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Abstract

Objectives: To predict short-term outcomes of critically ill patients with traumatic brain

injury  (TBI)  by  training  machine  learning  classifiers  on  two  large  intensive  care

databases

Design: Retrospective analysis of observational data.

Patients: Patients in the multicenter Philips eICU and single-center Medical Information

Mart for Intensive Care–III (MIMIC-III) databases with a primary admission diagnosis of

TBI, who were in intensive care for over 24 hours. 

Interventions: None. 

Measurements and Main Results:  We identified 1,689 and 126 qualifying TBI patients

in eICU and MIMIC-III,  respectively. Generalized Linear Models were used to predict

mortality and neurological function at ICU discharge using features derived from clinical,

laboratory, medication and physiological time series data obtained in the first 24 hours

after ICU admission. Models were trained, tested and validated in eICU then validated

externally  in  MIMIC-III.  Model  discrimination  determined by  area under  the  receiver

operating characteristic curve (AUROC) analysis was 0.903 and 0.874 for mortality and

neurological function, respectively. Performance was maintained when the models were

tested in the independent MIMIC-III dataset (AUROC 0.958 and 0.878 for mortality and

neurological function, respectively). 

Conclusions:  Computational models trained with data available in the first 24 h after

admission accurately predict discharge outcomes in ICU stratum TBI patients. 
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Introduction

Traumatic brain injury (TBI) is a leading cause of mortality and disability, with over 50

million  cases  reported  annually  worldwide  [1].  Among  TBI  patients  admitted  to  the

Intensive  Care  Unit  (ICU),  66%  will  die  or  suffer  moderate-to-severe  long-term

neurological impairment within 6 months of discharge [2]. Despite this elevated burden,

methods  currently  used  to  predict  clinical  outcomes  lack  accuracy  [3].  Accurate

prognostication could enable proactive treatment, higher degrees of alignment between

resources  and  outcomes,  and  improved  expectation  management  in  conversations

between clinicians and patient families [4].

The best-known prognostic systems for patients with moderate and severe TBI are the

Corticosteroid Randomization After Significant Head Injury (CRASH) and International

Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) models, designed

to  predict  14-day  and  6-month  mortality  and  unfavorable  outcome  [5,  7].  These

prognostic systems were established by training multivariable logistic regression models

with clinical features (core models), with extended models incorporating head CT and

laboratory  or  physiological  variables [5,  7].  CRASH and IMPACT have been widely

validated in a number of  different populations [7];  however,  they only have an area

under the receiver operator curve (AUROC) of 0.82 and 0.79 respectively, which would

not be useful at the individual patient level. 

Recent  research  indicates  that  the  accuracy  of  models  to  predict  physiological

trajectories  and clinical  outcomes of  critically  ill  patients  might  be  enhanced by  the
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integration of high-resolution features, for example physiological time series data, and

by  leveraging  machine  learning  classifiers  [8,  9].  Here,  we  develop  and  validate  a

computational  model  for  prediction  of  short-term  TBI  outcome,  leveraging  high-

resolution data from two very large ICU datasets. We use the motor component of the

Glasgow Coma Scale (GCS), which ranges from 1 to 6, as a proxy for neurological

function  when  training  our  models.  The  GCS  also  includes  verbal  and  eye

subcomponents  which  range  between  1-5  and  1-4  respectively.  For  all  GCS

subcomponents, higher scores indicate higher levels of neurological function [10]. We

investigated the hypothesis that information available in the first 24 hours of intensive

care of TBI patients is predictive of mortality and neurological function at ICU discharge.

Materials and Methods
Data Sources

Data were obtained from the eICU collaborative research and MIMIC-III databases [11,

12]. For our selected TBI patient population (see inclusion/exclusion criteria for details),

we used physiology, demographic, and intervention data from the first 24 hours of their

stay to predict mortality and the motor component of the GCS score upon discharge [7].

