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Abstract  
 

Introduction: Risk stratification of patients presenting to the emergency department 

(ED) is important for appropriate triage. Using machine learning technology, we can 

integrate laboratory data from a modern emergency department and present these in 

relation to clinically relevant endpoints for risk stratification. In this study, we 

developed and evaluated transparent machine learning models in four large hospitals 

in the Netherlands. 

 

Methods: Historical laboratory data (2013-2018) available within the first two hours 

after presentation to the ED of Maastricht University Medical Centre+ (Maastricht), 

Meander Medical Center (Amersfoort), and Zuyderland (locations Sittard and 

Heerlen) were used. We used the first five years of data to develop the model and 

the sixth year to evaluate model performance in each hospital separately. 

Performance was assessed using area under the receiver-operating-characteristic 

curve (AUROC), brier scores and calibration curves. The SHapley Additive 

exPlanations (SHAP) algorithm was used to obtain transparent machine learning 

models.   

 

Results: We included 266,327 patients with more than 7 million laboratory results 

available for analysis. Models possessed high diagnostic performance with AUROCs 

of 0.94 [0.94-0.95], 0.98 [0.97-0.98], 0.88 [0.87-0.89] and 0.90 [0.89-0.91] for 

Maastricht, Amersfoort, Sittard and Heerlen, respectively. Using the SHAP algorithm, 

we visualized patient characteristics and laboratory results that drive patient-specific 

RISKINDEX predictions. As an illustrative example, we applied our models in a triage 

system for risk stratification that categorized 94.7% of the patients as low risk with a 

corresponding NPV of ≥99%. 

 

Discussion: Developed machine learning models are transparent with excellent 

diagnostic performance in predicting 31-day mortality in ED patients across four 

hospitals. Follow up studies will assess whether implementation of these algorithm 

can improve clinically relevant endpoints.   
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Introduction 
An increasing number of patients are referred to emergency departments (ED) 

worldwide [1-3]. Prolonged waiting times and associated crowding have been shown 

to increase mortality [4] and rapid risk stratification is, therefore, a core task in 

emergency medicine. Identifying patients at high and low risk shortly after admission 

could help decision-making in the prioritization of patients, treatment, level of 

observation, and post-discharge follow-up. Numerous traditional risk scores and 

triage systems for stratification of patients in the ED are available, such as the 

modified early warning score (MEWS), rapid emergency medicine score (REMS) and 

emergency severity index (ESI) [5-9]. Unfortunately, these systems often generalize 

poorly and lack precision, which impedes their use on a patient level [10, 11].  

 

Modern emergency departments generate vast amounts of clinical, physical and 

laboratory data. This data is generally heterogeneous and comprises both structured 

and unstructured information. Machine learning allows the integration of these data 

on a human interpretable level in relation to clinically relevant endpoints. Recently, 

machine-learning based mortality prediction models were developed using data 

extracted from patients in the ED [12-19]. Although these models were superior to 

traditional risk scores and physicians [12, 15, 17, 20], most of are perceived to be so-

called “black boxes”, which not only could limit their acceptance among clinicians but 

also raise legal and ethical concerns. Models explaining patient-specific predictions 

have emerged, which might increase the understanding of, and trust in, machine 

learning prediction models [21-24]. This could, in turn, facilitate the translation and 

acceptance of machine learning models into clinical decision-support tools. 

 

In this study, we used machine learning technology in four hospitals to develop local, 

transparent machine learning models to accurately predict 31-day mortality risk. We 

aimed to provide an individual assessment of a patient’s mortality risk (the RISKINDEX 

score), which is an illustrative example of a clinical decision support system, using 

baseline patient characteristics and laboratory data.   
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Methods 

Study design and setting 

We performed a multi-center, retrospective cohort study among all patients who 

presented to the ED at the Maastricht University Medical Center (Maastricht, The 

Netherlands), Meander Medical Center (Amersfoort, The Netherlands) and 

Zuyderland medical Center locations Sittard (Sittard, The Netherlands) and Heerlen 

(Heerlen, The Netherlands) between January 1, 2013 and December 31, 2018. For 

convenience, we will refer to each of the centers by their respective location; 

Maastricht, Amersfoort, Sittard and Heerlen. This study was approved by the medical 

ethical committees of each of the individual centers (Maastricht: #2018-0838, 

Amersfoort: TWO19-46, Sittard: #2018-0838, Heerlen: #2018-0838). The study 

follows the STROBE guidelines [25] and was conducted according to the principles of 

the Declaration of Helsinki [26].   

