccel at 53 years and pubertal timing  

There was no relationship between pubertal timing in men and any of the AgeAccel 

biomarkers at 53 years (table 3).  Women who reached menarche at 12 years or older had 
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1.20 years (95% CI: 0.15, 2.24) higher AgeAccelGrim on average than women who reached 

menarche younger than 12 years. 

Sensitivity analyses  

We observed no associations between the SITAR measure of pubertal timing in men or 

women with any AgeAccel biomarker (supplementary table 2). 

Adjusting the conditional growth models for estimated cell composition attenuated the 

estimates; the estimate for the association of linear growth between 2-4 years and 

AgeAccelLevine was halved to -0.20 (95% CI: -0.50 to 0.10) (supplementary table 3). The 

association between age at menarche and AgeAccelGrim was greatly attenuated to 0.53 years 

(95% CI: -0.46, 1.53) when adjusting for estimated cell composition (supplementary table 4).  

When using AgeAccel at 60-64 years as the outcome where the sample size is smaller,  the 

association between relative weight gain between 7 and 15 years and  AgeAccelGrim was 

weaker than that observed at 53 years (0.38 [95% CI: -0.04 to 0.79] (supplementary table 5). 

An association between relative weight gain between 7 and 15 years and AgeAccelLevine 

was observed at 60-64 years (0.69 [95% CI: 0.12, 1.26].  The estimated association between 

linear growth between 2 and 4 years and AgeAccelLevine was similar (-0.37 [95% CI: -0.97 

to 0.22]) to that found at age 53 years.  

The direction of the estimates between pubertal timing and AgeAccel using the subsample 

from NSHD at 60-64 years were in a similar direction as 53 years. Associations between age 

at menarche (≥12 years versus <12 years) and AgeAccelLevine at 60-64 years were stronger 

compared with AgeAccel biomarkers from 53 years (supplementary table 6).  Among men, 

much larger estimates were observed when compared with 53 years. For example, compared 
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to men with early puberty, those with later puberty had 1.27 years lower (95% CI: -2.47, -

0.06) AgeAccelGrim at 60-64 years and 0.19 years lower (95% CI: -1.09, 0.70) at 53 years.  

Replication in NCDS 

Similar to results using NSHD participants at 53 years, a 1 SD increase in relative weight 

gain between the ages of 7 and 16 years was associated with  0.20 (95% CI -0.47 to 0.86) 

years higher AgeAccelGrim (table 4).  There was no association between pubertal timing and 

any AgeAccel biomarker in NCDS.  

DISCUSSON 

We did not find strong evidence for an association between growth in early life and all 

AgeAccel biomarkers in mid-adulthood. However, we did observe an association between 

faster weight gain during pubertal growth and higher AgeAccelGrim in mid-adulthood which 

was seen in NSHD and replicated in NCDS.  

There are no previous studies with which to directly compare our findings. However in an 

English study, higher birth weight was correlated with higher AgeAccelHorvath at 7 years 

but with lower AgeAccelHorvath by 17 years, with no information for correlations beyond 

adolescence 47. In the same study looking at the association in the other direction, higher 

AgeAccelHorvath at birth was associated with more rapid childhood and adolescent 

development including faster weight and BMI gains between childhood and adolescence 30. 

Similarly, in a cross-sectional study of Finnish children aged 11 to 13 years (n=239), higher 

AgeAccelHorvath was associated with heavier weight-for-age and taller height-for-age 29. 

We did not observe any strong associations with birth weight and AgeAccelHorvath in mid-

life suggesting that if these associations do exist, they may not persist into adulthood.  
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We did observe a relationship between faster gains in weight during pubertal growth with 

AgeAccelGrim. Among adults there is a consistent association between higher BMI and 

higher AgeAccel in all four biomarkers 10,11,48. Since rapid pubertal weight gain is associated 

with higher adult BMI, our findings suggest that the relationship we observed with 

AgeAccelGrim in mid-life may have been at least partly established in early life.  

Our finding of an association between faster linear growth in early childhood and higher 

AgeAccelLevine among NSHD participants should be interpreted with caution. The estimates 

we observed for the association between faster linear growth in early childhood and higher 

AgeAccelLevine were not as large as the estimates for rapid weight gain in adolescence and 

multiple tests were conducted. Adjusting for cell composition attenuated the association 

observed between linear growth and AgeAccelLevine however, since cell composition is a 

component in the creation of DNAm age Levine, this could be an over adjustment. We were 

unable to replicate this finding due to a lack of early life growth measures in NCDS.  