Specifically, we used data from the following tables in eICU: nurse charting, aperiodic,

periodic, respiratory, lab, medication, infusion, patient, and diagnosis.

Patient Inclusion Criteria 

The patient selection process is illustrated in Supplemental Figure 1. We searched the

diagnosis table in eICU for patients whose diagnosis string contained ‘trauma - CNS |

intracranial’. There were 5,385 total records of such patients. We then excluded patients
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for  whom no motor GCS score was recorded; motor GCS was one of the outcome

variables selected for this study, and therefore this exclusion was unavoidable. Next, we

excluded  patients  whose  ICU  stay  was  less  than  24  hours.  While  this  may  have

introduced  selection  bias,  our  study  primarily  focuses  on  patients  with  severe

neurological injuries, and those who were in the ICU for less than a day likely had milder

conditions  and  therefore  recovered  quickly.  Alternatively,  it  is  possible  that  these

patients may have died quickly; however, predictive modeling in this short time frame

would be unlikely to have any impact on patient care. Consequently, we concluded that

we could safely focus our model on patients who were in the ICU for at least 24 hours.

Finally, we excluded patients without at least one measurement of each of the selected

physiology variables (heart rate, respiratory rate, oxygen saturation) and at least 90% of

laboratory  measurements,  as we require  these features  to  evaluate our  model.  We

expect  all  of  these  features  to  be  routinely  collected  for  a  TBI  patient  in  the  ICU,

resulting in a final patient sample of 1,689 patients. 

Feature Extraction

We  implemented  different  feature  extraction  strategies  for  physiology,  laboratory,

intervention, and demographic data. We treated the physiology data, originating from

the nurse charting and periodic tables of eICU and consisting of heart rate, respiratory

rate,  oxygen  saturation,  temperature,  verbal  GCS,  motor  GCS,  and  eyes  GCS,  as

seven different  time series.  Because measurement frequency varied by patient  and

component, we computed a 24-value summary vector for each measurement and each

patient containing the average value of that measurement during each hour of their stay

(from hours 1 to 24). Finally, we conducted Principal Components Analysis (PCA) on
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these summary vectors, extracting the top 5 principal components (directions of highest

variance in the data) for  each measurement.  The number of  PCA components was

selected with the intent of capturing 90% of the overall variance in the original data. Of

note, the identification of the optimal  PCA transformation matrix was conducted using

only the training data, and this transformation matrix was applied to the evaluation data

at test-time. For the 43 lab measurements that were present in at least 90% of our

patients,  we  computed  the  mean  value  for  each  lab  across  the  first  24  hours.

Meanwhile,  we represented the intervention (administered medications/infusions and

respirator interventions) data using a vector of indicator variables describing the entirety

of the first 24 hours of the patient’s stay. A feature would be given a value of 1 if a

patient received that particular treatment one or more times during the first day of their

ICU stay,  and a value of  0  otherwise.  For  the demographic  data,  we used dummy

encoding  to  transform  the  categorical  variables  (ethnicity  and  gender),  into

dichotomized vectors. The remaining quantitative measurements (age, weight, height)

were kept as numerical values.

Outcome variables

The two outcome variables were survival status and neurological function at discharge.

Discharge neurological function was defined operationally using the motor subscore of

GCS (mGCS) recorded at discharge or less than 24h before ICU discharge. The mGCS

was used since validated TBI outcome measures are not available in eICU or MIMIC-III.

Favorable  neurological  function  was  defined  as  a  mGCS  of  6,  while  unfavorable

neurological function was defined as a mGCS of <6. This was felt  to be a clinically
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meaningful  categorization  since  it  differentiates  patients  who  are  able  to  follow

commands from those who cannot. 

Class Imbalance

The final  patient population used for model training was characterized by significant

class  imbalance:  87%  of  patients  survived  their  ICU  stay.  A  similar  pattern  was

observed in mGCS outcome, with 88% of surviving patients having a final motor GCS of

6 (favorable). To mitigate this class imbalance, during model training, we employed an

oversampling  approach.  Specifically,  we  selected  with  replacement  from  the

underrepresented  outcome  populations  until  a  roughly  50%  class  balance  was

achieved.  Because  of  the  significant  class-imbalance,  we  computed  precision-recall

curves for a less biased performance estimate.