 

Patient population 

We included all patients presenting to the ED aged ≥18 years with at least 3 

laboratory tests ordered by the attending physician. Patients whose previous 

presentation to the ED was less than 48 hours ago were excluded.  

 

Dataset construction 

Data anonymization, collection, processing, model selection and development were 

performed for each of the four hospitals separately. We collected all available 

laboratory data of the patients ordered within two hours after the first laboratory 

request from the ED. All laboratory data acquired after two hours were not used for 

model development. Rare laboratory tests requested in less than 1:10,000 patients of 

that hospital were excluded. The primary outcome measure for the study was 

mortality within 31 days after initial ED presentation and was acquired through the 

electronic health record.  

 

Each hospital comprised 6 year of data from consecutive patients. The first five years 

were used for model development, the sixth year was completely retained from 

model development and used to evaluate the performance of developed machine 

learning models. The first five years of the dataset (model development) were 

randomly split into training (70%), tuning (20%) and calibration datasets (10%) such 
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that data from a given presentation was present in one split only. The training split 

was used to train the proposed models. The tuning set was used to iteratively 

improve the models by selecting the best model architectures and hyperparameters, 

and the calibration split was used to perform post-hoc calibration on the model 

predictions. Finally, the sixth year of the dataset, the validation dataset, was used to 

evaluate the performance of machine learning models. 

 

Model selection, training and calibration 

We aimed to develop a clinical decision support tool that uses heterogeneously 

requested laboratory results from patients presenting to the emergency department 

to predict the likelihood of 31-day mortality by generating a calibrated value between 

and 100. We termed this output score the RISKINDEX. Ideally, this value directly 

translates to the probability of the patient dying within 31 days. Various statistical and 

machine learning algorithms can be applied to develop such a clinical decision 

support tool, including regression techniques [27, 28], neural network architectures 

[29, 30], gradient boosting systems [31-34] and decision trees [35] (Supplemental 

section A).  

 

The light gradient boosting system (LightGBM) architecture was selected amongst 

several alternatives on the basis of the tuning set performance (Supplemental 

information section A and Table 1). LightGBM is an implementation of distributed, 

efficient gradient-boosting systems with native support for missing values [33]. Next, 

we evaluated a broad spectrum of hyperparameter combinations for this architecture 

(Supplemental Table 2). Hyperparameter optimization is the process of selecting a 

set of optimal hyperparameters, which are features controlling the training process of 

a machine learning model such as the rate of learning and the maximum level of 

complexity. We performed bayesian hyperparameter optimization using tree-parzen 

estimators (TPE) [36]. In bayesian hyperparameter optimization we build a probability 

model of the objective function and use it to select the most promising 

hyperparameters to evaluate in the true objective function. For this study, 

optimization was run for 1,000 iterations with logarithmic loss as our objective 

function. The search space was defined in Supplemental Table 2. Hyperparameter 

optimization resulted in LightGBM architectures consisting of 220 – 740 boosted 

trees with a maximum depth of 11 – 37 and maximum leaves of 320 – 690 for each 
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base learner (see Supplemental Table 3). We used exponential learning-rate decay 

during training. The best validation results were achieved using an initial learning rate 

of 0.075 – 0.145 decaying every 2,000 training steps by a factor of 0.7-0.8. The loss 

function during training was logarithmic loss. 