While two previous studies in Finland and Chile observed that higher AgeAccelHorvath 

among children aged 9 to 13 years was associated with more advanced puberty based on 

Tanner stage or earlier age at menarche28,29, to our knowledge no previous study has 

examined the relationship between pubertal timing and AgeAccel biomarkers in later life.  

We found no evidence for an association between pubertal timing in men and any of the 

AgeAccel biomarkers at 53 years in NSHD or at 45 years in NCDS. Early puberty was 

associated lower AgeAccelGrim at 60-64 years among men in NSHD, however this was a 

small sample and would need replication in a larger study. An association between older age 

at menarche and higher AgeAccel was observed in NSHD at both 53y and 60-64 years. This 

finding is unexpected as older age at menarche is generally associated with better age-related 

outcomes and reduced risk of mortality 26. This association was not replicated in NCDS or 

when using age at menarche as a continuous variable. We also observed no association when 
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SITAR variables were used to represent pubertal timing. Previous analysis in NSHD found 

no association between age at menarche and all-cause mortality suggesting that different 

mortality rates by pubertal timing in women are unlikely to have biased this finding 49. In 

sensitivity analyses we found that that the associations between older age at menarche and 

higher AgeAccel attenuated following adjustment for cell composition. As there is some 

evidence that pubertal timing is associated with white blood cell counts 50, it is possible that 

blood cell counts confounded our observed association. With all this in mind, these 

associations should be interpreted with caution and require further investigation in larger 

samples.  

The use of DNAm to predict biological age is a newly emerging field and there are still lot of 

unknowns. It is difficult to ascertain what aspects of ageing these biomarkers are capturing 

and the underlying biology of these relationships 12. For this reason we examined four 

AgeAccel biomarkers with the aim of informing future studies. We observed weak 

correlations between the four AgeAccel biomarkers suggesting that they are not necessarily 

capturing the same underlying ageing construct. There are a few differences between how 

these biomarkers were constructed that may explain the differences in the results.  The first 

generation of biomarkers are generally considered chronological age predictors and the 

models were trained (i.e. the CpG sites and weights were determined) primarily using cross-

sectional data. The second generation biomarkers used additional age-related outcomes to 

select the CpG sites and were trained using longitudinal data 12.  The nature of the 

relationships in our study may provide more insight into the utility of these biomarkers. 

Assuming that growth in early life has an effect on age-related health outcomes, our finding 

of no associations between growth from infancy to middle childhood in any of the AgeAccel 

biomarkers suggest that these biomarkers are not fully capturing the effects of early life 

growth on age-related conditions. However, the finding of an association between faster gains 
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in weight during adolescence and higher AgeAccelGrim and a suggested association between 

faster linear growth during childhood with higher AgeAccelLevine is similar to that seen with 

cardiovascular risk factors such as obesity, blood pressure and vascular structure and 

cardiovascular disease 19-21,51. This may suggest that the second generation AgeAccel 

biomarkers (particularly AgeAccelGrim) are capturing the result of a cardiovascular pathway 

through which pubertal growth influences age-related disease, perhaps due to the inclusion of 

cardiovascular risk-factors in their construction.   

Our main results are based on relatively young participants at 53 years. While age-related 

disease may not always be evident at this age, it is possible that age-related DNAm changes 

are occurring. In order to examine if our observed associations change with age we repeated 

analyses on a subsample of NSHD participants who also had AgeAccel measures ten years 

later. We found that the estimates at 60-64 years were generally in the same direction but that 

some associations were weaker and some were stronger at 60-64 years. As participants age 

and accumulate more age-related changes the effect of early life development may become 

more evident. However, given the small sample size at 60-64 years, these findings would 

need replication in larger studies.  

The main strengths of this study are the inclusion of participants from two well characterised 

prospective population-based birth cohorts, the prospective repeated measures of body size 

from infancy, and the replication of the main finding. There are also a number of limitations 

to keep in mind when interpreting these findings. We conducted 44 tests for our main 

analyses. As this was an exploratory study, we decided not to adjust for multiple testing 52,53. 

