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 5 

Abstract 6 

This study uses mobile phone data to examine how socioeconomic status was associated with the 7 
extent of mobility reduction during the spring 2020 lockdown in England in a manner that considers 8 
both potentially confounding effects and spatial dependency and heterogeneity. It shows that 9 
socioeconomic status as approximated through income and occupation was strongly correlated with 10 
the extent of mobility reduction. It also demonstrates that the specific nature of the association of 11 
socioeconomic status with mobility reduction varied markedly across England. Finally, the analysis 12 
suggests that the ability to restrict everyday mobility in response to a national lockdown is 13 
distributed in a spatially uneven manner, and may need to be considered a luxury or, failing that, a 14 
tactic of survival for specific social groups. 15 

Key words: COVID-19; Everyday mobility; Lockdown; Socioeconomic status; Spatial complexity.   16 
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1. Introduction 1 

Across the planet, government-mandated lockdowns, including restrictions on everyday mobility, 2 
are one of the most common policy measures to prevent and reduce the rapid spread of COVID-19 3 
and avoid healthcare services being overwhelmed. While the specific nature of lockdowns varies 4 
across and within countries, evidence suggests that they have slowed down the spread of infections 5 
(Flaxman et al., 2020; Jarvis et al., 2020; Kraemer et al., 2020; Scally et al., 2020). Lockdowns are, 6 
however, drastic interventions with significant economic implications and disproportionally 7 
disadvantaging socially and economically vulnerable population groups (Bradbury-Jones and Isham, 8 
2020; Proto and Quintana-Domeque, 2020; Usher et al., 2020). This is why governments in European 9 
countries facing a ‘second wave’ of infections hesitate to re-instate nationwide lockdowns. 10 

Not everybody is able or willing to restrict their everyday mobility when lockdowns are in place. 11 
Studies using large mobile phone datasets (Oliver et al., 2020; Pepe et al., 2020) have demonstrated 12 
significant differences in response to restrictions on everyday mobility. Comparing 65.5m mobile 13 
phone GPS traces on 15-17 April with a pre-COVID-19 baseline in the USA, Dasgupta et al. (2020) 14 
have found more people staying at home in counties (n=2,633) with more healthcare resources, 15 
greater wealth and less social deprivation. Bushman et al. (2020) utilised a different dataset with Call 16 
Detail Records (CDRs) for ±18m mobile phones across the USA and established that the increase in 17 
time spent at home after stay-at-home orders was significantly smaller in Census Block Groups 18 
(CBGs) dominated by Blacks, Hispanics and Natives/Other than in those dominated by White and 19 
Asians. However, the smaller effect size for the former groups disappeared after income was 20 
controlled. The increase was also smaller for CBGs with more individuals aged over 50 than in areas 21 
with more younger people, an effect that was independent of income. Finally, a study using spatially 22 
more aggregated mobile phone data for 13 regions in France has shown a positive correlation 23 
between the prevalence of high standards of living and the percent reduction in mobility after 24 
lockdown. It also demonstrates greater mobility reductions in regions with more people aged 24-59, 25 
more highly impacted workers and greater numbers of hospitalised people per 100,000 residents 26 
(Pullano et al., 2020).    27 

These studies imply that the extent of mobility reduction in an area under lockdown increases as its 28 
socioeconomic status (SES) is higher. If true, then this finding can have significant implications for 29 
the implementation of future lockdowns and help explain spatial and socioeconomic inequalities in 30 
infection, hospitalisation and mortality. For example, the stringency of lockdown rules could be 31 
adapted on a local level, taking into account the socioeconomic differences across clinical 32 
commissioning groups. The objective of this paper is to provide rigorous proof for the relationship 33 
between mobility reduction and SES. Since mobile phone data can be used to monitor people’s 34 
response to COVID-19 related restrictions on people’s everyday mobility effectively and on an 35 
unprecedented scale (Poom et al., 2020), we use GDPR-compliant CDRs to analyse the relationships 36 
between SES and mobility reduction across England while 1) controlling for critical confounding 37 
factors and 2) considering spatial complexities in the examined relationships.  38 

England moved to a full government-mandated lockdown later than most other North West 39 
European countries. It was only from 23 March 2020 that the Government ordered a reduction of 40 
people’s everyday mobility to trips for essential purchases, medical needs and care-giving to others 41 
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as well as to essential work travel and one stint of exercise per day (Iacobucci, 2020). Gatherings of 1 
more than two people who did not live together were prohibited, and all but essential retail 2 
premises such as supermarkets were closed. The original restrictions were gradually lifted after 11 3 
May 2020 and have increasingly been replaced by a system of locally specific restrictions (HM 4 
Goverment, 2020).  5 

The literature has identified a wide array of factors that are important to mobility patterns. Levels of 6 
mobility as represented by distance covered or travel time are conditioned strongly by accessibility 7 
levels, which are a combination of the resources (e.g. cars) people have for travel and the 8 
configuration of transportation and land-use systems (Fransen et al., 2018; Hanson and Schwab, 9 
1987; Neutens et al., 2010). That configuration can be approximated using the spatial distribution 10 
and intensity of people, residences, employment, retail, healthcare facilities, etcetera (Ewing and 11 
Cervero, 2010; Newman and Kenworthy, 1996). Everyday mobility is also shaped by commitments 12 
on people’s time use demanding they are at certain places in physical space at particular times are 13 
also shaping everyday mobility (Cullen and Godson, 1975; Schwanen et al., 2008; Van Acker et al., 14 
2010). The health of people in a given area should also be controlled when the relationship between 15 
SES and reduction in mobility is analysed. This is because COVID-19 tends to pose greater risks to 16 
people with underlying health conditions (Fletcher et al., 2020; Jordan et al., 2020), and such 17 
conditions are likely to be correlated with both SES and mobility levels (O’ Lenick et al., 2017; Yoo et 18 
al., 2018). It is also vital to consider SES as a multi-dimensional construct in the analysis of spatial 19 
variation in everyday mobility (Hanson and Hanson, 1981; van de Coevering and Schwanen, 2006; Xu 20 
et al., 2018). This is why the analysis considers not only household income but also education and 21 
skills, occupation level, housing tenure and crime levels in residential areas. In short, this paper 22 
analyses the relationships between multiple indicators of SES and the reduction in everyday mobility 23 
during the spring 2020 lockdown in England, while controlling for the effects of accessibility, activity 24 
commitments and population health. 25 

