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Abstract 

 

In the United States, state-level re-openings in spring 2020 presented an opportunity for the resurgence of 

SARS-CoV-2 transmission. One important question during this time was whether human contact and 

mixing patterns could increase gradually without increasing viral transmission, the rationale being that new 

mixing patterns would likely be associated with improved distancing, masking, and hygiene practices. A 

second key question to follow during this time was whether clinical characteristics of the epidemic would 

improve after the initial surge of cases. Here, we analyze age-structured case, hospitalization, and death 

time series from three states – Rhode Island, Massachusetts, and Pennsylvania – that had successful re-

openings in May 2020 without summer waves of infection. Using a Bayesian inference framework on 

eleven daily data streams and flexible daily population contact parameters, we show that population-

average mixing rates dropped by >50% during the lockdown period in March/April, and that the correlation 

between overall population mobility and transmission-capable mixing was broken in May as these states 

partially re-opened. We estimate the reporting rates (fraction of symptomatic cases reporting to health 

system) at 96.3% (RI), 62.5% (MA), and 98.9% (PA). We show that elderly individuals were less able to 

reduce contacts during the lockdown period when compared to younger individuals, leading to the outbreak 

being concentrated in elderly congregate settings despite the lockdown. Attack rate estimates through 

August 31 2020 are 6.2% (95% CI: 5.7% ‒ 6.8%) of the total population infected for Rhode Island, 6.7% 

(95% CI: 5.4% ‒ 7.6%) in Massachusetts, and 2.7% (95% CI: 2.5% ‒ 3.1%) in Pennsylvania, with some 

validation available through published seroprevalence studies. Infection fatality rates (IFR) estimates are 

higher in our analysis (>2%) than previously reported values, likely resulting from the epidemics in these 

three states affecting the most vulnerable sub-populations and the close matches between the states’ 

reported COVID-19 deaths and excess deaths. Data in Pennsylvania may have been underreported for both 

non-hospitalized and hospitalized patients, casting substantial uncertainty on estimates of attack rate and 

infection fatality rate. 
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1 Introduction 

 

The coronavirus SARS-CoV-2, the cause of coronavirus disease 2019 (COVID-19), has led to more 

than 600,000 deaths across the United States in just 18 months of transmission. During the initial wave in 

spring 2020, a critical question in managing the United States COVID-19 epidemic was whether regional 

re-openings of social and economic activity would result in rebounds of cases and hospitalizations [1].  

Because population-level immunity to SARS-CoV-2 was still low at the time, the expectation was that 

increases in mobility and human contact would lead back to an upward trending epidemic curve during this 

time [2].  However, as hand hygiene, physical distancing, epidemiological awareness, and mask-wearing 

practices changed during spring 2020, increases in daily economic and social activity were not guaranteed 

to recreate the ideal transmission conditions of March. Additionally, no school session and the possible 

effects of drier/hotter weather [3] in summer were considered potential mitigators on viral transmission [4].   

Despite these mitigating factors, epidemiological rebounds had begun in more than 40 states by 

July 1. Daily case numbers in the US – which had dropped from a peak of 30,000/day in early April to 

20,000/day in late May – rebounded to 50,000/day the first week of July [5][6] driven by early re-opening 

policies in several large states. With a symptomatic case fatality rate (sCFR) rate in the 1% to 4% range [7–

11] depending on epidemiological context and testing availability, more than a thousand of these daily new 

case numbers would result in death several weeks later. The absence of careful, gradual, managed 

reopenings during the May/June period were the likely cause of summer resurgence in parts of the southern 

US. It is of utmost public health importance that epidemic management and public health response 

continues to be approached with a strategic and adaptive plan that can utilize real-time epidemiological 

analysis (e.g. attack rate estimates, changing age/mobility patterns, clinical improvements) to contain and 

potentially reverse upward epidemic trends. 

Here, we analyze the age-structured case, hospitalization, and death time series from three states – 

Rhode Island (RI), Massachusetts (MA), and Pennsylvania (PA) – that during summer 2020 did not 

experience substantial epidemic rebounds when compared to March/April levels. We evaluate eleven 

clinical data streams reported by the respective state health departments in a Bayesian inference framework 

built on an ordinary differential equations (ODE) age-structured epidemic model that includes 

compartments (clinical states) for hospitalization, critical care, and mechanical ventilation.  We infer 

parameters on surveillance, transmission, and clinical characteristics of the first epidemic wave in RI, MA, 

and PA. We describe the patterns of persistently low transmission in these three states throughout August 

31, compare these low-transmission scenarios to changes in human mobility metrics, and evaluate changes 

in age structure and clinical outcomes. We evaluate the impact of the spring epidemic on elderly populations 

in these three states, and we compare infection fatality rates (IFR) to published estimates from other parts 
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of the world. Preliminary analyses resulting from this work were regularly posted at https://mol.ax/covid 

and shared with the respective state departments of health. Statistical inference described here — on attack 

rates, underreporting, changing age-profiles — can guide more granular real-time decision making and 

public health messaging than direct data streams.  

 

2 Results 

 

2.1  Epidemic characteristics during and after lockdown 

 

In Rhode Island, Massachusetts, and Pennsylvania, from early March to early April, we inferred a reduction 

in the composite transmission parameter βt describing person-to-person contact (mixing) rates and the 

probability of virus transmission per unit contact. From the March 5-15 period to April 1, population mixing 

rates dropped by 65.2% (95% CI: 51.4% - 78.2%) in RI, by 79.8% (95% CI: 61.5% - 87.0%) in MA, and 

by 95.4% (95% CI: 92.8% - 97.4%) in PA (Figure 1). During this period, contact rates were dropping 

through stay-at-home orders, bans on large gatherings, and business/school-closures at the same time as 

improved hygiene behaviors were being increasingly adopted; thus, it is not possible to determine the 

individual contributions to βt of mixing reduction and hygiene improvement. The reductions seen in βt in 

March and early April are reductions in transmission-capable mixing that result both from fewer person-

to-person contacts and lower infection risk per contact. These reductions in mixing may seem very large, 

but note that in a heterogeneously exposed population, mixing rates for large highly connected groups can 

drop by large amounts with only a modest drop in the population’s effective reproduction number Rt if a 

smaller sub-population maintains a chain of infection due to an inability to completely zero-out contacts. 

