medRXxiv preprint doi: https://doi.org/10.1101/2020.11.23.20237024; this version posted November 24, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

COVID-19: Short term prediction model using daily
incidence data

Hongwei Zhao'”, Naveed N Merchant?, Alyssa McNulty', Tiffany A Radcliff', Murray J
Cote!, Rebecca Fischer!, Huiyan Sang?, Marcia G Ory!

1 School of Public Health, Texas A&M University, College Station, TX 77843-1266, USA
2 Department of Statistics, Texas A&M University, College Station, TX 77843-3143,
USA

* hongweizhao@tamu.edu

Abstract

Background

Prediction of the dynamics of new SARS-CoV-2 infections during the current
COVID-19 pandemic is critical for public health planning of efficient health care
allocation and monitoring the effects of policy interventions. We describe a new
approach that forecasts the number of incident cases in the near future given past
occurrences using only a small number of assumptions.

Methods

Our approach to forecasting future COVID-19 cases involves 1) modeling the observed
incidence cases using a Poisson distribution for the daily incidence number, and a
gamma distribution for the series interval; 2) estimating the effective reproduction
number assuming its value stays constant during a short time interval; and 3) drawing
future incidence cases from their posterior distributions, assuming that the current
transmission rate will stay the same, or change by a certain degree.

Results

We apply our method to predicting the number of new COVID-19 cases in a single state
in the U.S. and for a subset of counties within the state to demonstrate the utility of
this method at varying scales of prediction. Our method produces reasonably accurate
results when the effective reproduction number is distributed similarly in the future as
in the past. Large deviations from the predicted results can imply that a change in
policy or some other factors have occurred that have dramatically altered the disease
transmission over time.

Conclusion

We presented a modelling approach that we believe can be easily adopted by others,
and immediately useful for local or state planning.
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Introduction

Since the World Health Organization declared a pandemic for the novel SARS-CoV-2
2019 virus (COVID-19) on March 11, 2020 (1], the Americas, Europe, South-East Asia
and Eastern Mediterranean regions have the most documented cases [2]. Globally,
nationally, and at every sub-governmental level, there is a need to monitor the current
caseload and project the rate and nature of the spread to guide public health awareness,
preparedness, and response. Societies have to deal with many pressing issues such as
ensuring adequate supplies of personal protective equipment, considerations about the
adequacy of the health care workforce and other health care resources, as well as how to
balance restrictive safety guidelines with keeping businesses open and the economy
sound. For a novel infectious disease, it is especially important to forecast future cases
based on what has happened in the immediate past.

Prediction for the number of cases in a pandemic and implications for health care
needs and resources have received a lot of attention in the scientific world [3-5],
government agencies [6H8], and in media lately [9-11]. With the plethora of models,
there is also growing scrutiny [12] about the accuracy of different models, and an
appreciation that model parameters need to be refined based on evolving knowledge
about the disease trajectory and factors impacting infection and transmission rates.

The different approaches to modeling and forecasting infectious disease epidemics
can be characterized as: 1) mechanistic models based on SEIR (referring to Susceptible,
Exposed, Infected, and Recovered states) frameworks [13]; 2) time series prediction
models such as ARIMA [14], Grey Model [15], and Markov Chain models [16]; and 3)
agent type models (i.e. simulating individual activities for a population) [17]. Even
within each category, there are different types of approaches attempted. For SEIR
models, there are deterministic models involving differential equations, and stochastic
models entailing probability distributions. There are models that are designed to make
long-term forecasts, and models that are best used for short-term predictions. For this
paper, we primarily focus on short-term predictions based on SEIR concepts intended to
forecast incidence cases for the next two to three weeks.

The SEIR model is an extension of the classical SIR model 18], and both SEIR and
SIR models are foundations for many epidemiological modeling techniques. The model’s
strength lies in its simple approximation of a complex process. For example, a typical
SIR model specifies that at a certain time ¢, the population (with size N) can be
classified as people who are susceptible S(¢), infected I(¢), and recovered R(t) according
to the following series of differential equations:

dsS(t) S(t)

E8 — s>,

dR(t)
Cdt
S(t) + I(t) + R(t) = N,

= A1),

where 8 and )\ represent the transmission rate and recovery rate, respectively.