 

LightGBM models with optimal hyperparameters were recalibrated on the calibration 

set in order to further improve the quality of the risk predictions. Recalibration was 

performed as LightGBM models are prone to miscalibration, essentially meaning that 

the generated RISKINDEX does not correlate with the true mortality chance. Hence, 

recalibration ensures that consistent probabilistic interpretations of the RISKINDEX 

predictions can be made [37]. For calibration, we considered Platt scaling [38], 

isotonic regression [39] and Platt-Binner scaling [40]. Model calibration was assessed 

by the Brier score [41] and visual inspection of reliability plots [42]. Reliability plots 

are the usual approach for evaluating calibration of binary outcomes in which we 

compare decile-binned means of predictions versus means of the observed 

outcomes in the patients. We used Platt-Binner scaling as this was shown to result in 

the best calibrated models (see Supplemental Figure 1). The resulting calibrated 

predictions were defined as the RISKINDEX.  Data preprocessing, model development, 

selection, training and calibration was performed using Python programming 

language (version 3.7.1) using packages Numpy (version 1.17), Pandas (version 

0.24), Keras (version 2.2.2), scikit-learn (version 0.22.0) and tensorflow (version 

2.0.1, beta). 

 

Model evaluation 

We evaluated overall model performance in the validation set by 1) area under the 

receiver-operating-characteristic curve (AUROC) to quantify the ability of models to 

discriminate between survivors and non-survivors, and 2) visual inspection of 

calibration curve and Brier scores to estimate how accurately RISKINDEX scores 

estimate the likelihood of 31-day mortality. Next, we created an embedded reference 

table based on the validation dataset to report estimates of sensitivity, negative 

predictive value (NPV), specificity and positive predictive value (PPV) for each 

RISKINDEX score between 0-100. This table was subsequently used to compare 

diagnostic metrics from the model (sensitivity, NPV, specificity, and PPV) across the 

four hospitals at certain selected statistical thresholds.  
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Model transparency  

To explain the RISKINDEX generated by our machine learning models, we applied the 

Shapley additive explanations (SHAP) algorithm. SHAP allows us to obtain 

explanations of the patient characteristics and laboratory results (further referred to 

as “variables”) that drive patient-specific predictions to mitigate the issue of black-box 

predictions. SHAP is a model-agnostic representation of feature importance where 

the impact of each variable on a particular prediction is represented using Shapley 

values inspired by cooperative game theory and their extensions [43-45]. A Shapley 

value states, given the current set of variables, how much a variable in the context of 

its interaction with other variables contributes to the difference between the actual 

prediction and the mean prediction. That is, the mean prediction plus the sum of the 

Shapley values for all variables equals the actual prediction. It is important to 

understand that this is fundamentally different to direct variable effects known from 

e.g. (generalized) linear models. The SHAP value for a variable should not be seen 

as its direct -and isolated effect- but as its aggregated effect when interacting with 

other variables in the model. In our specific case, positive Shapley values contribute 

towards a positive prediction (death), whilst low or negative Shapley values 

contribute towards a negative prediction (survival).   

 

Statistical analysis 

Descriptive analysis of baseline characteristics was performed using IBM SPSS 

Statistics for Windows (version 24.0). Continuous variables were reported as means 

with standard deviation (SD) or medians with interquartile ranges (IQRs) depending 

on the distribution of the data. Categorical variables were reported as proportions. 

We used 1,000 bootstrapped to calculate 95% confidence intervals, unless otherwise 

mentioned.  Model evaluation and statistical analysis was performed using Python 

(version 3.7.1) using packages Numpy (version 1.17), Pandas (version 0.24) and 

Matplotlib (version 3.1.2).    
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Results 

Patient and laboratory characteristics 

In the current study we included more than 50,000 presentations for each hospital 

resulting in a total of 266,327 unique presentations to the ED. The total population 

consisted of slightly more female (mean; 50.8%) patients with a mean age of 61.5 (+- 

22.4) years. Within the first two hours of presentations, on average 29 (± 10.6) 

laboratory parameters were requested. Among these parameters there is some 

heterogeneity between centers, but complete blood count, electrolytes and lactate 

dehydrogenase (LD) were amongst the most prevalent in all hospitals. 31-Day 

mortality rates were 6.4%, 4.0%, 5.9% and 5.0% for Maastricht, Amersfoort, Sittard 

and Heerlen, respectively. Baseline characteristics are described in Table 1.  