For example, if 90,000 office employees can work from home and contact only their families but 10,000 

elderly care home residents still require contact with medical and care staff, then a full business shutdown 

may result in a 90% reduction in mixing patterns but a measured or apparent Rt ≈ 1 if a stable chain of 

infection is maintained in nursing homes and elderly care residences. Our estimated reductions in 

transmission-capable mixing are consistent with published estimates of changes in Rt and mobility [12–16]. 

Changes in the inferred population-mixing component βt can be compared to mobility metrics 

[17,18] based on location-enabled smartphone data trails, which allow calculation of time spent at home 

versus outside the home. Two independent mobility data sources, Facebook and SafeGraph [19,20], 

provided daily estimates for the fraction of tracked users leaving home at least once in a 24-hour period. 

Despite values varying slightly across states and significantly between user bases, all mobility data 

examined have a common shape and timing: an initial baseline in early March (84%-86% of users leaving 

home for Facebook; 75%-77% for SafeGraph), and a subsequent dramatic decrease from 3/15 to 3/31 (64%-

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 18, 2021. ; https://doi.org/10.1101/2020.11.17.20232918doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.17.20232918
http://creativecommons.org/licenses/by/4.0/


  
 

5 / 31 
 

67%; 52%-55%). This low fraction of users leaving home (at a minimum, once daily) is maintained until 

about April 20, followed by a slow increase to a slightly more cautious ‘new normal’ (77%-81%; 66%-

69%) through July and August (Figure 1). A resumption of population mobility in early May suggests that 

improvements in hygiene, personal distancing, mask wearing, selective travel, and/or smaller event sizes 

were likely factors keeping Rt < 1 and new case numbers declining. 

Not all symptomatic SARS-CoV-2 infections are reported to state-level health systems. As it is 

difficult to make distinctions among asymptomatic, sub-clinical, mildly symptomatic, and symptomatic 

infections, here we call an infection symptomatic if the symptoms are pronounced enough that a person 

with convenient zero-cost access to health care would choose to visit a hospital or clinic. Using the delays 

between time series of cases, hospitalizations, and deaths, we can estimate the fraction ρ of symptomatic 

cases that are reported to the health system [21,22]. We do this without making assumptions about the case 

fatality rate or infection fatality rate. Complications present themselves as underreporting in the 

hospitalization data sets is common; see discussions in Supplementary Sections 1.3, 1.4.  One clear example 

of this difficulty is when only current hospitalizations are available (MA and PA), a good model fit requires 

that the duration of hospitalization is known or identifiable; this is complicated by the fact that hospital 

stays come in several categories (admission to ICU, requiring mechanical ventilation) and can be censored 

by death events. In Massachusetts and Pennsylvania, there is not enough information in the remaining data 

streams to confidently identify the duration of hospitalization (Figure 5B).  Age-stratified probability of 

hospital admission in MA and PA is constrained to be close to estimated values obtained from Rhode Island 

data (Figure 5E).  Our estimate for the reporting rate ρ in Massachusetts is 62.5% (95% CI: 54.5% - 78.5%). 

Rhode Island has complete reporting of hospitalization incidence, made possible by the state’s small size 

and a reporting system covering several small hospital networks that include all hospitals in the state. We 

estimate that 96.3% (95% HPD: 87.1% - 99.8%) of symptomatic COVID-19 cases are reported to RIDOH 

(after May 2020). RIDOH staff and affiliated physicians reported that patients were being turned away in 

early March due to lack of tests, and March reporting rates are estimated at less than 30% (March 15 

estimate is 18.1%, 95% CI: 9.9% - 33.1%); see Figure 5A.  For PA, our estimate of the symptomatic case 

reporting parameter ρ is 98.9% (95% CI: 94.5% - 99.9%), and this high rate may be the result of 

underreporting in multiple data streams; see Discussion.  

Reporting rate estimates combined with age-specific estimates of asymptomatic infection [24] 

allow cumulative attack rates to be estimated (Figure 3). The probability of asymptomatic infection is 

difficult to estimate for SARS-CoV-2 as this requires prospective follow-up in either a household or cohort 

design, with few studies including enough age groups for between-age comparisons [25–28]. We use 

published estimates from Davies et al [24], as the age-based asymptomatic fraction data from individual 

studies has too much variation to provide meaningful estimates (Figure S1). The August 31 population 
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attack rates for SARS-CoV-2 are 6.2% in Rhode Island (95% CI: 5.7% - 6.9%), 6.7% in Massachusetts 

(95% CI: 5.4% - 7.6%), and 2.7% in Pennsylvania (95% CI: 2.5% - 3.1%); see Figure 3.   These attack rate 

estimates use symptomatic case data through September 6, as an infection on August 31 would have its 

mean time of symptoms occurrence six days later.  Note that only 1% of Pennsylvanians had reported as 

symptomatic and confirmed COVID-positive through September 6 2020, and this may be an undercount. 

Our Rhode Island attack rate is able to be validated with a 2.2% late-April attack-rate estimate 

obtained from a household sero-survey [29] and 0.6% early-April estimate from blood donors [30] 

(population biased towards healthier individuals). Our Pennsylvania-wide attack rate has a Philadelphia 

early-April estimate of 3.2% as a comparator [31], as well as a 6.4% estimate from July using serum from 

dialysis patients (not adjusted for race or socio-economic indicators, and thus biased upward) [32]. The 

unadjusted dialysis-patient seroprevalence in Massachusetts was estimated 11.3% in July 2020 [32], about 

twice our estimate.  Attack rate estimates continued to be reported to state-level DOHs through mid-March 

2021 (see http://mol.ax/covid), in general agreement with studies being released during this time (see 

Discussion). 