Relevant spatial complexities include spatial dependencies and spatial heterogeneity (Anselin, 1988). 26 
The former follows from Tobler’s (1970) claim that geographical phenomena that are near to each 27 
other are often related to each other, and which still resonates in the current era of unprecedented 28 
global interconnections (Miller, 2004). Spatial dependencies manifest as spatial autocorrelations in 29 
linear models, potentially resulting in inaccurate conclusions about the associations between 30 
dependent and independent variables. This risk is particularly salient when spatial dependencies 31 
occur in the dependent variable (as correlations in the levels of mobility reduction in adjacent or 32 
near areas in our case) or the residuals (as correlations in the values of unobserved variables in 33 
adjacent or near areas). Spatial heterogeneity refers in the current context to geographical scale: the 34 
relationships between SES and mobility reduction may not be the same across all parts of the study 35 
area (England) but exhibit regional variations (Bonaccorsi et al., 2020; Scala et al., 2020). This 36 
suggests that the national level is not necessarily the appropriate scale at which to evaluate the 37 
relationship. Both spatial dependencies and spatial heterogeneity will be considered below as 38 
various studies have suggested they shape the relationships of demographic, environmental and 39 
healthcare factors with COVID-19 infection, hospitalisation and mortality across regions (Harris, 40 
2020; Mollalo et al., 2020; Perone, 2021; Xiong et al., 2020).  41 
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2. Data and methods 1 

 2 

2.1 Data and variables  3 
The analysis used anonymised and aggregated GDPR-compliant CDRs for 1,119,449 users in the 4 
period 1 March-18 April 20201. CKDelta, a company that collected, cleaned, and anonymized the 5 
mobile phone location data from a large British mobile phone provider, granted us access to the 6 
dataset. An entry is created within the CDRs based on the on-the-fly processing of signalling 7 
messages exchanged between mobile phones and the mobile network, usually collected by mobile 8 
network operators to monitor and optimise the mobile network activities. CDRs encompass 9 
messages containing information about the identifiers of the user and of the cell phone tower 10 
handling the communication and the time stamp. 11 

The temporal resolution of the CDRs, reflected in the timestamps of the user’s activity, is at a second 12 
level.  The median user has 42 daily CDR records with corresponding location observations before 13 
the lockdown and 24 records afterward.  The spatial resolution is on a cell phone tower level. Within 14 
urban areas, the average distance from one cell phone tower to its closest neighbour is around 300 15 
meters. In rural areas, the cell phone tower density is much lower, and cell towers are one to two 16 
kilometres apart, with the largest distance to the nearest neighbouring tower at 12 kilometres. 17 

We use CDRs to compute the daily median radius of gyration for users in each Clinical 18 
Commissioning Group (CCG) area (n=191), which is a generic metric of the spatial extent of everyday 19 
mobility practices for a user. We compute the median instead of the sample mean of the radius of 20 
gyration for individual users to avoid the upward bias from the right tail of the distribution who 21 
represent those users travelling long distances on a given day. Thus, our median measure is 22 
unaffected by shifts in the long-range displacements of users. In general, the radius of gyration is a 23 
function of the number of places a user visits on a day and the distance between those places. In 24 
most cases, the radius of gyration increases if the user visits more places or if the distance between 25 
the visited places is larger. The radius of gyration is unaffected by the amount of time users spend 26 
away from their residence. Mobility will be underreported if individuals do not take their phone 27 
along or when there are no CDR records generated during a trip. 28 

Alternative measures of both the range and amount of mobility exist. Pullano et al. (2020) consider 29 
long trips, which are identified with cell phone towers being more than 100 km apart. Qian et al. 30 
(2020) consider the flow of users between clinical commissioning groups and the share of users 31 
staying at home.2 Hoteit et al. (2014) also discuss the total trajectory length of the users as a direct 32 
measure of the amount of mobility. However, they note that the range and amount of mobility are 33 
highly corrected. While other measures of mobility have equal merit, we use the radius of gyration 34 

 
1 Two percent of the population has been sub-sampled from the users of a large British mobile phone provider, 
stratified by the 191 Clinical Commissioning Groups (the reconfiguration of CCGs have taken place in April 2020, 
a number of CCGs have reduced from 191 to 136 in April 2020) in England. 
2 Using data from Qian et al. 2020, we find a 96% Pearson correlation between the proportion of users staying 
at home and the median radius of gyration for users across the United Kingdom, providing further evidence of 
the equivalence of measures of the range and amount of mobility. 
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as it is widely employed in studies using mobile phone data (González et al., 2008; Pappalardo et al., 1 
2019, 2015). 2 

Researchers have provided various interpretations for our gyration measure. González et al. (2008) 3 
interpreted the measure as the characteristic distance travelled by a user. De Montjoye et al. (2013)  4 
explained it as the smallest circle that contains all the places a user has been to on a given day. Xu et 5 
al. (2018) suggested that it measures the spatial extent of a phone user’s activity space from the 6 
user’s trajectories in a given time. To this end, this research measures the extensivity of activity 7 
space (Lu et al., 2020) though summation of the distance from all points of user 𝑖𝑖 travels among the 8 
time-stamped (𝑡𝑡) locations 𝑙𝑙𝑖𝑖,𝑑𝑑,𝑡𝑡 on day 𝑑𝑑 from the trajectory’s centre of mass 𝑐𝑐 can be formulated as 9 
𝑙𝑙𝑖𝑖,𝑑𝑑𝑐𝑐 = 1/n∑ 𝑙𝑙𝑖𝑖,𝑑𝑑,𝑡𝑡𝑡𝑡=1  on that day. Locations 𝑙𝑙 are approximated by the nearest mobile phone tower. 10 
Formally, the radius of gyration ri,d can be expressed as:  11 

ri,d = �
1
𝑛𝑛
��𝑙𝑙𝑖𝑖,𝑑𝑑,𝑡𝑡 − 𝑙𝑙𝑖𝑖,𝑑𝑑𝑐𝑐 �2

𝑡𝑡=1

 (1). 