In theory, the population size for each state as a time series can be used to estimate
the parameters in the model according to the system of equations. In practice, modelers
rarely have an accurate count of people at each stage, and the parameters could change
with time. The problem has been tackled using different approaches. For example, Zhu
and Chen [19] considered a statistical transmission model for early phase of COVID-19
outbreak; Wu et al. [20] incorporated the possibility of people moving out of the
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compartments due to migration in the modified SEIR model. However, both approaches
made the assumption that the transmission rate was constant. In many states within
US, or in many counties, we have seen a rapid change of the transmission rate caused by
public behavior and public policy, therefore, it is not realistic to use a model with a
constant transmission rate over a long period of time.

Although many approaches to predicting infectious disease transmission have
appeared in literature, we have not found one method that can be used readily for a
day-to-day short-term forecast purpose. Godio et al. [21] used SEIR models for
predicting epidemic evolution by means of a stochastic solver, which allows a
time-dependent transmission rate. They model the transmission rate as a function of
community mobility. This approach is more flexible than the constant transmission rate
assumption. However, it still cannot capture other dynamic aspects of the environment
that impact the transmission rate, such as masks mandates, and adoption of contact
tracing, early testing and isolation. Alternatively, Friston et al. [22] proposed a dynamic
causal model framework for COVID-19, where they tried to include every variable that
“matters” in the spread of the disease. This model suggested that individuals had four
different characteristics: location, infection status, testing results, and clinical status
(i.e., how sick they are). Each of these four characteristics contained four different
states, and individuals could move from one state to another state over time. The main
challenge was that there were many parameters used in the model, and identifying
accurate initial estimates of all the parameters is difficult for a novel infectious disease
with non-specific symptoms and potentially many asymptomatic cases.

The objective of this paper is to provide a method that can be reliably used to make
predictions for the epidemic evolution in the next two to three weeks, based on the
observed incidence cases only. Due to the relative small percentage of death in the
whole population, we will ignore the death data in our modeling. The motivation for
this work originated from pragmatic planning questions posed by local and state
officials charged with allocating resources and ensuring population health. Members
from the Texas A&M University School of Public Health started to monitor and
forecast COVID-19 cases at the beginning of the pandemic, and then used the projected
cases to support predictions for hospitalization and related health resource utilization.

Methods

Our approach to forecasting future COVID-19 cases involves two main steps. First, we
model the observed incidence cases using similar ideas as appeared in Cori et al. |23].
Assuming a Poisson distribution for the daily incidence number, and a gamma
distribution for the series interval, we are able to estimate the parameter (i.e. the
effective reproduction number R,) in the model. In the forecasting step, we draw future
incidence cases from their posterior predictive distributions, assuming that the current
R, will stay the same, decrease 5%, or increase 5%. The upper 95% posterior credible
intervals for increased R, scenario together with the lower 95% posterior credible
intervals (CI) for decreased R, scenario constitute our prediction intervals. The detailed
description of our methods can be found in

Some basic assumptions are necessary for using our methods. In order to determine
the value of the effective reproduction number R., we made the assumption that R, has
a prior gamma distribution with a shape parameter of 1 and a scale parameter of 5,
similar to Cori et al. [23]. We also assumed that the serial interval has a discretized
gamma distribution [23] with a mean of 3-95 and a standard deviation of 4-24 [24].
These hyper-parameters are generally fixed in our model and in our projection.

One parameter that we allow to vary is the time interval 7 which we use to get
reliable estimates of R.. In essence, we assume that R, is constant during this interval
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[t — 7+ 1,¢] so that we can get a reliable estimate of R.(t) at time ¢. From our
experience, 7 = 7 days or 7 = 12 days are recommended, the choice of which depends on
the incidence numbers (smaller incidence cases require a larger 7) and the actual
dynamic change of the transmission rate (a smaller 7 can capture the change better). A
detailed discussion of the assumptions and parameters used for our model is provided in

the “Choosing Model Parameter” section in

Application to COVID-19 data sets

We first demonstrate how to use our methods for predicting COVID-19 cases in Texas,
a large and diverse state in the US with a population size of approximately 29 million.
We utilize data from the COVID-19 Data Repository by the Center for Systems Science
and Engineering (CSSE) at Johns Hopkins University. As of November 15, 2020, the
total number of reported cases was 1,059,753, corresponding to an attack rate of 38-0
per 1,000 people.