Estimates of reporting rates allow for age-specific fatality rate estimation in all three states (Table 

1).  First, these results show that the age-adjusted infection fatality rate (IFR) for all three states is higher 

than the typically quoted 0.5%–1.0% range over the past eight months of IFR-estimation [33–37], but note 

that epidemics that infect the most vulnerable segments of a population first may be associated with higher-

than-average IFRs (see Discussion and [36,38]).  Population-weighted IFR estimates are 2.5% (95% CI: 

2.0% – 2.8%) for the Rhode Island epidemic during March-May, 2.1% (95% CI: 1.7% – 2.5%) for the 

Massachusetts epidemic during March and April, and 2.8% (2.7% – 3.1%) for the Pennsylvania epidemic 

from March through June. These estimates are presented for the early stage of each state’s epidemic as our 

inference suggests that mortality rates dropped from spring 2020 to summer 2020 (section 2.2), consistent 

with observations in New York City showing a higher than normal IFR during the first three months of the 

epidemic in 2020 [38]. It is well known that the IFR depends strongly on age, gender, co-morbidities, socio-

economic factors, and race [39][40]. Our estimated age-stratified IFRs indicate that fatality rates are highest 

(>3%) in the 60+ age groups, still very high in the 40-59 age group (estimates ranging from 0.3% to 1.2%), 

and lower in the <40 age group (<0.1%). The age-adjusted symptomatic case fatality rate (sCFR) is 

estimated to be 3.8% (RI), 3.2% (MA), and 4.4% (PA). The hospitalization fatality rate (HFR) shows the 

least variation by age, with fatality rates >9% for the >40 age groups, a lower 3.3% to 4.8% HFR for 20-39 

age group, and no estimates possible for individuals under 20. 
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2.2 Changes in age-stratified contact patterns and clinical outcomes during the epidemic 

 

We investigated changing age-specific contact rates during the three state epidemics, based on 

observed changes in age distribution and well-documented reporting of outbreaks in nursing homes. In 

2020, age-contact matrices began to be measured for the COVID-19 socially-distanced era [41–45], and we 

thus allow for two mixing patterns in our population – one mixing pattern during the spring 2020 lockdown 

and a second pattern in late spring and summer after the lockdowns were lifted. We infer eight relative 

mixing levels for each age class (relative to the 0-9 age group) and use a symmetric parametrization where 

contact rates are described per age-group pair (i.e. cab = ca × cb) where ca is the mixing rate for age group 

a; see equations (S6).  Use of the Belgian CoMix study’s contact rates was evaluated [46,47], but these 

more highly parameterized matrices did not provide a better fit for our six-month time series (ΔDIC > 70 

for all three states). Age characteristics of each state epidemic are shown in Figure 4 (top rows), and the 

inferred contact parameters are shown in Figure 4 (bottom rows); inference of contact rates is influenced 

by the model assumption that the 0-19 age group is 60% as susceptible to infection as the other age groups 

[24]. In all three states, the lowest inferred contact rates during lockdown were for the 0-9 and 60-79 age 

groups, reflecting closed schools and possibly the caution with which older individuals approached their 

risk of infection.  However, the relative contact rates for individuals in the ≥80 age group were much higher: 

2.6 (95% CI: 2.4–2.9) in RI, 6.1 (95% CI: 4.9–7.0) in MA, and 4.8 (95% CI: 4.5–5.1) in PA. This suggests 

that social distancing and lockdown were more difficult for individuals that needed additional care or lived 

in congregate care facilities. The shift from an older age profile to a younger age profile is apparent in all 

three states’ epidemics as the epidemics progressed from spring to summer (Figure 4, top rows). 

Improvements in clinical management of hospitalized COVID-19 cases, due to the use of prone 

positioning [48,49] or more frequent use of corticosteroids [50,51], may have led to lower mortality relative 

to epidemic size during the more recent (June-Aug) stages of the epidemic when compared to March-May 

mortality rates [52–54]. To estimate the effects of some of these interventions, we assess whether 

progression from hospitalization to critical care changed between the early stages and the later stages of the 

epidemic. Our model uses the relative age proportions described by Lewnard et al [23] who estimated 

probabilities of progression from medical-floor care to critical care to be between from 30% to 50% 

(comparable to other estimates [55,56]) for all nine age bands used in this study. These age-specific 

probabilities are scaled in our model (keeping the relative age probabilities the same), independently for 

each state, as patterns of hospital admission and clinical algorithms for ICU admission are likely to differ 

somewhat between health systems and hospitals; the scaling parameter is estimated. In Rhode Island, the 

age-adjusted probability (posterior median) of ICU admission for a hospitalized case dropped from 26.0% 

(95% CI: 20.4%–31.0%) to 16.5% (95% CI: 11.6%–21.0%) with an inferred breakpoint at May 26 2020 
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(95% CI: May 6 – June 2). In Pennsylvania, the age-adjusted ICU admission probability dropped from 

39.5% (95% CI:  36.7% – 43.1%) to 28.0% (95% CI: 24.4%–33.8%), with an inferred breakpoint of June 

19 (95% CI: June 13 – June 22). In Massachusetts, this probability dropped from 29.2% (95% CI:  23.9% 

– 36.3%) to 21.2% (95% CI: 17.5% – 29.0%), with the likely change occurring between late-April and mid-

June (Figure 5D).  

A second approach to confirming trends on improved clinical case management would be to look 

directly at changes in mortality. However, the complexity in this analysis lies in the different possible 

clinical paths that lead to a fatal outcome. In most states, reported mortality trends combine deaths occurring 

in hospitals with deaths occurring at home (i.e. in congregate care facilities); these data streams are 

separated in RI/PA but not MA. Our model allows for inference of at-home mortality, with the at-home 

symptomatic case fatality ratio estimated at between 20% to 35% for the ≥80 group, and 5% to 20% for the 

70-79 age group (Figure 5C). This allows us to separate mortality trends into home and hospital, but hospital 

mortality alone is still a complex composite of probability of death on the medical-floor level of care and 

probability of death in the ICU (with and without ventilation).  For this reason, we chose ICU admission as 

the clinical progression marker where we could evaluate a simple trend of improved case management. 