Therefore, our finding of an association between relative weight gain during pubertal growth 

and AgeAccelGrim could be by chance and although this was replicated in another sample, 

future replication is required before any conclusions are drawn. As with all prospective 

cohort studies there is attrition in NSHD; however at 53 years respondents were found to be 
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generally representative of the white British population 32. We observed no major differences 

in sociodemographic characteristics between participants included in our analyses and those 

who responded to the 53 year data collection but were not included in our analyses. There is a 

possibility that collider bias could have been introduced, as the selection for having DNAm 

was from those with complete growth and development data in childhood. If having lower 

DNAm age and faster weight gain was associated with participation, the estimates may have 

been biased 54. Where possible we repeated our analyses in a subsample from NCDS to 

replicate findings, which could be similarly biased. Since measures were not obtained from 

exactly the same ages we were unable to test for replication of the associations in infancy, 

early childhood or middle childhood. Similarly, timing of puberty was assessed slightly 

differently between the studies which may have accounted for some differences in findings.  

Finally, as with all observational studies, unmeasured cofounding remains a limitation. We 

decided a priori to adjust only for sex and age at home visit. A thorough investigation of 

potential confounders and/or mediators would be required before any inference to causality 

could be made.  

Our study serves two purposes: examining the utility of newly emerging aging biomarkers, 

and the importance of growth and development in early life on ageing. Our findings suggest 

that in general these AgeAccel biomarkers do not capture the age-related effects of childhood 

growth. The second generation AgeAccel biomarkers, particularly AgeAccelGrim appear to 

be more sensitive to growth during puberty. The observed relationship between faster gains in 

weight during puberty, which have previously been associated with cardiovascular risk, and 

AgeAccelGrim indicates that this period of growth warrants further investigation.   

Conflict of Interest 

None declared 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.02.20242529doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.02.20242529
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

 

Funding 

This work was supported by the Economic and Social Research Council/Biotechnology and 

Biological Sciences Research Council [ES/N000404/1]. The UK Medical Research Council 

provides core funding for the MRC National Survey of Health and Development 

[MC_UU_00019/1]. RH is Director of CLOSER which is funded by the Economic and Social 

Research Council (award reference: ES/K000357/1).  

Acknowledgments 

We thank NSHD and NCDS study members for their lifelong participation and past and 

present members of the study teams, including Professor Alissa Goodman, Professor Ken 

Ong and members of the MRC Epidemiology unit in Cambridge, who helped to collect and 

process the data. Data used in this publication are available to bona fide researchers upon 

request to the NSHD Data Sharing Committee via a standard application procedure. Further 

details can be found at   http://www.nshd.mrc.ac.uk/data doi: 10.5522/NSHD/S201. 

Information about NCDS can be found at https://cls.ucl.ac.uk/cls-studies/1958-national-child-

development-study/  and data can be accessed via https://ukdataservice.ac.uk/ . 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.02.20242529doi: medRxiv preprint 

http://www.nshd.mrc.ac.uk/data
https://cls.ucl.ac.uk/cls-studies/1958-national-child-development-study/
https://cls.ucl.ac.uk/cls-studies/1958-national-child-development-study/
https://ukdataservice.ac.uk/
https://doi.org/10.1101/2020.12.02.20242529
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

 REFERENCES 

1. Crimmins EM, Beltrán-Sánchez H. Mortality and Morbidity Trends: Is There Compression of 
Morbidity? The Journals of Gerontology: Series B. 2010;66B(1):75-86. 
doi:10.1093/geronb/gbq088. 

2. Ben-Shlomo Y, Cooper R, Kuh D. The last two decades of life course epidemiology, and its 
relevance for research on ageing. International Journal of Epidemiology. 2016;45(4):973-988. 
doi:10.1093/ije/dyw096. 

3. Ferrucci L, Levine ME, Kuo P-L, Simonsick EM. Time and the Metrics of Aging. Circulation 
Research. 2018;123(7):740-744. doi:10.1161/CIRCRESAHA.118.312816. 

4. Jylhävä J, Pedersen NL, Hägg S. Biological Age Predictors. EBioMedicine. 2017;21:29-36. 
doi:10.1016/j.ebiom.2017.03.046. 