We aggregate user-level ri,d values to the spatial level CCG areas in which individuals reside,3 to 12 
protect the individual privacy and because CCGs decide what healthcare services are needed to 13 
meet the specific needs of the population in their area, and make sure those services are provided. 14 
While NHS (National Health Service) England hold primary responsibility for the commissioning of 15 
primary care services such as general practitioner (GP) and dental care services, CCGs commission 16 
most hospital care, including urgent and emergency care. They thus play a critical role in the 17 
healthcare response to COVID-19; their services will be overwhelmed first if compliance with a 18 
government-mandated lockdown is (very) low. We use the median ri,d across users in a given CCG 19 
area in the analysis below, because the median is less sensitive to right-skewed distributions and 20 
outliers than the sample mean. Because the study concentrates on mobility reductions, it does not 21 
analyse the median radius of gyration of residents across CCG areas 𝑗𝑗 on a given day, 𝐺𝐺𝑗𝑗,𝑑𝑑 It rather 22 
analyses the reduction in mobility 𝑅𝑅𝑗𝑗,𝑑𝑑 relative to a reference day, 𝑅𝑅𝑅𝑅𝑅𝑅: 23 

𝑅𝑅𝑗𝑗,𝑑𝑑 = �
𝐺𝐺𝑗𝑗,𝑑𝑑 − 𝐺𝐺𝑗𝑗,𝑅𝑅𝑅𝑅𝑅𝑅 

𝐺𝐺𝑗𝑗,𝑅𝑅𝑅𝑅𝑅𝑅
� × 100 (2). 

Tuesday 3 March is chosen as REF, because it was the last ‘normal’ Tuesday before mobility levels in 24 
England started to drop in connection with COVID-19. Prior to the epidemic Tuesday was the day of 25 
the week on which mobility levels tended to be very high because the share of people commuting to 26 
employment or education was larger than on most other days (Department for Transport, 2020a). As 27 
explained in Section 3.1, we study population movement on four consecutive Tuesdays starting on 28 
the 24 March, which is the day after the national lockdown commenced, until the 14 April.  29 

The information on mobility reductions across England is correlated with data on SES, accessibility, 30 

 
3 The computation of home region of users exploits the night-time location when users are most likely to be at 
home. Home region detection followed three steps: a) filter observations from 10 pm to 6 am, b) finding the 
most common cell phone tower used at night-time, c) dropping users with fewer than 30 night-time observations 
per month. Each cell phone tower is assigned to its Clinical Commissioning Group area according to its location. 
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activity commitments and population health from the 2011 Census and other sources provided by 1 
the Office for National Statistics (ONS). While a Lower Layer Super Output Area (LSOA) level is the 2 
spatial resolution of non-mobility datasets, we aggregate data to the CCG area level by using an 3 
official lookup table retrieved from ONS geography portal. The creation of variables from the 4 
available data has been based on the authors’ knowledge of relevant literature on the spatial 5 
variation in everyday mobility (see Introduction). In total, we use 28 operational variables in the 6 
regression analyses described below (Table 1). Originally, a series of indicators of the racial/ethnic 7 
composition of the CCG areas were included but these had to be dropped because of 8 
multicollinearity with the percentage of people who do not speak English and resident population 9 
density. Spatially disaggregated data on COVID-19 incidence rates were also excluded from the 10 
analysis because of low reliability in March and April 2020 when diagnostic testing for the disease 11 
was very limited in England. 12 

[Insert Table 1 here] 13 

 14 

2.2 Modelling 15 
A series of econometric models of increasing spatial complexity has been specified to understand 16 
the relationships of SES, accessibility, activity commitments and population health with mobility 17 
reduction 𝑅𝑅𝑗𝑗,𝑑𝑑. The first model is a Stepwise Linear Regression Model (SLRM) in which the values for 18 
the dependent variable and regressors are treated as independent from each other is given by 19 
𝑅𝑅𝑗𝑗,𝑑𝑑 = 𝛽𝛽0 + 𝑥𝑥𝑗𝑗𝛽𝛽𝑗𝑗 + 𝜀𝜀𝑗𝑗, where 𝛽𝛽0 is the intercept, 𝑥𝑥 a vector of regressors, 𝛽𝛽 a vector of regression 20 
coefficients, and 𝜀𝜀 the error term. We used a combination of forward and backward elimination of 21 
potential explanatory variables to achieve a specification that combines model parsimony with 22 
goodness-of-fit and plausibility of interpretation. All variables have been standardised with a mean 23 
of zero and variance of unity to facilitate interpretation (Oshan et al., 2020). The contribution of 24 
each regressor in the SLRM to the statistical explanation of mobility reduction is demonstrated with 25 
the help of Lindeman et al.’s (1980) relative importance metric (LMG), which identifies the average 26 
incremental improvement of each predictor based upon the decomposition of R2.  27 

Next, we consider two distinct spatial regression models that account for spatial autocorrelation at 28 
the global level of all 191 CCG areas in England, as defined by spatial weights 𝑊𝑊 (Anselin and Arribas-29 
Bel, 2013). The Spatial Lag Model (SLM) captures the substantial spatial dependency in mobility 30 
reduction in a given CCG area and the neighbouring CCGs. The SLM model specification includes a 31 
spatially lagged dependent variable: 32 