There was also class imbalance in the external MIMIC-III test dataset, but it was less

severe: 104 out of the 127 patients survived (82%), and among those who survived, 56

had a final motor GCS of 6 upon discharge (54%).

Analysis and Modeling

The eICU data was split into training and testing subsets with a 70-30 split ratio. We

employed stratified sampling to ensure that these splits contained similar distributions of

the  outcome  variables.  Within  the  training  set,  we  used  5-fold  cross-validation  to

optimize our model. We chose to use an elastic-net penalized generalized linear model

[13] and conducted a grid-search across a variety of penalty and L1 ratio values to

optimize cross-validation score. Using the parameters that yielded the highest cross-

validation  score,  we  trained  the corresponding  model  on  all  the  training  data,  then

evaluated  its  performance  on  the  test  set.  We  repeated  this  process  with  20
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bootstrapped samples, in order to assess the variability of these metrics and our model

coefficients. This process was employed for both the survival and neurological function

outcomes. We employed a generalized linear model (GLM) with a logit link function, as

depicted in the following equation:

For survival prediction, the target variable  p represented the probability that a patient

would die by the end of their ICU stay. For neurological function, our target variable p

represented the probability that a patient would be discharged from the ICU with a

motor  GCS  of  less  than  6  (i.e., they  would  be  unable  to  follow  commands).  The

variables f i represent medication and infusion features with corresponding coefficients

α i,  the  variables  g jrepresent  the  physiology  and  GCS time  series  features  (5  PCA

components  for  each  measurement)  with  corresponding  coefficients  β j,  and  the

variables  hkrepresent  the  lab  data  features  (vector  of  43  measurements)  with

corresponding coefficients  γk. All  features were standardized to have zero mean and

unit variance. The goal during training was to discover an assignment of the coefficients

α i, β j, γk that minimized validation error across the 20 bootstraps.

Evaluation of model performance

Prior  to  assessing  model  performance,  models  were  calibrated  by  rescaling  the

predicted class probabilities during cross-validation to better reflect the true probability

of each outcome [14]. Performance of the models were assessed with two measures:

the Receiver-Operator Characteristic (ROC) and Precision-Recall (PR). The area under
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each of these curves (AUC) was used as the final performance metric for each model,

with larger AUCs indicating more discriminatory power. 

Acute Physiology and Chronic Health Evaluation (APACHE ) models

It  should be noted that  we were not  able to  directly  test  the CRASH and IMPACT

models on our dataset since certain features required to evaluate these models were

not  available  in  the  eICU database.  As  a  result,  for  comparison  with  our  mortality

prediction  model,  we  use  the  APACHE IV score  along  with  mortality  labels  to  plot

benchmark ROC and PR curves. The APACHE IV score is commonly used to assess

hospital mortality and leverages features typically collected in the ICU. However, these

predictions are not specific to traumatic brain injury patients.

External validation 

To determine the  degree  to  which  models  generalize  to  other  TBI  populations,  we

performed an external validation using the MIMIC-III database. The physiological time

series features (heart rate, respiratory rate, sao2, temperature and GCS) are available

in  both  the  eICU  and  MIMIC-III  databases.  However,  because  some  of  the  lab,

medication, and infusion features differ between the two datasets, we limited our feature

set to those that were available in both datasets. Then, for each outcome variable, we

trained a new model using all of the TBI patients in eICU and evaluated the results on

127 TBI patients from the MIMIC-III  database. These patients were chosen with the

same inclusion/exclusion criteria as the patients from the eICU database. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 24, 2020. ; https://doi.org/10.1101/2020.11.23.20237214doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.23.20237214
http://creativecommons.org/licenses/by-nd/4.0/


Results

Patient population

A flow diagram illustrating patient selection and outcomes is provided in Supplemental

Figure 1. A total of 1,689 TBI patients were selected for analysis, of whom 1473 (87.2%)

survived,  and  216  (12.8%)  died.  Among  survivors,  1303  (88.4%)  had  favorable

neurological  function  at  discharge  while  170  (11.5%)  had  unfavorable  neurological

function.  Additional characteristics of the included patients are summarized in Table 1. 