We emphasize the importance of understanding how the case reports can be
influenced by administrative issues, and the need to adjust our model accordingly. For
example, on September 21, 2020 there was a reported 14,129 cases for Harris county due
to processing of backlogged data on that day. This artificial spike would influence the
estimate of R, and consequently, the prediction going forward. Therefore, we
reassigned those cases from Harris county according to the following rule: We first
imputed the number of cases on that day using the average number of cases in the past
seven days. Then we evenly spread the extra cases over the previous 31 days including
that index day of September 21. The modified series would be treated as the observed
series in our subsequent modeling analysis. Another modification we made was to
smooth the data series. Due to the high variability of the daily cases, and the fact that
there was often a delay in reporting especially during the weekends, we smoothed the
data using the following algorithm, similar to Sun et al. [25]:

I6)=03%I(t—1)+04%I(t) + 03« I(t+1), t=23,.- T —1

I(1)=0-7+I(1) +0-3% I(2),
I(T)=07«I(T)+0-3«I(T —1),

where T is the last time point in the data series upon which a forecast is to be made.
The smoothed data series were the data we used for generating our prediction models.

As mentioned in the detailed “Methods” section in we first used the
method of Cori et al. [23] to estimate the reproduction number R, (t) for different time ¢
based on the smoothed incidence data in Texas, with a cut off date of November 15,
2020, and an interval of 7 = 7 days. (Results using 7 = 12 days are presented in 7
IS3 Fig). The smoothed data series, the estimated R.(t), and its 95% confidence
intervals (CI) are shown in Fig

Fig 1. Texas incidence cases over time (smoothed) and the estimated
effective reproduction number R.(t) (95% CI in shaded area) using 7-day
intervals.

It is clear from Fig [I| that there were different stages of COVID-19 spread in Texas.
Due to the large number of incidence cases, the 95% CI for the effective reproduction
number R, are quite narrow. During the month of April, the case counts were kept very
low due to a statewide Shelter-in-Place order that was enacted by the Governor. The
estimated R, was close to 1-0 around mid-April. Beginning May 1, 2020 Texas started
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phased reopening process, with many restrictions lifted in early June, right after the
Memorial Day holiday. The daily incidence cases began to increase dramatically after
Memorial Day weekend, and continued throughout June, reaching a peak daily
incidence of about 13,000 in early July. During this period, R, gradually increased to a
value of 1-325. A statewide mask mandate was implemented on July 3, 2020, and a
couple of weeks after that, we started to see a downward trend in the incidence cases.
The reproduction number slowly decreased to below 1-0 towards the end of July and
during August. Unfortunately, the trend reversed starting in early September, with
cases increasing again and a reproduction number above 1.0. The uptick was possibly
due to Labor Day weekend gatherings and widespread reopening of in-person options for
schools and colleges for the Fall 2020 semester. The epidemic was then kept under
control for a while until Mid-October, when COVID-19 cases started to increase
dramatically both statewide and nationwide.

For illustration purposes, we applied our prediction method at four equally spaced
time points that were two months apart: April 15, June 15, August 15, and October 15.
We plotted three projection lines corresponding to the predicted mean values when the
transmission rate (or equivalently the reproduction number R.) stayed the same,
increased 5%, or decreased 5%. We also plotted the prediction intervals (shaded areas)
based on the upper 95% CI limits for the 5% increasing R, and the lower 95% CI limits
for the 5% decreasing R, scenario. The predicted daily cases and cumulative cases,
together with their prediction intervals for the next three weeks are shown in Fig[2| and
Fig [3] separately.

Fig 2. Texas predicted incidence cases using 7-day intervals. Three solid lines
represent the predicted cases corresponding to current rate of transmission sustained,
5% increase in transmission rate, and 5% decrease in transmission rate. The shaded
areas indicate prediction intervals.

Fig 3. Texas predicted cumulative incidence cases using 7-day intervals.
Three solid lines represent the predicted cases corresponding to current rate of
transmission sustained, 5% increase in transmission rate, and 5% decrease in
transmission rate. The shaded areas indicate prediction intervals.