𝑅𝑅𝑗𝑗,𝑑𝑑 = 𝛽𝛽0 + x𝑗𝑗𝛽𝛽𝑗𝑗 + 𝜌𝜌𝑊𝑊𝑗𝑗𝑦𝑦𝑗𝑗 + 𝜀𝜀𝑗𝑗, (3), 

where the spatial lag coefficient 𝜌𝜌 indicates the impact of mobility reductions in neighbouring areas 33 
on the reduction in CCG area 𝑗𝑗. In contrast, the Spatial Error Model (SEM) addresses spatial error 34 
autocorrelation. The SEM model specification includes a spatial autoregressive error term:  35 

𝑅𝑅𝑗𝑗,𝑑𝑑 = 𝛽𝛽0 + x𝑗𝑗𝛽𝛽𝑗𝑗 + 𝜆𝜆𝑊𝑊𝑗𝑗𝜉𝜉𝑗𝑗 + 𝜀𝜀𝑗𝑗. (4), 

where 𝜉𝜉𝑗𝑗 denotes the spatial component of the error term and 𝜆𝜆 the spatial error coefficient.  36 
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Finally, we use two different Geographically-Weighted (GW) models to examine the local variation in 1 
the rates of change so that the coefficients in the model are specific to a location �𝑢𝑢𝑗𝑗, 𝑣𝑣𝑗𝑗� rather than 2 
being global estimates. Geographically Weighted Regression (GWR) estimates the 𝑘𝑘th coefficient 𝛽𝛽𝑘𝑘 3 
for location �𝑢𝑢𝑗𝑗, 𝑣𝑣𝑗𝑗� through kernel density estimation (Fotheringham et al., 2017). The GWR 4 
regression specification can be expressed as:   5 

𝑅𝑅𝑗𝑗,𝑑𝑑 = �𝛽𝛽𝑘𝑘�𝑢𝑢𝑗𝑗, 𝑣𝑣𝑗𝑗�x𝑗𝑗𝑗𝑗

𝑚𝑚

𝑘𝑘=0

+ 𝜀𝜀𝑗𝑗 (5), 

Where 𝑚𝑚 = 𝑛𝑛 + 1 (191 CCG areas+1=192). To obtain the localised parameter estimates 𝛽𝛽𝑘𝑘�𝑢𝑢𝑗𝑗,𝑣𝑣𝑗𝑗� 6 
for each regressor x𝑗𝑗𝑗𝑗, GWR employs the (diagonal) spatial weight matrix 𝑊𝑊, constructed from the 7 
weights to define the spatial neighbourhood that provides the best model fit. The kernel density 8 
estimation approach requires the specification of a kernel function and a bandwidth for 𝑊𝑊 9 
(Brunsdon et al., 2010). This study uses the bi-square kernel function and calibrates the bandwidth 10 
on the basis of 𝑘𝑘=4 nearest neighbours to generate the local weightings (Li et al., 2020; Oshan et al., 11 
2019). It also uses a fixed average bandwidth, BW, of 150 across all regressors. The vector of local 12 
parameters 𝛽̂𝛽  for the matrix of regressors 𝑋𝑋 can be expressed as: 13 

𝛽̂𝛽�𝑢𝑢𝑗𝑗,𝑣𝑣𝑗𝑗� = �𝑋𝑋′𝑊𝑊�𝑢𝑢𝑗𝑗, 𝑣𝑣𝑗𝑗�𝑋𝑋�
−1 𝑋𝑋′𝑊𝑊�𝑢𝑢𝑗𝑗, 𝑣𝑣𝑗𝑗�𝑦𝑦 (6). 

While the GWR captures spatial heterogeneity in a manner that the global models SLRM, SLM and 14 
SEM cannot do, it assumes that the spatial scale over which local variations in the effects of 15 
regressors – and thus the spatial processes they reflect – are identical across regressors. This 16 
assumption may be unduly limiting and is relaxed in Multi-scale Geographically Weighted Regression 17 
(MGWR). MGWR allows for conditional relationships between the dependent variable and each 18 
regressor through the selection of an optimal BW for each regressor (Fotheringham et al., 2017) can 19 
be expressed as Equation (7): 20 

𝑅𝑅𝑗𝑗,𝑑𝑑 = �𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏�𝑢𝑢𝑗𝑗,𝑣𝑣𝑗𝑗�
𝑚𝑚

𝑘𝑘=0

x𝑗𝑗𝑗𝑗 + 𝜀𝜀𝑗𝑗 (7), 

where 𝑏𝑏𝑏𝑏𝑏𝑏 indicates the BW used for calibration of the 𝑘𝑘th conditional relationship for MGWR. This 21 
study also deploys the adaptive kernel with bi-square function for MGWR model calibration to 22 
update and remove the spatial effects of each regressor outside the neighbourhood as specified by 23 
bandwidth. All GW models in this study were estimated using the GWmodel package in R software 24 
(Gollini et al., 2015). 25 

 26 

3. Results 27 

 28 

3.1 Spatial and temporal patterning of mobility reduction in England 29 
Across England, mobility levels as represented by the median radius of gyration declined 70.4% 30 
between 3 and 28 March (Qian et al., 2020; Santana et al., 2020). This reduction commenced almost 31 
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two weeks before the start of the government-mandated lockdown on 23 March, and over the 1 
course of April gradually reversed. Nonetheless, the England-wide trend in Figure 1 disguises stark 2 
local and regional variations. Figure 2 depicts hot and cold spots in mobility reduction based on the 3 
Gi* statistic, which identifies local pockets where particular values for a given variable are 4 
concentrated (Getis and Ord, 1992; Ord and Getis, 1995). Hot and cold spots are spatial clusters of 5 
contiguous CCG areas where mobility reductions are significantly (at p<0.05) greater or smaller than 6 
the England-level average. Figure 2 shows multiple spatial clusters, with the most considerable 7 
decrease in everyday mobility (i.e. hot spots) occurring in Greater London and the smallest (i.e. cold 8 
spots) in the Yorkshire and the Humber region and South West England. The locations of hot and 9 
cold spots bear some resemblance to the hotspots of COVID-19 incidence rates during spring 2020 in 10 
England (NHS Digital, 2020). According to the Royal Berkshire NHS Trust, London recorded the first 11 
COVID-19 related death on the 5 March. Yorkshire and the Humber and South West England 12 
recorded their first deaths only on 17 March and 15 March, respectively.   13 