Estimated at-home mortality may be affected by the choice of using reported death counts or excess death 

counts [57] in an analysis, and using excess deaths in our inference did result in slightly higher estimates 

of at-home mortality for the >70 age groups (Supplementary Material, section 7).  

 Model selection analyses showed that a model with changing age-mixing patterns and improved 

clinical management was a better fit than models without these features (ΔDIC > 27 for all three states; 

Table 2). 

 

3 Discussion 

 

This is among the first studies to evaluate multiple simultaneous clinical data streams with an epidemic 

transmission model.  The analysis of concurrent data streams is necessary to describe certain important but 

unreported characteristics of regional SARS-CoV-2 epidemics; these include underreporting of cases, 

changing age patterns of infection, changing patterns of clinical progression, and an understanding of 

mortality rates outside hospital settings. The inclusion of multiple age-structured data streams on death and 

hospitalization allows for statistical estimation of symptomatic case underreporting — a quantity that is 

generally resistant to robust estimation especially in public-health reporting systems that (1) mix active and 

passive surveillance, (2) mix multiple diagnostic tests and testing visits, and (3) have not made estimates 

of their catchment areas. With an estimate of symptomatic case underreporting (here, via ρ), we can estimate 

the population-level SARS-CoV-2 attack rate in each state by summing the reported symptomatics, the 
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unreported symptomatics, and an externally estimated number of asymptomatics. One month later, an attack 

rate estimate can be validated by comparing to results from a seroprevalence survey.  Four seroprevalence 

estimates available for RI, MA, and PA show no major inconsistencies with our results. It is important to 

remember that SARS-CoV-2 sero-surveys can be subject to biases depending on approaches to recruitment 

(which can overestimate seropositivity if enriched for individuals who are more likely to have been infected, 

e.g. individuals who consent because of past symptoms), the time since the original infection (antibody 

titers wane over time), and the specific test used [58].  

Our results indicate that in autumn 2020 Rhode Island, Massachusetts, and Pennsylvania were 

nearly fully susceptible to a winter epidemic wave of SARS-CoV-2. Continual attack-rate estimation will 

be crucial through 2021 to identify pockets of uninfected and unvaccinated individuals. Specifically, real-

time age-specific attack rate estimation is important for vaccination planning, as age groups experiencing 

the least infection may need to be prioritized during both initial and annual vaccination campaigns.  

Similar to attack-rate estimation, mobility tracking can give us a partial window into the effect that 

distancing policies or lockdowns are likely to have on viral transmission. In May 2020, the positive 

correlation between stay-at-home metrics and viral transmission vanished in all three states (as in [59]), 

resulting in a summer with population mixing levels at nearly pre-pandemic levels (i.e. people not staying 

at home) but viral transmission close to its post-lockdown low point. It is reasonable to suggest that at least 

some of this is explained by (1) weather increasing the proportion of contacts made outdoors, where 

transmission is known to be much less likely, and (2) a shift from mixing outside the home to inside the 

home, i.e. less time spent at work and more time with family. It is not straightforward to relate measures of 

population movement to opportunities for transmission, for many reasons including the collinearity of 

mixing with many other factors that can influence it.  Essentially, rather than absolute measures of mixing, 

the blue lines in Figure 1 can be interpreted as levels of population mixing that are capable of producing 

transmission (“transmission-capable mixing”). By cancelling large events, promoting stringent hygiene 

measures, requiring masking, closing schools, restricting gathering sizes, and creating new guidelines for 

business operations, the epidemics in RI, MA, and PA were contained during the summer months while 

allowing the states’ residents to continue most essential activities including small/medium outdoor events. 

In summer 2020, aggregate measures of population movement were at or near normal levels but mixing 

leading to transmission was substantially reduced.  

It is useful to compare our results on attack rate and contact patterns with those obtained through 

different methodological approaches. Our US state-level inference was performed on a data stream of cases, 

hospitalizations, and deaths, with an externally estimated asymptomatic fraction; we estimated 

mixing/mobility levels, underreporting for symptomatics, and the infection fatality rate. The state-level 

analyses presented by Unwin et al [60] and Monod et al [61] performed inference on a data stream of cases, 
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mobility, and deaths, with an externally estimated IFR; they estimated age-pair contact rates and 

underreporting for infections.  Certainly, both approaches’ results are sensitive to the external estimates 

used.  The combined effect of underreporting and asymptomatic infection (Unwin’s infection ascertainment 

ratio, IAR, defined as the number of reported cases divided by the total number of infections) has similar 

estimates whether using our approach or Unwin’s ― 0.58 (here) and 0.51 (Unwin) in Rhode Island, 0.43 

and 0.38 in Massachusetts, and 0.59 and 0.51 in Pennsylvania.  However, the June 1 2020 attack rates 

estimated with these two approaches differ by a factors of two or three ― 4.1% (here) and 7.5% (Unwin) 

in RI, 5.0% and 11.2% in MA, and 1.5% and 4.4% in PA ― suggesting that the external estimates of IFR 

and the asymptomatic fraction play a large role in attack rate estimation.  Comparing our attack-rate 

estimates to those of Monod (through late Oct 2020), we see estimates of 10.9% (our method [62]) and 

11.0% (Monod [61]) in RI, 8.2% and 13.0% in MA, and 6.8% and 6.6% in PA.  For MA and RI, these late-

October estimates are not consistent with CDC’s commercial laboratory seroprevalence survey [63] (about 

5% in RI, 4% in MA, and 7% in PA), or the CDC blood-donor survey [64] seroprevalence estimates (4% 

in RI, 5% in eastern MA, and 5% in central/southwestern PA). The CDC results need to be evaluated in the 

context of rising and waning seroprevalence, which may result from a high assay threshold and/or not 

accounting for antibody waning in seroprevalence estimates [65,66]. 