Model performance

Model performance characteristics are illustrated in Figures 1 and 2 and in Table 2. The

elastic-net penalized GLM trained with the eICU-derived data accurately predicted end-

of-stay mortality and neurological function as shown in Figure 1. Our model significantly

outperforms the APACHE IV model for mortality prediction. 

External validation

Results of  model  external  validation in MIMIC-III  are shown in Figure 2. There was

some loss of discrimination and precision-recall,  but overall  model performance was

maintained in the independent external dataset. 

Feature analysis

The twenty features whose coefficients had the greatest weight in the final prediction of

each  model  are  shown  in  Table  3.   These  identified  features  included  indicator
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variables, such as medication and nurse charting data, as well as PCA components of

time-series signals such as pulse oximetry and heart rate. Analysis showed that PCA

discovered novel patterns in the time-series data that are highly predictive, as illustrated

in the right panel of Supplemental Figure 2. For example, a motor GCS that oscillated

with time was correlated with favorable neurological recovery, while a low and declining

oxygen saturation was related to poor probability of survival. 

Discussion

We have demonstrated that computational models leveraging clinical and physiological

data from the first 24 hours after admission accurately predict mortality and neurological

function among patients admitted to the ICU for management of TBI. Our prediction

models  were  trained  with  physiological  time  series  data  as  well  as  laboratory  and

medication data that are not used in IMPACT, CRASH or APACHE. The performance of

our models suggests that these additional features contain prognostic information not

available  in  the  older  models.  Furthermore,  our  models  have  shown  robustness  in

cross-validation and external validation. It  should be noted that we were not able to

directly test the CRASH and IMPACT models on our dataset since some of the features

required to train these models were not available in the eICU database.  However, our

mortality prediction model outperformed the APACHE IV model in a direct comparison

using the same dataset. 

Our models were designed with the clinician in mind, so an interpretable regression was

a key priority in our model design. We found that the predictive features selected by our
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models as having the greatest impact on outcome were clinically  and/or biologically

plausible. For example, the first PCA component (capturing highest percentage of data

variance) of mGCS (gcs0) was the most predictive feature  of negative outcomes for

both mortality and end-of-stay neurological function. This was consistent with what it

encoded: consistently low mGCS during the first 24 hours (see Supplemental Figure 2

for more details).  In addition, previously unreported features were associated with a

higher  likelihood  of  death  or  unfavorable  neurological  function,  including  several

commonly used sedative and opioid medications, such as hydrocodone and morphine,

warranting further investigation in future studies. Table 3  shows the top 20 features

ordered by predictive value for both mortality and neurological function prediction.

While high interpretability was a key priority in our model design, we wanted to ensure

that we did not sacrifice model performance in the process. Our predictive models were

able to achieve both of these goals, and moving forward, we would like to examine if

there are other features that have more predictive power than those currently included

in  our  model.  In  particular,  we  are  interested  in  incorporating  neuroimaging  and

neurophysiological  features  in  future  model  iterations.  With  validation,  such  models

could be integrated into the clinician’s workflow in the ICU, where prediction information

would be made available in quasi-real time to enable accurate and timely intervention.

Limitations

Several limitations of this work should be noted. The eICU and MIMIC-III datasets are

rich sources of data on patients admitted to intensive care units, yet they lack elements
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which  might  be  important  for  clinically  meaningful  prognostication  in  TBI,  including

details of brain imaging and clinical features such as pupillary reactivity, which has been

shown to be highly predictive of mortality for TBI patients [11]. In consequence, direct

comparison between our model and the IMPACT and CRASH models was not possible.