[Insert Figures 1-2 here] 14 

 15 

3.2 The association of socioeconomic status with everyday mobility reductions 16 
To some extent, and across all four dates considered, the hot and cold spots of mobility reduction 17 
map onto areas where households in respectively the top and bottom quintiles of the national 18 
income distribution are overrepresented. Greater London clearly has the most households in the top 19 
income group, and Yorkshire and the Humber has many in the lowest quintile (Figure 3). A visual 20 
comparison of Figure 2 and 3 suggests a correlation between the reduction in everyday mobility 21 
levels and SES of CCG areas. It is, however, unclear how strong and linear the association with 22 
income, as only one marker of SES, is and whether other factors confound that association.  23 

[Insert Figure 3 here] 24 

The Stepwise Linear Regression Model (SLRM) confirms a clear relationship of income with mobility 25 
reduction and demonstrates that multiple other variables help to explain spatial differences in 26 
mobility reduction during the government-mandated lockdown across England. Of the 28 variables 27 
considered, only six are significantly (p<0.01) correlated with the level of mobility reduction that 28 
multicollinearity does not affect (VIF<6). The selected variables are identical across the four 29 
consecutive Tuesdays in March and April. Half relate to SES of the resident population: share of non-30 
English speakers, share of high-income households who belong to the top quintile of the household 31 
income distribution in England and Wales, and share in lower-middle class occupation (social grade 32 
C1). The other three selected variables concern accessibility (resident population density), activity 33 
commitments (share of population who are self-employed), and population health (share of 34 
residents with bad health status). Depending on the date considered, these six variables explain 70-35 
74% of the variation in the spatial distribution of mobility reduction. 36 

[Insert Tables 1 here] 37 

The regression coefficients show that mobility reduction was greater in areas with more high-income 38 
households, non-English speakers, workers in lower middle-class occupations and people in bad 39 
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health. Mobility reduction was also greater in areas with higher average population density but 1 
smaller in those with more self-employed workers. The effect sizes are fairly stable across the four 2 
dates considered, and sensitivity tests have shown that all relationships are approximately linear in 3 
nature. According to the LMG values, the household income variable makes the strongest 4 
contribution to the explanation of spatial differences in mobility reduction, followed by residential 5 
density, then the share of people who do not speak English. A local area’s SES was strongly 6 
associated with the extent of the mobility reduction among its residents at the start of the national 7 
lockdown. 8 

 9 

3.3 Spatial complexity I: The importance of spatial dependency 10 
While useful, SLRM models are spatially naïve because they do not account for spatial dependency 11 
or heterogeneity. The spatial clustering of mobility reduction levels across England in Figure 2 gives 12 
reason to expect unobserved factors may be creating spatial dependencies that potentially bias the 13 
regression coefficients. The SLM models, in which a spatially lagged dependent variable – i.e. the 14 
average mobility reduction in surrounding areas – is included as an additional regressor, confirms 15 
the existence of upward bias in the standard regression model. Table 2 show a significant spatial lag 16 
coefficient on all four dates, yet it also displays smaller coefficients for the six previously selected 17 
variables. The Akaike Information Criterion (AIC), which measures the extent of information loss for 18 
a given model, can be used to compare different model specifications with each other (as long as the 19 
more restricted version is nested in the other). The smallest difference ∆𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 occurs for 31 March 20 
with a value (2.0) that still offers, in the words of Burnham and Anderson (2004, page 70), 21 
“substantial” evidence in favour of the SLM specification; for the other dates the evidence favouring 22 
the SLM specification is considerably stronger. 23 

[Insert Table 2 here] 24 

Controlling for spatial dependency in the residuals does not improve the results to the same extent. 25 
We find that there is evidence to favour the SEM specification only for 7 April. Nevertheless, the SLM 26 
models still offer a great improvement relative to the linear regression model. These results indicate 27 
that it is more important to account for spatial spill-over effects in mobility reduction than to control 28 
for spatial dependencies due to unobserved independent variables. 29 

 30 

3.4 Spatial complexity II: The relevance of spatial heterogeneity 31 
The SLM and SEM specifications remain global models that cannot fully capture variations in the 32 
associations of mobility reduction with SES, accessibility, activity commitments and public health at 33 
sub-national levels. The fact that the values for ∆𝐴𝐴𝐴𝐴𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺 and ∆𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀1 (Table 4) are markedly 34 
greater than for ∆𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 indicates that considering spatial heterogeneity is more important than 35 
accounting for spatial dependency in analyses of the extent of mobility reduction during England’s 36 
lockdown. Together the values of the adjusted R2, ∆𝐴𝐴𝐴𝐴𝐴𝐴 and ∆𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐 indicates that GWR and MGWR 37 
specifications clearly outperform the OLS specification for all four days. The values for ∆𝐴𝐴𝐴𝐴𝐴𝐴, and 38 
∆𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐 are clearly >10, which means there is “essentially no support” (Burnham and Anderson, 2004, 39 
p. 71) for the SLRM specification.  40 
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[Insert Table 3 here] 1 

The ∆𝐴𝐴𝐴𝐴𝐴𝐴 and ∆𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐 values indicate that the MGWR specification is also superior to its GWR 2 
counterpart on 7 April. The case is less clear-cut for the other three dates although the ∆𝐴𝐴𝐴𝐴𝐴𝐴 and 3 
∆𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐 marginally favour the MGRW models, which provide valuable information on the scale at 4 
which different processes operate. Determining that scale as part of the modelling rather than 5 
deciding it a priori is useful since Table 4 shows that for three out of six regressors – non-English 6 
speakers, social grade C1 and poor health – the estimated bandwidth equals 190 and is thus 7 
estimated at the England-wide level on all days considered. It is the share of households in the top 8 
income quintile and resident population density – the two most important regressors– for which 9 
effects are more spatially restricted. The models fit the data best in East England, mainly Norfolk and 10 
surroundings, followed by the South East; adjusted R2 values are substantially lower in North 11 
England, typically more than 20 percent points than in the Norfolk and surrounding areas (Figure 4).  12 