5. Jones MJ, Goodman SJ, Kobor MS. DNA methylation and healthy human aging. Aging Cell. 
2015;14(6):924-932. doi: 10.1111/acel.12349. 

6. Bocklandt S, Lin W, Sehl ME, et al. Epigenetic predictor of age. PloS One. 2011;6(6):e14821. 
doi:10.1371/journal.pone.0014821. 

7. Hannum G, Guinney J, Zhao L, et al. Genome-wide methylation profiles reveal quantitative 
views of human aging rates. Molecular cell. 2013;49(2):359-367. 
doi:10.1016/j.molcel.2012.10.016. 

8. Horvath S. DNA methylation age of human tissues and cell types. Genome biology. 
2013;14(10):3156. 

9. Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of 
ageing. Nature Reviews Genetics. 2018;19(6):371-387. doi:10.1038/s41576-018-0004-3. 

10. Levine ME, Lu AT, Quach A, et al. An epigenetic biomarker of aging for lifespan and 
healthspan. Aging (Albany NY). 2018;10(4):573-591. doi:10.18632/aging.101414. 

11. Lu AT, Quach A, Wilson J, et al. DNA methylation GrimAge strongly predicts lifespan and 
healthspan. Aging (Albany NY). 2019. doi:10.18632/aging.101684. 

12. Levine ME. Assessment of Epigenetic Clocks as Biomarkers of Aging in Basic and Population 
Research. The Journals of Gerontology: Series A. 2020;75(3):463-465. 
doi:10.1093/gerona/glaa021. 

13. Marioni RE, Shah S, McRae AF, et al. DNA methylation age of blood predicts all-cause 
mortality in later life. Genome biology. 2015;16(1):25. doi:10.1186/s13059-015-0584-6. 

14. Chen BH, Marioni RE, Colicino E, et al. DNA methylation-based measures of biological age: 
meta-analysis predicting time to death. Aging (Albany NY). 2016;8(9):1844-1865. 
doi:10.18632/aging.101020. 

15. Perna L, Zhang Y, Mons U, Holleczek B, Saum K-U, Brenner H. Epigenetic age acceleration 
predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clinical 
epigenetics. 2016;8(1):64. doi:10.1186/s13148-016-0228-z. 

16. Dugué P-A, Bassett JK, Joo JE, et al. Association of DNA Methylation-Based Biological Age 
With Health Risk Factors and Overall and Cause-Specific Mortality. American Journal of 
Epidemiology. 2017;187(3):529-538. doi:10.1093/aje/kwx291. 

17. Maddock J, Castillo-Fernandez J, Wong A, et al. DNA methylation age and physical and 
cognitive ageing. The Journals of Gerontology: Series A. 2019;75(3):504-511. 
doi:10.1093/gerona/glz246. 

18. Hanson Ma, Gluckman P. Early Developmental Conditioning of Later Health and Disease: 
Physiology or Pathophysiology? Physiological Reviews. 2014;94(4):1027-1076. 
doi:10.1152/physrev.00029.2013. 

19. Ong KK, Loos RJ. Rapid infancy weight gain and subsequent obesity: systematic reviews and 
hopeful suggestions. Acta Paediatrica 2006;95(8):904-908. 
doi:10.1080/08035250600719754. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.02.20242529doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.02.20242529
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

 

20. Jones A, Charakida M, Falaschetti E, et al. Adipose and height growth through childhood and 
blood pressure status in a large prospective cohort study. Hypertension. 2012;59(5):919-925. 
doi:10.1161/HYPERTENSIONAHA.111.187716. 

21. Hardy R, Ghosh AK, Deanfield J, Kuh D, Hughes AD. Birthweight, childhood growth and left 
ventricular structure at age 60–64 years in a British birth cohort study. International Journal 
of Epidemiology. 2016;45(4):1091-1102. doi:10.1093/ije/dyw15. 

22. Kuh D, Hardy R, Butterworth S, et al. Developmental origins of midlife physical performance: 
evidence from a British birth cohort. American Journal of Epidemiology. 2006;164(2):110-
121. doi:10.1093/aje/kwj193. 

23. Kuh D, Hardy R, Butterworth S, et al. Developmental origins of midlife grip strength: findings 
from a birth cohort study. The Journals of Gerontology: Series A. 2006;61(7):702-706. 
doi:10.1093/gerona/61.7.702. 