 

Table 1 | Baseline and laboratory characteristics of the four study populations. 

 

 

MUMC,  

Maastricht 

N = 66,770 

Meander,  

Amersfoort 

N = 81,152 

Zuyderland,  

Sittard 

N = 66,423 

Zuyderland,  

Heerlen 

N = 51,982 

Demographics 

Age, years 59 (± 22.2) 59 (± 23.7) 65 (± 21.3) 64 (± 21.5) 

Sex, female (%) 32,829 (49.2%) 41,907 (51.6%) 34,256 (51.6%) 26,185 (50.3%) 

 

Laboratory 

 Mean number of  

 tests per patient 

22 (± 10.0) 25 (± 8.0) 31 (± 10.4) 31 (± 10.8) 

 Ten most 

frequent   

 laboratory orders,  

 n (%) 

Creatinine, 59,937 

(89.9%) 

CBCa, 59,632 (89.4%) 

Sodium, 56,529 

(84.8%), 

Potassium, 56,487 

(84.7%) 

CRPb, 55,178 (82.7%) 

Urea, 53,972 (80.9%) 

Platelets, 47,059 

(70.6%) 

Glucose, 43,733 

(65.6%) 

ALATc, 36.429 (54.6%) 

ASATd, 32.130 (48.1%) 

CBCa, 77,625 (95.7%) 

CRPb, 76,639 (94.4%) 

Sodium, 75,638 

(93.2%) 

Creatinin, 75,393 

(92.9%) 

Potassium, 75,025 

(92.4%) 

Glucose, 75,018 

(92.4%) 

Urea, 72.115 (88.9%) 

CK, 64.356 (79.3%) 

Platelets, 54.380 

(67.0%) 

ALATc, 54.279 (66.9%) 

CBCa, 62,518 (94.1%)  

Platelets, 62,517 

(94.1%) 

CRPb, 60,910 (91.7%) 

Creatinin, 60,046 

(90.4%) 

Sodium, 58,558 

(88.1%) 

Potassium, 58,404 

(87.9%) 

Glucose, 57,987 

(87.3%) 

Urea, 57,559 (86.6%) 

ALATc, 53,968 (81.2%) 

ASATd, 53.914 (81.2%) 

 

CBCa, 49,056 (94.4%) 

Platelets, 49,040 

(94.3%) 

CRPc, 47,573 (91.5%) 

Creatinin, 47,043 

(90.5%) 

Sodium, 46,615 

(89.7%) 

Potassium, 46,364 

(89.2%) 

Glucose, 45,536 

(87.6%) 

Urea, 45,074 (86.7%) 

ALATc, 42,486 (81.7%) 

ASATd, 42.415 (81.6%) 

 

 

Outcome 

 31-day mortality 4,242 (6.4%) 3,277 (4.0%) 3,917 (5.9%) 2,603 (5.0%) 
a Complete Blood Count including hemoglobin, hematocrit, MCH, MCV and white blood cells; b C-reactive 

Protein; c Alanine (Amino)Transaminase; d Aspartate (Amino)Transaminase  
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Model performance 

We developed machine learning models that predict the 31-day mortality likelihood of 

an individual patient presenting to the ED: the RISKINDEX. Machine learning models 

were able to discriminate between patients who died or survived within 31-days as 

depicted by AUROCs of 0.944 [0.935-0.951], 0.978 [0.973-0.982], 0.877 [0.866-

0.888] and 0.904 [0.894-0.914] for Maastricht, Amersfoort, Sittard and Heerlen, 

respectively (Figure 1A). After calibration (see supplemental Figure 1), the RISKINDEX 

correlated well with actual mortality frequency (Figure 1B). Hence, the RISKINDEX 

provides an individualized and precise assessment of 31-day mortality risk by 

combining available laboratory data and patient characteristics requested within the 

first two hours after presentation.  