[Insert Figure 4 here] 13 

The mean effects for the six regressors (Table 4) are stable over the four dates considered and 14 
broadly comparable to those for the SLRM specification. The model for 7 April tends to exhibit the 15 
greatest differences from other days when attention is directed towards the mean values. In 16 
addition, variation around the estimated mean value is markedly larger for the households in the top 17 
income quintile, residential density and the intercept. This indicates that spatial variation in the 18 
strength of the association with mobility reduction is most pronounced for the two strongest 19 
correlates plus the intercept. In relative terms, the variation around the mean is largest on three out 20 
of four days for residential density, but this is due to CCG areas with unusually high coefficients in 21 
the Lincoln-Hull region, followed by the North East. The right-skewed distribution of estimated 22 
coefficients can also be observed for households in the highest income quintile. Here the highest 23 
coefficients are observed for the area around Newcastle, followed by the rest of the North. In 24 
contrast, the lowest coefficients for the income and density variables can be found in South and East 25 
England. In those areas, the share of people in the lower middle classes (social grade C1) and with 26 
bad health are, relatively speaking, much more important to the explanation of mobility reduction. 27 
Greater London and its commuter belt also have high intercept values from 31 March onwards, 28 
suggesting that the base level of mobility reduction that is independent of any variable in the model 29 
has been rather high. 30 

[Insert Table 4 here] 31 

This discussion indicates substantial local variation in the correlates of mobility reduction in March 32 
and early April (Table 5). Consider, for instance, Newcastle upon Tyne in North East England for 33 
which the model explanatory power is comparatively low and spatial differences in mobility 34 
reduction are primarily a function of the share of households in the top quintile, residential density 35 
and the share of self-employed workers. This is different from London where there is a much more 36 
consistent base level reduction (i.e. intercept coefficient), and the explanatory power is distributed 37 
much more equally across all independent variables although bad health is relatively important and 38 
density and the self-employment less so. The implication of the local differences shown in Table 6 is 39 
that, whereas SES is important everywhere, the role of individual variables varies spatially.  40 
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[Insert Table 5 here] 1 

 2 

4. Discussion 3 

The reduction in everyday mobility across CCG areas in England in response to COVID-19 has been 4 
large, with a 70% reduction in the median radius of gyration, but broadly comparable with 5 
observations in other studies (Apple Inc, 2020; Google LLC, 2020; Jacobsen and Jacobsen, 2020; Pepe 6 
et al., 2020). These headline figures do not consider substantial variation at the individual or 7 
household level, which is where decisions about which trips to make or to forego are made. This is 8 
why the regression models presented in this article do not offer evidence of causal effects. 9 
Interpreting them in this manner would amount to ecological fallacy (Robinson, 1950). This does not, 10 
however, invalidate those models. After all, decisions about public health interventions as well as 11 
assessments of their effects and effectiveness take place at the level of populations and territories 12 
and not at the level of individuals or households.  13 

The nature of the correlations of mobility reduction across England’s CCG areas with socio-economic 14 
status, accessibility, activity commitments and population health is in line with expectations. The 15 
strong influence of share of people in the top income quintile is not surprising, given that high-16 
income workers tend to have greater discretion over when and where they work (Witteveen and 17 
Velthorst, 2020) and thus greater ability to work from home. In addition, people on high incomes 18 
tend to travel more than those on low incomes: individuals in the lowest household income quintile 19 
made 859 trips and covered 4,138 km in 2019 against 995 trips (+16%) and 9,236 km in the highest 20 
quintile (+223%) according to the UK National Travel Survey (Department for Transport, 2020b). The 21 
inclusion of the share of people in social grade C1 indicates that, once spatial differences in income 22 
are taken into account, CCG areas with more lower-middle workers experienced a lower total need 23 
to commute to/from work than territories with more working class individuals and households. 24 
Differences in ability to work from home are again relevant here, as is the observation that many key 25 
workers are employed in low-education, low-pay and precarious jobs associated with working class 26 
status in domains such as supermarkets, logistics and last-mile delivery, and construction.  27 

The postive regression coefficients for the share of non-English speakers in Tables 2, 3 and 5 suggest 28 
that this variable may not be as much an indicator of SES as initially expected. As indicated above, 29 
the share of non-native English speakers is greatest in CCG areas where many people from non-30 
Western heritage live. These individuals and households are comparatively likely to be excluded 31 
from car access and ownership (Lucas and Jones, 2009). They are thus strongly dependent on public 32 
transport, even when their concentration in higher-density locations (Badoe and Miller, 2000; 33 
Schimek, 1996) is taking into account. At the same time, it rapidly became clear over the spring of 34 
2020 that ethnic minorities in the UK were at higher risk of COVID-19 infection and hospitalisation 35 
and mortality because of the virus (Proto and Quintana-Domeque, 2020). The coefficients in Tables 36 
2, 3 and 5 may therefore also reflect a strong inclination to stay at home among groups from non-37 
Western heritage because of perceived health risks. 38 