24. Richards M, Hardy R, Kuh D, Wadsworth ME. Birthweight, postnatal growth and cognitive 
function in a national UK birth cohort. International Journal of Epidemiology. 
2002;31(2):342-348. doi:10.1093/ije/31.2.342. 

25. Peters SA, Woodward M. Women’s reproductive factors and incident cardiovascular disease 
in the UK Biobank. Heart. 2018;104(13):1069-1075. doi:10.1136/heartjnl-2017-312289. 

26. Chen X, Liu Y, Sun X, et al. Age at menarche and risk of all-cause and cardiovascular 
mortality: a systematic review and dose–response meta-analysis. Menopause. 
2019;26(6):670-676. doi:10.1097/GME.0000000000001289. 

27. Kuh D, Muthuri SG, Moore A, et al. Pubertal timing and bone phenotype in early old age: 
findings from a British birth cohort study. International Journal of Epidemiology. 
2016;45(4):1113-1124. doi:10.1093/ije/dyw131. 

28. Binder AM, Corvalan C, Mericq V, et al. Faster ticking rate of the epigenetic clock is 
associated with faster pubertal development in girls. Epigenetics. 2018;13(1):85-94. 
doi:10.1080/15592294.2017.1414127. 

29. Suarez A, Lahti J, Czamara D, et al. The epigenetic clock and pubertal, neuroendocrine, 
psychiatric, and cognitive outcomes in adolescents. Clinical Epigenetics. 2018;10(1):96. 
doi:10.1186/s13148-018-0528-6. 

30. Simpkin AJ, Howe LD, Tilling K, et al. The epigenetic clock and physical development during 
childhood and adolescence: longitudinal analysis from a UK birth cohort. International 
journal of epidemiology. 2017;46(2):549-558. doi:10.1093/ije/dyw307. 

31. Adair LS, Fall CH, Osmond C, et al. Associations of linear growth and relative weight gain 
during early life with adult health and human capital in countries of low and middle income: 
findings from five birth cohort studies. The Lancet. 2013;382(9891):525-534. 
doi:10.1016/S0140-6736(13)60103-8. 

32. Wadsworth M, Kuh D, Richards M, Hardy R. Cohort profile: the 1946 national birth cohort 
(MRC National Survey of Health and Development). International Journal of Epidemiology. 
2005;35(1):49-54. doi:10.1093/ije/dyi201. 

33. Kuh D, Wong A, Shah I, et al. The MRC National Survey of Health and Development reaches 
age 70: maintaining participation at older ages in a birth cohort study. European Journal of 
Epidemiology. 2016;31(11):1135-1147. doi:10.1007/s10654-016-0217-8. 

34. Stafford M, Black S, Shah I, et al. Using a birth cohort to study ageing: representativeness 
and response rates in the National Survey of Health and Development. European Journal of 
Ageing. 2013;10(2):145-157. doi:10.1007/s10433-013-0258-8. 

35. Wadsworth M, Mann S, Rodgers B, Kuh D, Hilder W, Yusuf E. Loss and representativeness in 
a 43 year follow up of a national birth cohort. Journal of Epidemiology & Community Health. 
1992;46(3):300-304. 

36. Wadsworth ME, Butterworth S, Hardy R, et al. The life course prospective design: an 
example of benefits and problems associated with study longevity. Social science & 
medicine. 2003;57(11):2193-2205. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.02.20242529doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.02.20242529
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 

37. Xu Z, Niu L, Li L, Taylor JA. ENmix: a novel background correction method for Illumina 
HumanMethylation450 BeadChip. Nucleic acids research. 2016;44(3):e20-e20. 
doi:10.1093/nar/gkv907. 

38. McEwen LM, Jones MJ, Lin DTS, et al. Systematic evaluation of DNA methylation age 
estimation with common preprocessing methods and the Infinium MethylationEPIC 
BeadChip array. Clinical epigenetics. 2018;10(1):1-9. 

39. Fortin J-P, Triche Jr TJ, Hansen KD. Preprocessing, normalization and integration of the 
Illumina HumanMethylationEPIC array with minfi. Bioinformatics. 2017;33(4):558-560. 
doi:10.1093/bioinformatics/btw691. 