 
Figure 1 | Diagnostic performance and calibration of machine learning models. (A) Receiver 

operating characteristic curves (ROC) showing the discrimination of the LightGBM models in each of 

the different centers. Annotated points depict example RISKINDEX thresholds for illustrative purposes. 

(B) Calibration of the machine learning models with the observed proportion of 31-day mortality in 

each of the centers. Each point represents 10% of the patients in the validation dataset.  

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 26, 2020. ; https://doi.org/10.1101/2020.11.25.20238386doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.25.20238386


  

Page 10 of 22 

 

Proposal for clinical decision support tool 

The RISKINDEX is by design a continuous measure, with a high RISKINDEX translating 

to a high likelihood of 31-day mortality and low RISKINDEX translating to low 31-day 

mortality risk (see Supplementary Figures 1-4). In clinical practice however, most 

clinical decision support tools use fixed thresholds to categorize patients as low, 

medium or high risk. Our RISKINDEX can be easily transformed to such a fixed-

threshold decision support tool, and users can adjust thresholds to their desired level 

of risk tolerance. An illustrative example of how an individual hospital may employ the 

RISKINDEX is as follows: define the acceptable percentage of patients that are 

erroneously identified as “low-risk” by the algorithm in your emergency department 

(any number from 0-100%). This percentage, e.g. 1%, could be derived from an 

inventory of acceptable risk tolerance for adverse events by patients, health care 

workers, or both [46]. Then, use the corresponding negative predictive value (in this 

case 99%) to derive the matching RISKINDEX threshold from the calibration set and 

associated values for sensitivity, specificity, and proportion of subjects identified as 

low risk (Table 2). A similar approach can be applied to identify high risk patients: 

define the positive predictive value that would provide an acceptable balance 

between true high risk patient identification and false positives, e.g. a positive 

predictive value of 75% would categorize between 1.1% and 3.9% as high-risk 

individuals with 1 in 4 “flaggings” by the clinical decision support tool being false 

positive (Table 2). A higher proportion of high risk subject identification is feasible but 

will be at the expense of increased false positive flaggings.    
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Table 2: Illustrative example of clinical decision support tool using developed machine 

learning models. The fixed-threshold decision support tool was fixed at a negative predictive value of 

99% to identify low-risk patients (corresponding RISKINDEX cut-offs between 1.0 and 12.1) and fixed at 

a positive predictive value of 75% to identify high-risk patients (corresponding RISKINDEX cut-offs 

between 29.9 and 64). Diagnostic metrics and proportion of patients identified as either low- or high-

risk are described in the table.  

 

Low-risk defined at a negative predictive value of 99% 

 RISKINDEX  

cut-off 

Sensitivity Specificity NPV  Proportion of 

patients  

Maastricht 

4.3 

 

86.9%  

[84.2% - 

88.9%] 

87.7%  

[87.2% - 

88.2%] 

99.0%  

[98.8% - 

99.2%] 

83.0%  

[82.3% - 83.6%] 

Meander 

12.1 

 

75.9%  

[72.3% - 

78.6%] 

97.5%  

[97.3% - 

97.7%] 

99.0%  

[98.8% - 

99.1%] 

94.7%  

[94.3% - 95.0%] 

Sittard 

1.0 

 

85.5%  

[83.2% - 

87.3%] 

75.0%  

[74.2% - 

75.7%] 

98.8%  

[98.6% - 

99.0%] 

71.5%  

[70.7% - 72.0%] 

Heerlen  

1.0 

 

82.7%  

[80.0% - 

85.2%] 

81.2%  

[80.8% - 

81.8%] 

98.9%  

[98.8% - 

99.1%] 

78.1%  

[77.7% - 78.8%] 

High-risk defined at positive predictive value of 75% 

 RISKINDEX  

cut-off 

Specificity Specificity PPV  Proportion of 

patients  

Maastricht 

41.1 

 

45.7%  

[42.3% - 

49.5%] 

99.0%  

[98.8% - 

99.1%] 

74.9% 

[70.8% - 

77.8%] 

3.9%  

[3.5% - 4.2%] 