Among the remaining variables, the postive coefficients for percent of the population in bad or very 39 
bad health and the negative coefficients for the share of population that is self-employed are as 40 
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expected. The former most likely reflects a greater prevalence of government-encouraged shielding 1 
by clinically (extremely) vulnerable individuals and their households during the early stages of the 2 
epidemic. Yet, it may also reflect differences in local information campaigns, with health authorities 3 
in areas with large number of people with underlying health conditions perhaps placing greater 4 
emphasis on the need to shield and/or being more effective in reaching vulnerable individuals and 5 
households. It is also possible that greater and more effective community networks were in place or 6 
emerged in places with more clinically vulnerable households. Further research would be necessary 7 
to probe these conjectures. The result for share of self-employed workers seems to reflect 8 
autonomy over working hours and locations as well as discretion to engage in work- and business-9 
related travel. Yet, a lack of choice also seems to be involved: for their business to survive and to 10 
make a living, many self-employed individuals may have to travel to suppliers and customers, 11 
whether they like it or not. Factors such as these may push up the (median) mobility at the CCG area 12 
level once differences in SES, accessibility and population health are taken into account. 13 

The strong effect of population density is somewhat surprising but the positive correlation certainly 14 
not. Public transport use increases substantially with density (Badoe and Miller, 2000; Schimek, 15 
1996) and this form of travel has been affected severely during the COVID-19 epidemic. Not only is it 16 
widely seen as a site where infection risk is particularly high, the capacity of service provision was 17 
dramatically reduced in the early stages of the epidemic and the Government’s official 18 
communication actively discouraged UK residents from using buses, trams, metros and trains. In 19 
addition, it is in high-density areas that the availability of local shops and delivery of groceries and 20 
other shopping bought online was most common before the epidemic (Brand et al., 2020). The need 21 
to travel for everyday needs is thus lower and can be satisfied locally more easily. Finally, the 22 
correlation of density with share of population of non-Western heritage may suggest a stronger 23 
inclination to stay at home due to perceived health risks in CCG areas with high population densities. 24 

The above interpretations suggest that demographic compositions may be more important than 25 
geographic context at CCG area level. Nonetheless, neighbourhood factors may also hint at the 26 
effects of geographic context if there have indeed been differences in how CCGs have overseen the 27 
provision of spatially differentiated information to vulnerable individuals and their households. In 28 
addition, the relative prominence of compositional factors may reflect the scale at which mobility 29 
reductions have been analysed. The CCG level is an approriate choice in light of the healtcare 30 
sector’s response to the COVID-19 epidemic in England, but that does not mean that analysis 31 
conducted at another spatial level or using another classification of zones would have rendered the 32 
same results. The findings in this study remain subject to the modifiable areal unit problem 33 
(Fotheringham and Wong, 1991), and further work at different scales and with different spatial 34 
zones would enhance the understanding of how SES and other factors have shaped mobility 35 
reductions during the England-wide lockdown in early 2020. 36 

The above analysis warrants two further conclusions. First, as the spatial regression models (Table 2) 37 
have suggested, mobility reduction in a given territory – even at the relatively aggregate level of the 38 
CCG area – is not independent from what happens in that territory’s neighbourhood. Figure 2 shows 39 
multiple, spatially extensive hot and cold, and the SLM specifications show that the spatially lagged 40 
dependent variables become statistically significant and meaningful regressors. Moreover, the 41 
inclusion of the latter reduces the coefficients of regressors measuring the attributes of the CCG 42 
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area for which mobility reduction is analysed. This should come as a surprise: many people’s 1 
everyday mobility and activity spaces are not contained within the administrative territories on the 2 
basis of which healthcare services are provided. A comparison of Tables 3 suggests that SES, 3 
accessibility, activity commitments and population health in surrounding areas have shaped the 4 
extent of mobility reduction in a given CCG area. Had a spatial classification at a finer resolution 5 
been deployed, then the influence of neighbouring areas – and the need for spatially advanced 6 
econometrics – would have been even larger than in the present study. 7 

Second, the relationships of mobility reduction with SES, accessibility, activity commitments and 8 
population health at the CCG level area vary significantly across England. As Table 3 demonstrates 9 
unambiguously, a spatially naïve linear regression model is simply not appropriate if the aim is to 10 
capture the spatial heterogeneity of the correlates of mobility reduction at the CCG area level. This is 11 
because on the one hand the relative importance of the regressors discussed above differs markedly 12 
across CCG areas, and on the other hand the underlying spatial processes play out over different 13 
spatial scales. The effects of the share of households in the top income quintile and resident 14 
population density – income and density – have the most pronounced geographies. Table 6 indicates 15 
that they have the strongest discriminatory effectsss in the post-industrial effects in North England, 16 
given that the coefficients for these variables are largest in Manchester, Leeds and Newcastle-on-17 
Tyne while the overall goodness-of-fit (R2) for those cities is at most 87% of what it is in the City of 18 
London. These results are not altogether unexpected, given that spatial differences in the prevalence 19 
of high-income households (Figure 3) and resident population density are more pronounced across 20 
North England than across most of the North East. 21 

 22 

5. Conclusion 23 

This study has used mobile phone data to provide rigorous evidence for an link between 24 
socioeconomic status (SES) with mobility reduction during the Spring 2020 lockdown in England, 25 
while considering the potentially confounding effects of other factors and “recognising the 26 
fundamental spatiality of the current COVID-19 crisis” (Poom et al., 2020, p. 5). Two main 27 
conclusions can be drawn along with a future research direction.  28 

First, SES has indeed been correlated with the extent of mobility reduction in the early stage of 29 
England’s COVID-19 epidemic. The headline figure of a 70% reduction in everyday mobility obscures 30 
marked spatial differences across local areas (Figure 1). All else equal, areas with more high-income 31 
households have seen the largest reductions in mobility, while those with more workers in lower 32 
middle-class occupations have seen greater reductions compared with those with more people in 33 
working-class occupations. The finding that areas with more non-English speakers have experienced 34 
greater reductions in mobility to some extent contravenes the suggestion that higher SES is 35 
associated with greater mobility reductions, but seems to reflect differences in the risk of infection, 36 
hospitalisation and death along lines of race/ethnicity. The greater reduction in mobility in territories 37 
with more non-English speakers appears to be an aggregate-level consequence of more shielding in 38 
response to the circulation of information about exposure risks, as it is in areas with more residents 39 
who are in bad or very bad health.  40 
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Second, the specific nature of the association of SES with mobility reduction varies markedly across 1 
England. There are both global (England-wide) and local factors that make a spatially naïve, 2 
conventional regression analysis inadequate and inappropriate. Territories as large as CCG areas are 3 
not independent as reductions in one area are influenced by those in surrounding areas due to 4 
everyday mobility patterns’ transgression of administrative boundaries. More importantly, the 5 
strength of correlations between mobility reduction on the one hand and SES, accessibility, activity 6 
commitments and population health differs markedly across the country. Additionally, the 7 
significance of SES is larger across Northern England than in London and the South East. 8 