40. Hardy R, Kuh D, Whincup PH, Wadsworth ME. Age at puberty and adult blood pressure and 
body size in a British birth cohort study. Journal of Hypertension. 2006;24(1):59-66. 
doi:10.1097/01.hjh.0000198033.14848.93. 

41. Cole TJ, Kuh D, Johnson W, et al. Using Super-Imposition by Translation And Rotation (SITAR) 
to relate pubertal growth to bone health in later life: the Medical Research Council (MRC) 
National Survey of Health and Development. International Journal of Epidemiology. 
2016;45(4):1125-1134. doi:10.1093/ije/dyw134. 

42. De Stavola BL, Nitsch D, dos Santos Silva I, et al. Statistical issues in life course epidemiology. 
American Journal of Epidemiology. 2005;163(1):84-96. doi:10.1093/aje/kwj003. 

43. Tu Y-K, Tilling K, Sterne JA, Gilthorpe MS. A critical evaluation of statistical approaches to 
examining the role of growth trajectories in the developmental origins of health and disease. 
International Journal of Epidemiology. 2013;42(5):1327-1339. doi:10.1093/ije/dyt157. 

44. Wills AK, Strand BH, Glavin K, Silverwood RJ, Hovengen R. Regression models for linking 
patterns of growth to a later outcome: infant growth and childhood overweight. BMC 
Medical Research Methodology. 2016;16(41). doi:10.1186/s12874-016-0143-1. 

45. Johnson W. Analytical strategies in human growth research. American Journal of Human 
Biology. 2015;27(1):69-83. doi:10.1002/ajhb.22589. 

46. Power C, Elliott J. Cohort profile: 1958 British birth cohort (National Child Development 
Study). International Journal of Epidemiology. 2006;35(1):34-41. doi:10.1093/ije/dyi183. 

47. Simpkin AJ, Hemani G, Suderman M, et al. Prenatal and early life influences on epigenetic 
age in children: a study of mother–offspring pairs from two cohort studies. Human 
Molecular Genetics. 2015;25(1):191-201. doi:10.1093/hmg/ddv456. 

48. Ryan J, Wrigglesworth J, Loong J, Fransquet PD, Woods RL. A systematic review and meta-
analysis of environmental, lifestyle and health factors associated with DNA methylation age. 
The Journals of Gerontology: Series A 2019;75(3):481-494. doi:10.1093/gerona/glz099. 

49. Hardy R, Maddock J, Ghosh AK, Hughes AD, Kuh D. The relationship between pubertal timing 
and markers of vascular and cardiac structure and function in men and women aged 60–64 
years. Scientific Reports. 2019;9(11037). doi:10.1038/s41598-019-47164-x. 

50. Pérez-de-Heredia F, Gómez-Martínez S, Díaz L-E, et al. Influence of sex, age, pubertal 
maturation and body mass index on circulating white blood cell counts in healthy European 
adolescents—the HELENA study. European Journal of Pediatrics. 2015;174(8):999-1014. 
doi:10.1007/s00431-015-2497-5. 

51. Whitley E, Martin RM, Smith GD, Holly JMP, Gunnell D. The association of childhood height, 
leg length and other measures of skeletal growth with adult cardiovascular disease: the 
Boyd–Orr cohort. Journal of Epidemiology and Community Health. 2012;66(1):18-23. 
doi:10.1136/jech.2009.104216. 

52. Perneger TV. What's wrong with Bonferroni adjustments. Bmj. 1998;316(7139):1236-1238. 
53. Rothman KJ. No adjustments are needed for multiple comparisons. Epidemiology. 1990:43-

46. 
54. Munafò MR, Tilling K, Taylor AE, Evans DM, Davey Smith G. Collider scope: when selection 

bias can substantially influence observed associations. International Journal of Epidemiology. 
2018;47(1):226-235. doi:10.1093/ije/dyx206.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.02.20242529doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.02.20242529
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

 

 

 

Figure  1. Preliminary results for DNAm Age Acceleration at 53 years and weight and height 

z-scores. Adjusted for height/weight z-score, age in months at 53 years and sex. Each 

coefficient represents mean change in AgeAccel (y) for a 1 SD increase in height/weight.  