Our data and inference support a changing contact pattern in May/June 2020, with much higher 

mixing levels for the 10-29 age group in summer than in spring. This contact pattern was not explicitly 

tested by Monod et al, although they did find that the 20-49 age group was the primary driver, at a national 

scale, of transmission in summer and fall 2020; the influence of the 20-49 age group on transmission appears 

to be small in RI, MA, and PA as these states did not have rebound epidemics in summer 2020.  Despite 

differing approaches as to which quantities are treated as data and which ones are estimated, our study and 

Monod's do share a point of consistency in the importance of the 20-29 age group to maintaining 

transmission in summer 2020. 

 In our analysis, infection fatality rates are estimated to be higher than in recently summarized 

analyses [33–37], and the differences are particularly notable in the 50-79 age group where we infer IFRs 

that are 1.5 to 2.5 times higher than previous estimates. Our IFR estimates for the 20-49 age groups are 

most similar to those presented by Brazeau et al [37]. And the all-ages IFRs in MA and RI are as high as 

some of the highest estimates [9] of the Levin et al [67] study. These high estimates may correspond to a 

high degree of exposure heterogeneity in the studied epidemics. As it is known that RI and MA had 

substantial outbreaks in elderly care facilities in the spring, it is likely that this focused epidemic passed 

through a more susceptible sub-population (individuals who cannot fully quarantine or distance due to 

needing routine care) that is also more likely to progress to severe clinical outcomes including death. This 

was observed in New York City, where an infections-weighted IFR of 1.39% was estimated for the first 
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several months of the epidemic in 2020.  When weighting our estimates by the number of infections in each 

age class (this is a particular epidemic’s IFR as opposed to the IFR for a randomly selected person in the 

population), we obtain IFRs of 2.24% for RI and 1.53% for MA. 

 A second possible explanation for the high estimates of IFR and sCFR presented here is that RI, 

MA, and PA reported COVID-19 death counts similar to excess death counts for the same period. This 

implies that in locations where deaths were undercounted, the excess death counts are closer to the true 

COVID-19 death counts. A third possibility (for Pennsylvania only) that would influence both IFR and 

attack-rate estimates is that both case and hospitalization data were underreported.  A 1% symptomatic 

attack rate in PA over the first six months of the pandemic is lower than expected, but the underreporting 

fraction estimate (ρ = 98.9%) in our analysis is likely wrong if hospitalization numbers were also 

underreported. The reporting rate ρ determines the attack-rate estimates; if ρ is overestimated the infection 

fatality rates presented here would also be overestimated. This may be the reason that our estimated fatality 

rates for PA appear to be unreasonably high, and that the PA attack-rate estimate through August 31 2020 

is so low. 

The symptomatic case fatality ratios (sCFR) inferred for RI, PA, and MA (estimates range from 

3.2% and 4.4%) are in the higher ranges of previously reported estimates [8–11,68–70], suggesting that the 

individuals infected during the spring wave and summer lull were more likely to progress to symptoms than 

the average person in the population. Again, this is consistent with the observation that children were the 

least exposed in the spring and summer months, and thus the exposed population was both more likely to 

progress to reportable symptoms and more likely to progress to severe clinical outcomes. 

In late 2020, an unfortunate diversion in policy discussion was the consideration of an epidemic 

management approach that would encourage younger/healthier populations to become infected [71].  Our 

state-level analyses indicate that older individuals are not able to fully isolate during lockdown periods. 

This makes a ‘protecting the vulnerable’ strategy unworkable, as vulnerable individuals will still require 

essential care and contact with other humans. Any policy aiming to protect vulnerable individuals while 

allowing the remainder of the population to mix and move freely would almost certainly fail at preventing 

viral introduction from the general population into vulnerable populations.  In our analysis, during the 

March/April lockdown period, the ≥80 contact rate was the highest or among the highest when comparing 

across age groups (Figure 4). As individuals in the oldest age groups are relatively unaffected by lockdown, 

the best way to protect these (and other) vulnerable populations is to limit the spread in the general 

population. 
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3.1 Limitations and Recommendations   

 

One key limitation in using data streams rooted in symptomatic case reporting is the inability to 

infer asymptomatic infection rates. These rates must be estimated independently from cohort follow-up or 

contact tracing.  They are susceptible to bias in the younger age groups if children test negative due to low 

viral loads and are classified as negative rather than asymptomatic. Studies are also susceptible to design 

errors when the protocol or data collection does not allow for differentiation between pre-symptomatic and 

asymptomatic individuals (Supplementary Materials, Section 1.8). Although the majority of studies have 

converged on an age-adjusted “60% symptomatic” number, age-specific estimates come with less certainty 

and differences in diagnostic tests and testing protocols have resulted in substantial variation in these 

estimates (Supplementary Materials, Figure S1). 

The data streams we present here do not allow us to evaluate the degree to which the epidemic runs 

through specific sub-populations (e.g. congregate care settings, college students) that are more vulnerable, 

susceptible, or transmit more easily. To measure variability in transmission and susceptibility from state-

level data, we suggest including these common data types into the same databases/datasheets currently 

maintained by all state DOHs as part of routine COVID reporting: (1) contact counts and positivity rates 

from contact tracing efforts, (2) positive/negative case counts and inclusion criteria from asymptomatic 

random screening programs [72], and (3) a datasheet keyed on a categorical variable of ‘infection source 

event’ with confirmed patient counts, ages, and dates of reporting listed [73,74]. Among these data types, 

the asymptomatic screening efforts are likely the easiest to turn into a standardized daily data stream as 

samples taken from screening programs pass through the same sample/data processing pipelines as samples 

from symptomatic patients. These data would also allow for real-time tracking of prevalence.  

We cannot exclude the possibility that our reporting rate estimate (ρ) is incorrectly estimated due 

to model misspecification or data integrity problems. In addition symptomatic reporting is likely to vary by 

age [38] and by availability of testing, making a single ρ-estimate a coarse descriptor of individuals' 

reporting tendencies. This is the reason that validation with seroprevalence estimates is crucial for 

estimating underreporting in public health surveillance systems. The entire inferential framework for ρ 

assumes that hospitalization data are complete, that death data are complete, and that various measures of 

hospitalization duration have been independently estimated or are identifiable from our data. The biggest 

leap in these assumptions comes in the completeness of hospitalization data, as both Massachusetts and 

Pennsylvania have relied on hospitalization data streams that are partially complete. This is a reminder — 

during the pursuit of rapid results with pre-packaged epidemiological tools and dashboards — to carry out 

the somewhat slower due diligence of understanding the sampling frames of all data streams included in an 
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analysis. If hospitalization numbers are underreported in other states as well, national-level analyses of 

hospitalization numbers would need to acknowledge and account for this.   