Also  of  note,  the  clinical  outcomes  available  in  eICU are  limited  to  survival  status

without  provision  of  any  validated  post-TBI  functional  outcome  scale  such  as  the

Glasgow Outcome Scale, and without any data beyond ICU discharge including data

about quality of life. We defined an operational ‘neurological function’ outcome based on

a dichotomized GCS motor sub-score; however this was a pragmatic approach which

does not adequately capture the clinical state of patients recovering from moderate and

severe TBI. Lastly, this study was a retrospective analysis conducted on prospectively

collected data, and therefore carries all the inherent biases of retrospective studies.

Conclusions 

We demonstrate that in ICU stratum TBI patients, parsimonious computational models

trained with data available in the first 24 hours after admission accurately predict ICU

discharge  mortality  and  neurological  responsiveness.  Confidence  in  the  model  was

reinforced by successful external validation in a large independent dataset. The models

were  interpretable  and  suggested  novel  predictive  features  that  warrant  further

investigation.  Research  is  needed  to  determine  the  efficacy  of  such  prognostic

paradigms  in  other  datasets  enriched  with  neuroimaging  and/or  neurophysiological

biomarkers. 
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Figure Legends

Figure 1. Receiver operating characteristic and precision recall curves 

The blue lines and red lines correspond to results on the training sets and testing sets

respectively, with the shaded error corresponding to the standard deviation across the

20 bootstrapped train-test splits. The green lines correspond to the existing APACHE-IV

mortality prediction model evaluated on the eICU patients. ROC, Receiver operating

characteristic. AUC, area under the curve. TPR, true positive rate. FPR, false positive

rate. GCS, Glasgow Coma Scale. 

Figure 2. External Validation  

The blue line corresponds to results on the entire eICU data set, which is used to train

the model, while the red line corresponds to results on the MIMIC-III patients, which are

unused by the model until test-time. ROC, Receiver operating characteristic. AUC, area

under the curve. TPR, true positive rate. FPR, false positive rate. GCS, Glasgow Coma

Scale.
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Table 1. Patient Characteristics

Variable

Survival status at ICU
discharge

Neurological function at
ICU discharge

Dead
(n = 216)

Alive
(n = 1473)

Unfavorable*
(n = 170)

Favorable**
(n=1303)

Age (years) 61.6 ± 22.4 60.9 ± 21.5 64.3 ± 22.1 60.5 ± 21.5

Male gender (%) 74.5% (161) 59.2% (872) 60% (102) 59.1% (770)

ICU stay length
(days ±SD)

6.8 ± 7.7 days 8.8 ± 8.3 days 13.6 ± 11.3 8.1 ± 7.6

Mean admission
GCS 

9.7  ± 4.3 13.2  ± 2.69 7.8 ± 4.0 12.1 ± 4.0

Mean APACHE IV
score

89.9  ± 28.6 52.0  ± 21.6 70.1 ± 23.3 49.4 ± 20.5

N (%) receiving
mechanical
ventilation 

47.2% (102) 15.1% (222) 49.4% (84) 20.6% (268)

*Glasgow Coma Scale motor subscore of <6

** Glasgow Coma Scale motor subscore of 6

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 24, 2020. ; https://doi.org/10.1101/2020.11.23.20237214doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.23.20237214
http://creativecommons.org/licenses/by-nd/4.0/


Table 2. Model Performance Characteristics

Prediction of Mortality

Model performance 
metric

eICU
Training

eICU
Validation

MIMIC
Test

Sensitivity .840 .786 .818

Specificity .897 .870 .923

PPV .556 .495 .692

NPV .975 .965 .960

Discrimination
(AUROC)

.945 .906 .958

 Precision Recall 
(AUPRC)

.797 .688 .843

Precision Recall (F1) .666 .598 .750

Calibration index 
(Hosmer-lemeshow 
goodness of fit p-value)