As expected, our predictions performed differently at different times. On April 15,
our forecast assuming constant transmission rate matched the observed data very well.
On June 15, when R, was increasing rapidly because of the business reopening process
and the Memorial Day holiday weekend, the observed cases fell between our predicted
curves assuming the same transmission rate and 5% increase in transmission rate. On
August 15, we saw a gradual decrease in transmission rate due to a statewide mask
mandate, and the forecast with 5% decrease in transmission rate matched the observed
data closely. Finally, on October 15, we started to see an increasing trend again, and
the forecast assuming 5% increase in transmission rate worked well.

Secondarily, we chose to test the applicability of our model to a smaller geographic
region within Texas. We applied our method to predicting the number of cases for the
Brazos Valley (BV), a group of seven counties in Texas (i.e., Brazos, Robertson,
Burleson, Madison, Grimes, Leon, and Washington counties), which collectively
comprise the Bryan-College Station metropolitan area and neighboring counties. The
center is Brazos County, where Texas A&M University is located. This area is
approximately 100 miles from both Austin and Houston and has a younger population
than Texas as a whole. Several healthcare entities and a public health authority in the
BV needed timely and accurate forecasts to support planning for local COVID-19 cases.
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The BV incidence cases and the estimated reproduction number R, (t) using 12-day
intervals are presented in Fig[4 Due to small incidence cases in BV, the CIs for R, were
quite wide, making forecasting for BV more challenging. The trend for BV was
influenced by the local context so it did not always follow the trend in Texas. In
addition, due to a relative small population size (approximately 229,000), and sudden
population change caused by college students’ moving out (in late-March corresponding
to the Stay-at-Home order) and then back to the region (in mid-August to correspond
with the start of the Fall semester), we saw more variability in the incidence cases for
BV. Therefore, we chose to use 12-day intervals for our modeling approach, but we also
provided results using 7-day intervals in - for additional information. All
other parameters were the same as appeared in the state model, and we made
predictions on the same days as we did for the state model. The predicted daily
incidence cases and cumulative incidence cases for BV are shown in Fig[5] and Fig[0]
separately.

Fig 4. Brazos Valley incidence cases over time (smoothed) and the
estimated effective reproduction number R.(t) (95% CI in shaded area)
using 12-day intervals.

Fig 5. Brazos Valley predicted incidence cases using 12-day intervals. Three
solid lines represent the predicted cases corresponding to current rate of transmission
sustained, 5% increase in transmission rate, and 5% decrease in transmission rate. The
shaded areas indicate prediction intervals.

Fig 6. Brazos Valley predicted cumulative incidence cases using 12-day
intervals. Three solid lines represent the predicted cases corresponding to current rate
of transmission sustained, 5% increase in transmission rate, and 5% decrease in
transmission rate. The shaded areas indicate prediction intervals.

On April 15, our prediction assuming the same transmission rate sustained agreed
well with the observed cases. On June 15, when the transmission rate increased rapidly,
the prediction upper bounds followed approximately the observed curve. Our forecast
based on past history did not capture the increased case numbers at the end of August
when school started, since we had an influx of cases due to thousands of students
moving to Brazos county from all over Texas. Starting October 15, although past trend
suggested increasing incidence cases, the observed data matched more closely with the
prediction lower bounds. Our model and method produced reasonably accurate results
when the R, value is distributed similarly in the future as it is in the past. Large
deviations from the predicted results can imply that a change in policy or some other
factors have occurred that have dramatically altered the R, value over time.

Conclusion

We have proposed a method that generates predictions for the number of COVID-19
infectious disease cases in the future, based on what estimates of R, are like at the
current time. The major strength of our approach lies in its simplicity, which makes it
easy to implement with a small team of modellers. As such, we have incorporated it as
part of a dashboard
(https://covid19-modeltrac.shinyapps.io/TX-BV-ModelTrac/#section-tx-forecasts),
where it can automatically generate forecasting values every day for a future view of
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three weeks using publicly-available data. This transparent and straightforward
approach means that the method can be easily adopted by others who want to do
similar predictions to help inform local or state-wide decision using public data sources.
Our predicted case numbers can also be used as data inputs alongside other information
for predicting health care utilization and health outcomes such as hospitalizations,
intensive care unit (ICU) occupancy and corresponding ventilator use, and anticipated
fatalities. These projections should be performed routinely to plan for surges and avoid
overwhelming health resources. In Texas for example, hospitals are collectively working
together using surge projections to identify and refer patients to available hospital
beds [26).