Meander 

29.9 

 

60.6% 

[56.9% - 

64.1%] 

99.2%  

[99.0 - 99.3] 

74.9%  

[70.8% - 

78.3%] 

3.1%  

[2.9% - 3.4%] 

Sittard 

64 

 

14.7%  

[12.6% - 

16.7%] 

99.7%  

[99.6% - 

99.8%] 

74.8%  

[68.8% - 

80.6%] 

1.1% 

[1.0% - 1.3%] 

Heerlen  

41.1 

 

27.1%  

[24.2% - 

29.4%] 

99.5%  

[99.4% - 

99.7%] 

74.8% 

[70.6% - 

80.6%] 

1.7%  

[1.5% - 2.0%] 
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Transparent model predictions  

In order to obtain transparent machine learning models, it is necessary to be able to 

explain the RISKINDEX generated by our machine learning models. Hence, we applied 

the SHAP algorithm to map the importance of patient characteristics and laboratory 

results to the generated RISKINDEX (see Supplemental Figures 6-8). This is illustrated 

for a low-, medium and high-risk individual in Figure 2. For example, a high 

RISKINDEX was generated for a 71-year old (+ 5.5 RISKINDEX) individual with a high 

numeric amount of laboratory measurements (+ 31.5 RISKINDEX), a high lactate 

dehydrogenase (LD; +17.7) and a low albumin level (+6), whilst the remainder of the 

features contributed another significant portion (+10.6) ultimately leading to a 

RISKINDEX of 76. On the other hand, the low-risk individual had a normal albumin 

level (- 0.9 RISKINDEX), the presence of a pH blood measurement (-0.6), a normal 

lymphocyte level (-0.5) and the remainder of the features which also lowered the 

prediction (-1.3). Yet, a relatively high urea level (17 mmol/L) still caused a small 

increase in RISKINDEX (+0.7). 
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Figure 2: Model explanation in low-, medium- and high-risk individuals. In order to obtain 

transparent machine learning models, it is necessary to explain the RISKINDEX generated by our 

machine learning models. Here we illustrate the importance of patient characteristics and laboratory 

tests for a low (upper), medium (middle) and high-risk (lower) individual with RISKINDEX scores of 5, 22 

and 76, respectively.   
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Discussion 

In a large, multi-center study of more than 260,000 patients presenting to the 

emergency department across four hospitals, we used machine learning to develop 

and evaluate a novel clinical decision support tool that incorporates baseline 

laboratory data available within two hours after presentation to accurately predict the 

probability of the patient dying within 31 days. We developed transparent machine 

learning models which were well calibrated and had overall high diagnostic 

performance. Our study has several unique characteristics.  

 

First,  our RISKINDEX  clinical decision support tool provides an individualized, precise 

and rapid assessment of 31-day mortality risk by using baseline laboratory results 

acquired within two hours after the presentation of the patient. Our models had high 

diagnostic performance with AUROCS of 0.944 [0.935-0.951], 0.978 [0.973-0.982], 

0.877 [0.866-0.888] and 0.904 [0.894-0.914] (Maastricht, Amersfoort, Sittard and 

Heerlen), outperforming any clinical decision support tool or risk score currently used 

in the emergency department for risk stratification [6, 7, 47].  

 

Second, we used the Shapley additive explanations (SHAP) algorithm to obtain 

transparent machine learning models [21, 23]. The SHAP algorithm allows us to 

visualize the importance of patient characteristics and laboratory results that drive 

patient-specific RISKINDEX predictions (as illustrated in Figure 2). Development of 

such transparent machine learning models mitigate the issue of “black-box” 

predictions, and contribute to the understanding and acceptance of these models 

amongst clinicians and nurses. Furthermore, transparency in these models will likely 

become inevitable as regulations already expressed their concern with black-box 

predictions, signaling that automated prediction systems are enforced to inform users 

about the logic involved, as well as the significance and the envisaged consequences 

of its predictions in the near future [48-50].  