Finally, we were not able to use any published contact matrices for the lockdown period as these 

data did not exist for our populations at the time our work was being done [41–45]. Thus, we used nine 

independent mixing rates for the nine age-classes in our model (and assumed that contact between two age 

groups is proportional to their two mixing rates); the data are unlikely to have enough resolution to infer 81 

independent mixing parameters.   

Through 2019, infectious disease epidemiology was neglected in the United States for more than 

half a century because of our status as a developed country, with a secure food supply, a sanitary water 

system, few persistent disease vectors, high public hygiene standards, and ample supply of therapeutics and 

vaccines. We were not prepared in 1981 when the HIV epidemic was uncovered, and with no leadership 

from the federal government in 2020, we were underprepared at the state level for the SARS-CoV-2 

epidemic as few individuals remained with knowledge from the early struggle against HIV. Specifically, 

the right data systems were not in place at state level DOHs to provide consistent and interpretable data 

streams allowing epidemiologists to make real-time assessments on epidemic progression and success of 

control efforts. State-level systems in the US require more funding from the federal government or centrally 

designed (and funded) reporting tools from the Centers from Disease Control and Prevention that would 

allow all states to consistently report the same high-quality data types. The rationale for this systems 

upgrade would be to advance our surveillance systems to those of countries like New Zealand, Hong Kong, 

Singapore, Vietnam, Taiwan, and South Korea that successfully controlled epidemic waves and 

introductions of SARS-CoV-2. 

 

 

4 Methods 

 

4.1 Case Data 

Eleven data streams were assembled from three state department of health websites and data 

dashboards: (1) cumulative confirmed cases, (2) cumulative confirmed cases by age, (3) cumulative 

hospitalized cases, (4) cumulative hospitalized cases by age, (5) number of patients currently hospitalized, 

(6) number of patients in ICU currently, (7) number of patients on mechanical ventilation currently, (8) 

cumulative deaths, (9) cumulative deaths by age, (10) cumulative hospital deaths, (11) cumulative hospital 

discharges, with streams 6 and 11 missing in PA, and 10 and 11 missing in MA. Cumulative hospitalizations 

(data streams 3 and 4) in MA and PA were reported as a subset of symptomatic cases (via follow-up case 

investigations) and were excluded from the analysis. Reporting started on Feb 27 (RI), Mar 1 (MA), and 
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Mar 6 (PA), and data sets used in this analysis comprise about 180 days of data through September 6. Age-

specific counts often summed up to be less than the corresponding total daily counts of new symptomatic 

cases, new hospitalizations, or new deaths.  This was common due to lack of age reporting in some 

proportion of cases.  We assumed missing age-structured data to be missing completely at random when 

their sum was less than the total count. Data from random asymptomatic screening efforts (elderly care 

facilities, health care workers) were available for five months in RI and one month in MA.  RI screening 

data were incorporated into the analysis to adjust the inference on the reporting fraction (ρ), as these 

individuals did not report to the health system but were sought out by the health system. 

 

4.2 Mobility Data 

 

The first set of mobility data is provided by the COVID-19 Mobility Network [19] and is derived 

from users of the Facebook mobile app with the location history option enabled, representing approximately 

0.8% of MA, 1.1% of PA and 1.1% of RI.  Each user's location is binned into tiles, approximately 470m × 

610m at Pennsylvania's latitude. These are aggregated by home county and date, and reported as the fraction 

of users who remain in one tile for the whole day. In this paper, we report state-level data by weighting 

these proportions by each county's population, per the U.S. Census' 2019 estimates. These estimates are not 

adjusted for the demographics of Facebook's user base. 

The second set of mobility data is provided by social distancing metrics recorded by SafeGraph 

[75]. The data were derived from GPS pings of anonymous mobile devices. A common nighttime location 

for each device over a 6-week period was defined to be the device’s “home” and daily GPS pings were 

analyzed to determine whether the device exhibited certain behaviors including completely staying at home, 

working part time, working full time, etc. The counts were aggregated at the Census Block Group (CBG) 

level, which is the second-smallest geographical unit for which the US Census Bureau publishes data. A 

state-level percent at home fraction can be calculated by dividing the ‘completely at home’ devices in a 

state by the total devices in that state, however one step was taken prior to this calculation as outlined in 

the data analysis methodology for the Stay-At-Home Index provided by SafeGraph [76]. The step included 

was a correction for sampling bias at the CBG level by resampling with a stratified reweighting method 

described in the supplementary materials [77] (see Supplementary Materials Section 1.6.2). 

 

4.3 Mathematical Model 

A standard age-structured ordinary differential equations (ODE) model was used to describe the 

dynamics of SARS-CoV-2 spread in a single well-mixed population. The model includes 30 compartments 

for different clinical states including susceptible, exposed, asymptomatic, infected, hospitalized, in ICU, on 
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mechanical ventilation. Multiple consecutive compartments are used for most clinical states to reduce the 

variance on length-of-stay in various stages in disease progression. Model diagram shown as Figure S2 and 

equations shown in the Supplementary Materials Section 2. 

 Model parameters fall into several categories including parameters on contact rates, lengths of stay 

in various clinical states, and probabilities of progression from one state to another. Daily community-level 

transmission-capable mixing rates βt were inferred from the data, while age-specific contact rates for 

hospitalized individuals had to be fixed as too little data exist on these parameters. Asymptomatic 

individuals are assumed to be half as infectious as symptomatic individuals (similar to other models’ 

assumptions [78,79]). 