Separate analyses were conducted at each age. 
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Table 1. Descriptive characteristics (n=1376) 

 Men (n=656) Women  (n=720) 

AgeAccel measures at 53 years, mean (SD)   

DNAm age Hannum  (y) 43.1 (4.3) 41.6 (4.0) 

AgeAccelHannum 0.79 (4.28) -0.66 (3.95) 

DNAm age Horvath  (y) 50.7 (4.2) 49.6 (3.9) 

AgeAccelHorvath 0.54 (4.15) -0.54 (3.86) 

Levine  (y) 39.0 (5.6) 38.9 (5.6) 

AgeAccelLevine 0.06 (5.59) -0.02 (5.61) 

GrimAge  (y) 58.0 (5.1) 55.3 (4.8) 

AgeAccelGrim 1.40 (5.14) -1.28 (4.79) 

Weight (kg), mean (SD)   

At birth 3.46 (0.53) 3.34 (0.49) 

At 2 years 13.23 (1.50) 12.54 (1.39) 

At 4 years 17.42 (2.10) 16.84 (2.02) 

At 7 years 23.00 (2.84) 22.39 (3.11) 

At 15 years 51.83 (9.73) 51.53 (8.58) 

Height (cm), mean (SD)   

At 2 years 86.11 (5.08) 84.81 (4.44) 

At 4 years 103.47 (5.15) 102.54 (4.87) 

At 7 years 120.49 (5.86) 119.42 (5.36) 

At 15 years 162.24 (9.17) 158.51 (6.05) 

   

Pubertal Stage at 14-15 years (men), % (N)   

Fully mature* 26.22 (172)  

Advanced puberty 32.16 (211)  

Early puberty 30.49 (200)  

Pre-pubertal 11.13 (73)  

Age at menarche (y) (women), mean (SD)  13.11 (1.26) 

*Fully mature group are the group who experienced the earliest pubertal timing 

AgeAccel: Age Acceleration 
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Table 2. DNAm Age Acceleration at 53 years and conditional growth  

  AgeAccelHannum AgeAccelHorvath AgeAccelLevine AgeAccelGrim 

 N Coefficient (95% 

CI) 

P 

value 

Coefficient (95% 

CI) 

P value Coefficient (95% 

CI) 

P 

value 

Coefficient (95% 

CI) 

P 

value 

Relative weight gain           

RWG between birth and 2 

years 

1,127 -0.09 (-0.34,  0.16) 0.48 -0.09 (-0.34, 0.15) 0.44 -0.05 (-0.39, 0.29) 0.76 -0.08 (-0.38,  

0.22) 

0.62 

RWG between 2 and 4 years 1,065 0.11 (-0.15, 0.37) 0.41 0.18 (-0.07, 0.43) 0.16 -0.07 (-0.42,  0.28) 0.69 -0.11 (-0.42, 0.19) 0.47 

RWG between 4 and 7 years 1,168 -0.17 (-0.43, 0.08) 0.18 -0.08 (-0.33, 0.16) 0.51 0.05 (-0.29, 0.40) 0.76 0.08 (-0.23, 0.39) 0.60 

RWG between 7 and 15 years 1,161 0.16 (-0.08, 0.40) 0.19 -0.01 (-0.24, 0.23) 0.94 0.22 (-0.11, 0.54) 0.19 0.50 (0.20, 0.79) <0.00

1 

Linear growth           

CLG between 2 and 4 years 1,085 -0.06 (-0.31, 0.20) 0.67 0.07 (-0.18, 0.32) 0.57 -0.39 (-0.74, -0.04) 0.03 -0.24 (-0.55, 0.06) 0.12 

CLG between 4 and 7 years 1,204 0.11 (-0.12, 0.33) 0.36 -0.04  (-0.26, 0.19) 0.75 0.16 (-0.15, 0.47) 0.32 0.01 (-0.27, 0.28) 0.97 

CLG between 7 and 15 years 1,174 0.11 (-0.13, 0.35) 0.36 0.03 (-0.20, 0.26) 0.78 0.01 (-0.31, 0.33) 0.97 0.14 (-0.15, 0.43) 0.35 

Adjusted for age in months at 53 years and sex.  