  

Third, our clinical decision support tool is very versatile as it can be adjusted to the 

demands of the specific healthcare system or institution. For example, we illustrate a 

triage algorithm using a negative predictive value of 99% to identify low-risk patients, 

and a positive predictive value of 75% to identify high-risk patients (Table 2). 

Nevertheless, in a more conservative institution we can adjust the low-risk thresholds 
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accordingly, e.g. to an even higher NPV of 99.5% implying that only 5 out of a 1.000 

patients would erroneously be identified as “low-risk”. Implementation of such a triage 

system using our proposed clinical decision tool is convenient as current models rely 

on data that are easily acquired through existing laboratory system infrastructure. 

This is an advantage compared to machine learning models trained with e.g. clinical 

data that require manual annotation or collection which is complicated to automate in 

a prospective, real-world setting.   

 

Fourth, we show that the methodology is robust and consistent by developing a 

clinical decision support tool for each hospital separately. Differences in diagnostic 

performance between hospitals might in part be explained by the geographic nature 

of the hospital (rural versus urban), the baseline mortality rates, and the laboratory 

testing patterns of the attending physicians. It would be of particular interest to 

unravel the source of these differences in order to improve the model performance at 

a hospital level. 

 

Fifth, the large sample size of more than 260,000 patients and 7.1 million laboratory 

tests allowed for the development of machine learning models with high 

performance. Despite our models being trained almost exclusively with laboratory 

data, they outperform machine learning models which also had full access to clinical 

data of a patient [18, 19]. This highlights that -regardless of having access to less 

data concerning an individual patient (e.g. no clinical characteristics)- sample size is 

extremely important in building high-performance machine learning models. 

 

Literature 

We are aware of numerous attempts to use machine learning technology for risk 

stratification in the ED in a retrospective setting [12-14, 18, 19]. Klug et al. and Perng 

et al. developed machine learning models with similar performance as presented in 

this study (AUCs of 0.96 and 0.93, respectively) [18, 19]. Although diagnostic 

performance was similar, there are some notable differences. First, these studies 

focused on populations from a single center which we extended by developing and 

evaluating models in four hospitals. Second, these studies used clinical and vital 

characteristics of patients whereas we almost exclusively relied on the laboratory 

results. Third, we provide explanations of our generated RISKINDEX scores on a 
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patient level using the recent SHAP algorithm. Fourth, we provide illustrative 

implementation strategies using pre-defined safety (NPV) and efficacy (PPV) 

measures to identify low- and high-risk patients at the emergency department, 

respectively.  

 

Limitations 

Several limitations should be recognized. First, the current study is based on 

retrospective data and prospective studies are warranted to study performance and 

true clinical benefit of our clinical decision support tool in a real-world setting. This 

would also allow us to study the (dis)advantages of implementing these models using 

a triage system based on statistical thresholds (e.g. Figure 3) compared to an 

approach based on individual RISKINDEX estimates. Second, mortality information 

was retrieved through the laboratory information system, which is not fully connected 

to the national person registry. As a result we most likely report an underestimation of 

true mortality rates. Third, these models possess -despite being explainable- 

algorithmic bias; models have been trained entirely upon the basis of what humans 

have done before. This implies that model predictions cannot be extrapolated, and 

that predictions in e.g. minority populations have a higher degree of uncertainty. To 

facilitate the interpretation of such uncertain predictions, it would be desirable to 

implement uncertainty measures amongst the prediction, e.g. in form of confidence 

intervals. These uncertainty measures could then warn clinicians when a certain 

prediction is highly uncertain, ultimately leading to increased trust amongst the users 

of these clinical decision support tools.  

 

Conclusion 

Our novel RISKINDEX clinical decision support tool incorporates patient characteristics 

and laboratory tests available within the first two hours after presentation to provide 

an individual, precise and transparent assessment of the patient’s mortality risk within 

31 days. These models had overall high diagnostic performance, are explainable, 

and can be implemented in a triage system extending current systems used in 

modern emergency departments. Prospective, follow-up studies are warranted to 

study the feasibility and performance of these models in a real-world clinical setting.  
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