Lengths of stay and age-specific probabilities of clinical progression were available from numerous 

data sets documenting COVID-19 hospitalized populations; details in Supplementary Materials Section 2, 

Table S1 and https://github.com/bonilab/public-covid19model. When clinical parameters were inferred, 

their median estimates were typically close to observed values in hospital or surveillance datasets. No data 

were available in RI, MA, or PA to infer the asymptomatic fraction for each age group, and these were 

obtained from cohort analyses available at the time (see Supplementary Materials Section 1.8) and the 

inferred age-specific asymptomatic fractions in Davies et al [24]; the Davies fractions were used for the 

final model runs. 

  

4.4 Statistical Inference 

Given the various – and at times incomplete – data sources available for each state, we chose a 

flexible Poisson-Gamma process-based likelihood framework to facilitate inference of ODE model 

parameters while accounting for model uncertainty. In particular, the cumulative cases, hospitalizations, 

deaths, and hospital discharge data were assumed to be realizations of conditionally independent, 

inhomogeneous negative binomial processes, with time-varying process rates defined by the expected 

deterministic ODE output. The likelihood function for each age-structured data stream is then a product of 

independent, negative binomial increments, with means determined by the corresponding age-structured 

component of the ODE system over each increment.  Means for observed new symptomatic cases were 

equal to ODE system predictions multiplied by a symptomatic reporting rate constant, and means for 

observed new hospitalized individuals were equal to ODE system predictions.  The time from symptoms to 

presentation was fixed at 2.0 days (see Supplementary Section 5.2). When random screening data are 

available, we adjust the mean of the number of new symptomatics to include an additional additive term 

equal to the rate of random testing times the probability of a positive test.  Dependence across data streams 

is assumed to be captured by the ODE system. Total data streams, summed over all age classes, were viewed 

as the sum of independent negative binomial random variables, and are as such negative binomial random 
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variables themselves, with mean given by the sum of the age-specific means. When both age-structured and 

total data are available, we assume any missing age-structured data are missing completely at random, and 

approximate the joint likelihood of the total and age-structured counts by ignoring overdispersion and 

assuming that, conditioned on the total data, the age-structured counts are multinomially-distributed with 

probabilities proportional to the age-structured ODE means.  Data on current hospitalizations, as well as 

current numbers in intensive care units, and current intubated individuals were modeled using reported 

weekly totals. The total number of intubated individuals, individuals in intensive care units (but not 

intubated) and hospitalized individuals (not in intensive care units) were each modeled as independent 

Gaussian random variables with means equal to the corresponding totals predicted by the ODE system, and 

with unknown variances.  Additional details on the likelihood framework can be found in Supplementary 

Materials, Section 3. 

We chose a Bayesian approach to inference, allowing for appropriate penalization of time-varying 

parameters and a combination of strongly and weakly informative priors for parameters relating to clinical 

progression of disease. The composite rate parameter, βt, describing person-to-person contact mixing, is 

constructed via a cubic B-spline, with a random walk prior (penalized regression spline with 1st order 

differences) on the B-spline coefficients to penalize overfitting. In RI and PA, the symptomatic reporting 

rate ρ is constructed as an I-spline with a similar prior; in MA it is assumed to be constant across time. 

Additional parameters found within the ODE system, including length of hospital stay and proportion of 

cases needing hospitalization within each age class are given uniform priors with bounds determined by 

expert judgement, while negative binomial dispersion parameters are given weakly informative exponential 

priors and Gaussian variance parameters are given conjugate inverse-gamma priors. Given these priors and 

the previously defined likelihood, we constructed a Markov chain Monte Carlo (MCMC) algorithm to 

sample from the posterior distribution of model parameters. Block updates for parameters were obtained 

using a random walk Metropolis-Hastings algorithm with an adaptive proposal distribution [80]. For each 

state, five independent chains were run for 300,000 iterations, with the first 100,000 samples discarded as 

burn-in. Convergence was assessed qualitatively across the five chains. R and C++ Code is posted at 

https://github.com/bonilab/public-covid19model. 
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Figure 1. Transmission-capable population-level mixing βt (in gray and blue) and mobility changes (yellow) from March 1 to August 31. The average 

population mixing for March 5-15 is set to 1.0 as the pre-epidemic level of transmission-capable mixing, and all other values are reported relative to 

this. Gray lines show 1000 sampled posterior β-trajectories with the blue lines showing the median and 95% credible intervals. Note that there is 

substantial uncertainty in these estimates during the first weeks of March, as case numbers were low and reporting may not have been catching a large 

proportion of true cases at this time. Yellow lines show the fraction of Facebook and SafeGraph users that left home at least once per day. The correlation 

between population-movement (yellow) and transmission-capable population movement (gray+blue) begins to disappear in early May in RI and PA 

(and with less certainty, in MA). 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 18, 2021. ; https://doi.org/10.1101/2020.11.17.20232918doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.17.20232918
http://creativecommons.org/licenses/by/4.0/


  
 

23 / 31 
 

 

Figure 2: Model fit to Rhode Island daily data, using the best fit model which accounts for different age-based contact rates 

after the lockdown and a different rate of ICU admissions starting in early June (Table 2). Gray lines show 250 sampled 

trajectories from the posterior, and blue lines are the median trajectories. Black circles are data points that show the daily 

(A) newly reported symptomatic cases, (B) new hospitalizations, (C) current number of patients hospitalized, (D) current 

number of patients in critical care, (E) current number of patients undergoing mechanical ventilation, (F) new deaths 

reported, (G) new hospital deaths reported, i.e. excluding deaths that occurred at home or at long-term care facilities, and 

(H) number of hospital discharges. Model fits for MA and PA are shown in Figures S13 and S14. 
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Figure 3.  Posterior distribution of total attack rate through August 31 2020. Total infection attack rate includes all reported 

symptomatic cases, estimated unreported symptomatic infections, and estimated asymptomatic infections.  Cumulative 

attack-rate estimates and 95% credible intervals are shown for the end of every month. 
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Figure 4. Changing age-structure of COVID-19 epidemics in RI, MA, and PA. Top rows shows the age structure of reported cases (first row) and estimated infections 