Similar to the widely-adopted method for estimating R, [23], we made a few
assumptions, e.g. the incidence I(t) follows a Poisson distribution, with a mean
parameter determined by a renewal function involving a serial function w(s). The serial
function is assumed to have a discretized gamma distribution. The reproduction
number R, varies with time, but we assume that it is constant over a time interval (7
days, or 12 days) in order to obtain a stable estimate for its posterior distribution.
Under these assumptions, we can predict the number of cases that could occur in the
following two or three weeks, allowing R, to stay the same, increase 5%, or decrease 5%.
The assumption that R, behaves similarly in the future as it does now is a major
assumption, and is probably inaccurate if we project far into the future. However, we
believe it to be a reasonable approximation of the true process if we want to see what
happens in the next couple of weeks from the present.

Because R, is related to many factors, it can change dramatically. It is a function of
transmission probability, which means it can be affected by a mask mandate. It is also
affected by the average number of contacts one person has, hence, we expect that R,
might increase when in-person school resumes. In addition, it depends on how many
days on average one person is infectious after becoming infected, which can be reduced
by contact tracing and early isolation. The number of people that are susceptible or
immune is also changing over time. As more people become infected and then become
recovered, the effective R, should decrease over time if other factors stay constant. If we
want to make more accurate forecasts, we should allow a future R, to be a function of
all these different factors. Another way to think about this is that if we make
projections according to current values of R., then any deviations from the current
trend can be attributed to factors not explicit in our model, such as a policy
implementation, or behavior changes arising from reactions to current situation.

One contributing factor to R. that can be objectively measured is mobility data. If
mobility data could provide insight on how R, may vary, incorporating the motility
data in a prediction model can result in better predictions for R, in the future, which in
turn will result in better estimates for the number of incidence cases. Finding the trend
of R, values in the future using other data sources is a direction of our future research.

In summary, we presented a modelling approach that we believe can be easily
adopted by others, and immediately useful for local or state planning. Although many
initially downplayed the long-term consequences of COVID-19 [27], it is now clear that
new surges are appearing in the US as well as globally [28H30], and that the pandemic
spread is likely to last for another year or two [3]. Thus, public health and governmental
responses will need to be guided by data that pinpoint where, when, and among whom
the new cases are occurring. This information can help guide public health messaging as
well as the nature and degree of government responses to mandating public health
practices or regulating business operations to limit spread. Timely projections regarding
case counts are critical to planning for healthcare resources and assuring available care
and best possible outcomes for populations facing the uncertainty of a rapidly emerging
infectious disease during a pandemic response.
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Supporting information

S1 Appendix. Technical details. Methods for predicting COVID-19 cases and the
selection of model parameters.

S1 Fig. Texas incidence cases over time (smoothed) and the estimated
effective reproduction number R.(t) (95% CI in shaded area) using 12-day
intervals.

S2 Fig. Texas predicted incidence cases using 12-day intervals. Three solid
lines represent the predicted cases corresponding to current rate of transmission
sustained, 5% increase in transmission rate, and 5% decrease in transmission rate. The
shaded areas indicate prediction intervals.

S3 Fig. Texas predicted cumulative incidence cases using 12-day intervals.
Three solid lines represent the predicted cases corresponding to current rate of
transmission sustained, 5% increase in transmission rate, and 5% decrease in
transmission rate. The shaded areas indicate prediction intervals.

S4 Fig. Brazos Valley incidence cases over time (smoothed) and the
estimated effective reproduction number R.(t) (95% CI in shaded area)
using 7-day intervals.

S5 Fig. Brazos Valley predicted incidence cases using 7-day intervals.
Three solid lines represent the predicted cases corresponding to current rate of
transmission sustained, 5% increase in transmission rate, and 5% decrease in
transmission rate. The shaded areas indicate prediction intervals.

S6 Fig. Brazos Valley predicted cumulative incidence cases using 7-day
intervals. Three solid lines represent the predicted cases corresponding to current rate
of transmission sustained, 5% increase in transmission rate, and 5% decrease in
transmission rate. The shaded areas indicate prediction intervals.
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