RWG: Relative weight gain i.e. standardised residuals from regression of present weight z-score on previous weight and height z-scores and present height z-score 

CLG: Conditional linear growth i.e. Standardised residuals from regression of present height z-score on previous height and weight z-scores  
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Table 3. DNAm Age Acceleration at 53 years and pubertal timing 

  AgeAccelHannum AgeAccelHorvath AgeAccelLevine AgeAccelGrim 

 N Coefficient (95% 

CI) 

P 

value 

Coefficient (95% 

CI) 

P 

value 

Coefficient (95% 

CI) 

P value Coefficient (95% 

CI) 

P value 

Women          

Age at menarche 

(years) 

617 0.07 (-0.18, 0.32) 0.59 0.04 (-0.20, 0.29) 0.73 -0.02 (-0.37, 0.33) 0.91 0.22 (-0.08,  0.53) 0.15 

Age at menarche          

<12 years   96 Ref  Ref  Ref  Ref  

≥12 years  521 0.37 (-0.49, 1.23) 0.40 0.27 (-0.57, 1.11) 0.53 0.73 (-0.48, 1.94) 0.24 1.20 (0.15, 2.24) 0.03 

          

Men: Pubertal status at 14-15 years        

Fully mature* 172 Ref.  Ref.  Ref.  Ref.  

Advanced puberty 211 0.17 (-0.70, 1.03) 0.56** -0.36 (-1.20, 0.48) 0.83** 0.95 (-0.17, 2.08) 0.08** -0.29 (-1.33, 0.75) 0.93** 

Early puberty 200 0.39 (-0.48, 1.27)  -0.18 (-1.03, 0.66)  0.50 (-0.64, 1.64)  -0.05 (-1.10, 1.00)  

Pre-pubertal 73 -0.40 (-1.57, 0.77)  -0.39 (-1.54, 0.75)  -0.83 (-2.36, 0.70)  -0.30 (-1.71, 1.11)  

          

Fully mature 172 Ref.  Ref.  Ref.  Ref.  

Later puberty 484 0.18 (-0.57, 0.92) 0.64 -0.29 (-1.02, 0.43) 0.43 0.50 (-0.48, 1.47) 0.32 -0.19 (-1.09, 0.70) 0.67 

Adjusted for age in months at 53 years. *Fully mature group are the group who experienced the earliest pubertal timing. **p-value from lrtest comparing 

models with and without categorical puberty variable 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.02.20242529doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.02.20242529
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

 

Table 4. DNAm Age Acceleration at 45 years, conditional growth between 7 and 16 years and pubertal timing in the National Child and Development Study  

  AgeAccelHannum AgeAccelHorvath AgeAccelLevine AgeAccelGrim 

 N Coefficient (95% 

CI) 

P 

value 

Coefficient (95% 

CI) 

P value Coefficient (95% 

CI) 

P 

value 

Coefficient (95% 

CI) 

P 

value 

Conditional growth           

RWG between 7 and 16 years 240 -0.04 (-0.48, 0.39) 0.84  0.23 (-0.25, 0.70) 0.35  0.20 (-0.47, 0.86) 0.56 0.57 (-0.01, 1.16) 0.06 

          

          

Pubertal timing           

Women          

Age at menarche (years)* 112 -0.21 (-0.76, 0.33) 0.44 -0.20 (-0.77, 0.38)  0.50 -0.21 (-0.94, 0.53) 0.58  -0.08 (-0.71, 0.55) 0.80 

Age at menarche          

<12 years   12 Ref  Ref  Ref  Ref  

≥12 years  100 -0.77 (-3.02, 1.47) 0.50 -0.71 (-3.07, 1.65) 0.55 -1.06 (-4.07, 1.96) 0.49 -0.01 (-2.61, 2.58) 0.99 

Men: Pubertal status at 16 

years 

         

Fully mature** 13 Ref.  Ref.  Ref.  Ref.  

Later puberty 99 0.08 (-1.77, 1.93) 0.93  -0.002 (-2.050, 

2.047) 

1.00 -0.99 (-4.29, 2.31) 0.55 -1.50 (-4.38, 1.39) 0.31 

Adjusted for sex. RWG: Relative weight gain i.e. standardised residuals from regression of weight z-score at 16 years on weight and height z-scores at 7 years and 

height z-score at 16 years. CLG: Conditional linear growth i.e. Standardised residuals from regression of height z-score at 16 years on height and weight z-scores at 

7 years *Those starting after 16 years coded as ≥16 years **Fully mature group are the group who experienced the earliest pubertal timing 
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