(second row) from March 1 to August 31.  RI and PA report age data periodically; missing values have been linearly interpolated in RI.  Third row shows the inferred 

age-specific contact rates (median and 95% credible intervals) for both the lockdown (red) and post-lockdown period (black), where the reference group is the 0-9 

age group.  Fourth row shows these same inferred contact rates with the ≥80 age group as the reference.
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Figure 5.  Posterior distributions of reporting rate (panel A) and clinical parameters (panels B to E) for 

Rhode Island (purple, left column), Massachusetts (orange, middle column), and Pennsylvania (green, right 

column). (A) Reporting parameter ρ, i.e. the fraction of symptomatic SARS-CoV-2 cases that are reported 

to the health system, plotted as a function of time.  In Rhode Island, it was known that in March testing was 

not available and cases could not be confirmed; therefore a spline function was fit for ρ. This same function 

provided a better fit for Pennsylvania data, but not for Massachusetts data. (B) Median length of medical-

floor hospital stay was 8.3 days in RI, 8.9 days in MA, and 14.9 days in PA.  (C) Probabilities of dying at 

home for the 60-69, 70-79, and 80+ age groups; 60-69 age group was included only for RI as data were 

insufficient in PA and MA. These are largely reflective of the epidemics passing through nursing home 

populations where individuals are not counted as hospitalized if they remain in care at their congregate care 

facility in a severe or advanced clinical state. These probabilities are important when accounting for hospital 

bed capacity in forecasts. (D) Age-adjusted ICU admission probability during the lockdown period in spring 

2020 (lighter color) and after the lockdown (darker color). (E) Probability of hospitalization (median and 

95% CIs) for symptomatic SARS-CoV-2 infections, by age group; estimates only available for RI. 
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Tables 

 

Table 1.  Infection fatality rate (IFR), symptomatic case fatality rate (sCFR), and hospitalization fatality 

rate (HFR) for the March-June COVID-19 epidemics in RI, MA, and PA.  Numbers of deaths observed in 

the <20 age groups were too low to generate meaningful estimates. CI: credible interval. 

 

Age Range State IFR (95% CI) sCFR (95% CI) HFR (95% CI) 

20-29 RI <5 deaths <5 deaths <5 deaths 

 MA 0.03% (0.03% - 0.04%) 0.12% (0.10% ‒ 0.15%) 3.3% (2.7% ‒ 4.1%) 

 PA 0.04% (0.04% - 0.04%) 0.16% (0.14% - 0.17%) 4.5% (4.2% - 4.9%) 

30-39 RI 0.05% (0.04% ‒ 0.07%) 0.16% (0.13% ‒ 0.21%) 3.2% (2.5% ‒ 3.8%) 

 MA 0.06% (0.05% ‒ 0.08%) 0.19% (0.16% ‒ 0.24%) 3.6% (2.9% - 4.4%) 

 PA 0.09% (0.08% - 0.10%) 0.26% (0.23% - 0.29%) 4.8% (4.4% - 5.2%) 

40-49 RI 0.31% (0.22% ‒ 0.38%) 0.78% (0.55% ‒ 0.96%) 9.6% (7.2% ‒ 12.2%) 

 MA 0.33% (0.26% ‒ 0.44%) 0.83% (0.65% - 1.11%) 10.2% (7.8% - 12.8%) 

 PA 0.58% (0.52% - 0.65%) 1.44% (1.31% - 1.63%) 17.9% (16.0% - 20.2%) 

50-59 RI 0.60% (0.44% ‒ 0.73%) 1.24% (0.90% ‒ 1.49%) 10.2% (7.6% ‒ 12.8%) 

 MA 0.66% (0.49% - 0.85%) 1.34% (1.01% - 1.74%) 10.8% (8.2% - 13.5%) 

 PA 1.16% (1.06% - 1.30%) 2.37% (2.16% - 2.64%) 18.8% (16.9% - 21.3%) 

60-69 RI 3.2% (2.5% ‒ 4.1%) 5.1% (3.9% ‒ 6.6%) 14.0% (10.5% ‒ 17.7%) 

 MA 3.2% (2.4% - 3.9%) 5.0% (3.9% - 6.2%) 14.8% (11.3% - 18.6%) 

 PA 4.6% (4.2% - 5.0%) 7.3% (6.6% - 7.9%) 26.0% (23.2% - 29.4%) 

70-79 RI 12.1% (9.2% ‒ 13.8%) 17.5% (13.3% ‒ 20.0%) 25.4% (20.4% ‒ 29.9%) 

 MA 10.9% (8.9% - 13.1%) 15.8% (12.9% - 19.0%) 28.2% (23.6% - 34.5%) 

 PA 12.6% (12.0% - 13.4%) 18.2% (17.5% - 19.4%) 37.0% (34.6% - 40.2%) 

≥80 RI 19.9% (17.1% ‒ 23.5%) 28.9% (24.8% ‒ 34.0%) 29.7% (24.4% ‒ 34.5%) 

 MA 19.2% (16.3% - 22.9%) 27.8% (23.7% - 33.2%) 32.8% (27.8% - 39.6%) 

 PA 21.7% (20.6% - 23.5%) 31.5% (29.8% - 34.1%) 42.4% (39.7% - 45.8%) 
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Table 2.  Deviance Information Criterion (DIC) values for different models.  Minimum DIC values shown 

in boldface. 

 

 No change in age-

profile of contact rates 

post lockdown. 

 

 

No change in ICU 

admission rate from 

March to August. 

Different age-profile 

of population contact 

rates post lockdown 

(approx May 2020). 

 

No change in ICU 

admission rate from 

March to August 

No change in age-

profile of contact rates 

post lockdown. 

 

 

Allows for change in 

ICU admission rate 

from March to August. 

Different age-profile 

of population contact 

rates post lockdown 

(approx May 2020). 

 

Allows for change in 

ICU admission rate 

from March to August. 

RI 12064 11059 11960 11004 

MA 26123 18710 26328 17603 

PA 18858 10626 18851 10599 
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