.104 .125 .498

Brier Score .051 .065 .065

Prediction of Neurological Function

Model performance 
metric

eICU
Training

eICU
Validation

MIMIC
Test

Sensitivity .866 .791 .813

Specificity .869 .816 .857

PPV .465 .392 .830

NPV .980 .969 .842

Discrimination
(AUROC)

.923 .874 .878

Precision Recall 
(AUPRC)

.654 .522 .879

Precision Recall (F1) .605 .510 .821

Calibration index 
(Hosmer-lemeshow 
goodness of fit)

.21 .41 .000

Brier Score .061 .074 .265

Outlined are various performance measurements for both the mortality and neurological function GLM classifiers. eICU train refers to the mean measurements across 20 randomly sampled subsets of the 

eICU data. eICU val refers to the mean measurements for the validation subsets corresponding to the aforementioned 20 train samples. MIMIC test refers to the measurements collected by evaluating 

models trained on all of the eICU data on the MIMIC-III data. Models were evaluated with a positive prediction referring to negative outcome (death and discharge mGCS < 5 are both labeled as 1). 

Therefore, positive predictive value (PPV) indicates predictive value for negative outcome. The relatively low PPV for the two eICU datasets (train and val) in both models result from a high class

imbalance resulting in few positive examples (216, or 12.8% for mortality, and 170, or 11.5% for discharge mGCS < 6). The MIMIC data meanwhile had markedly lower class imbalance (see Table 1), 

leading to higher PPV.
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Table 3. Top 20 Features for Mortality and Neurological Function Prediction

Shown are the top 20 most predictive features for mortality (left)  and mGCS (right) prediction. Predictive value for a feature was assessed by studying the GLM coefficient
associated with the feature. Features are ranked by decreasing coefficient magnitude. Positive values indicate that larger values of  the feature are associated with negative
outcome,  and vice-versa for negative values.  A MED prefix indicates an administered medication,  INF  indicates an administered infusion, while LAB indicates a patient  lab
measurement. Features that are numbered (e.g. HR_1, mGCS_0, SaO2_0) refer to specific PCA components of a continuous signal measurement, with lower numbers referring to
components of higher statistical significance (2nd component of heart rate signal, 1st component of GCS signal, 1st component of SaO2 signal). See Supplemental Figure 2 for further
analysis and discussion of these PCA features.

Feature
Predictive Value 

(Neurological
Function)

1 mGCS_0 1.08

2 Age 0.45

3 Verbal GCS (avg) -0.26

4 MED_lorazepam 0.19

5 MED_hydrocodone-acetaminophen -0.16

6 Admission Weight -0.14

7 LAB_glucose 0.11

8 LAB_basos 0.11

9 mGCS_4 -0.09

10 RESP_4 -0.08

11 MED_ondansetron -0.08

12 LAB_magnesium 0.07

13 INF_fentanyl -0.06

14 Blood Pressure 0.06

15 INF_vasopressin 0.05

16 ICP (1 if recorded, 0 otherwise) 0.05

17 MED_glucagon 0.04

18 LAB_phosphate 0.04

19 MED_labetalol -0.04

20 INF_sodium 0.04

Feature
Predictive Value

(Mortality)

1 mGCS_0 0.91

2 Age 0.40

3 INF_morphine 0.29

4 SaO2_0 0.26

5 INF_norepinephrine 0.25

6 LAB_glucose 0.19

7 MED_morphine 0.17

8 INF_phenylephrine 0.15

9 MED_famotidine -0.15

10 MED_hydrocodone-acetaminophen -0.15

11 HR_1 0.12

12 MED_lorazepam 0.12

13 Central venous pressure 0.11

14 INF_vasopressin 0.10

15 LAB_BUN 0.10

16 LAB_WBC x 1000 0.09

17 LAB_sodium 0.09

18 LAB_paCO2 0.08

19 MED_ondansetron -0.08

20 Gender 0.07
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