Our study leaves open the question why (economically) disenfranchised areas had a lower 9 
compliance with lockdowns. Moreover, one may conjecture that local areas in which many residents 10 
could not afford the relative luxury of staying at home and reducing their mobility as much as in 11 
more privileged areas are at a disadvantage (e.g., more infections, overwhelmed healthcare services) 12 
in later stages of the COVID-19. Verification of this conjecture is beyond the current study but the 13 
path-dependent spatial differentiation in ability to reduce everyday mobility is an important topic for 14 
future research.  15 
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Tables 
 
Table 1. Descriptive statistics of variables. 

Domains Variables  Min. Mean Medi
an 

Max. SD Skew 

Mobility reduction relative to 3 March 2020 24 March 2020 0.37 0.62 0.61 0.82 0.1 0.1 

31 March 2020 0.44 0.66 0.66 0.83 0.09 0.05 

7 April 2020 0.26 0.64 0.63 0.85 0.1 -0.11 

14 April 2020 0.38 0.62 0.61 0.83 0.1 0.17 

Socioeconomic 
status 

Income Share of households in lowest household income quintile 
at national level 

0.13 0.18 0.17 0.4 0.03 2.64 

Share of households in median household income quintile 
at national level 

0.1 0.22 0.22 0.25 0.02 -1.57 

Share of households in top household income quintile at 
national level 

0.03 0.19 0.17 0.4 0.07 0.69 

Education and skills Share with no qualifications 0.11 0.23 0.23 0.35 0.05 0.03 

Share of non-English speakers 0.01 0.08 0.04 0.41 0.08 1.9 

Occupation 
 

Share of Social Grade AB (upper middle class) 0.11 0.31 0.31 0.55 0.07 0.49 

Share of Social Grade C1 (lower middle class) 0.15 0.22 0.22 0.3 0.03 -0.27 

Share of Social Grade C2 (skilled working class) 0.1 0.21 0.22 0.31 0.04 -0.52 

Share of Social Grade DE (semi-skilled working class and 
non-working) 

0.07 0.17 0.16 0.37 0.05 0.66 

Housing type Share of social rented housing 0.06 0.18 0.15 0.44 0.07 1.39 

Share of dwellings with ≥4 bedrooms 0.06 0.19 0.18 0.33 0.05 0.19 

Crime level Incidents of crime (per 1,000 inhabitants) 0.02 8.16 8.07 28.35 3.47 0.86 

Accessibility Residential density Resident population density (1,000 inhabitants per km2) 0.02 0.84 0.34 6.23 1.22 2.39 

Car availability Share of households with 0 vehicle 0.1 0.26 0.23 0.65 0.12 1.47 
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Share of households with 1 vehicle 0.3 0.42 0.43 0.5 0.03 -1.68 

Share of households with 2 vehicles 0.04 0.24 0.26 0.39 0.07 -0.85 

Share of households with ≥3 vehicles 0.01 0.07 0.07 0.14 0.03 -0.18 

Clinical capacity ICU beds (per 1,000 inhabitants) 0 0.07 0.04 0.89 0.11 3.49 

Number of GP practices (per 1,000 inhabitants) 0.07 0.12 0.12 0.3 0.03 1.35 

Hospitals (per 1,000 inhabitants) 0.11 0.18 0.17 0.38 0.03 1.5 

Allowed premises Parks (per 1,000 inhabitants) 0.05 0.17 0.15 0.48 0.08 0.99 

Supermarkets (per 1,000 inhabitants) 0.63 1.07 0.98 2.32 0.3 1.36 

Activity 
commitment 

Economic activity Share of part-time workers in the resident  
population aged 16-74 

0.07 0.14 0.14 0.16 0.02 -1.72 

Share of full-time worker in the resident  
population aged 16-74 

0.22 0.39 0.39 0.51 0.04 -0.2 

Share of self-employed workers in the resident  
population aged 16-74 

0.05 0.1 0.1 0.16 0.02 0.12 

Population Health General health status Share of population in good health  0.74 0.81 0.81 0.88 0.03 -0.11 

Share of population in fair health 0.09 0.13 0.13 0.17 0.02 -0.14 

Share of population in bad health  0.03 0.06 0.05 0.09 0.01 0.49 

Notes: Variables in bold have been included in regression models below; variables for racial/ethnic composition of resident populations had to excluded because of high 
correlations with share of non-English speakers and resident population density. 
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Table 2. Spatial regression modelling of mobility reduction, by date. 
 24 March 2020 31 March 2020 7 April 2020 14 April 2020 
 SLM SEM SLM SEM SLM SEM SLM SEM 

Coeff (SE) Coeff (SE) Coeff (SE) Coeff (SE) Coeff (SE) Coeff (SE) Coeff (SE) Coeff (SE) 
(Intercept) -0.009 

(0.037) 
0 

 (0.041) 
-0.008 

(0.038) 
0 

 (0.04) 
-0.013 

(0.037) 
0.002 

 (0.053) 
-0.012 

(0.035) 
-0.001 

(0.045) 
Socio-economic status 

Share of households in top household income 
quintile at national level 

0.666*** 
(0.083) 

0.795*** 
(0.073) 

0.7***  
(0.086) 

0.806*** 
(0.073) 

0.612*** 
(0.084) 

0.794*** 
(0.082) 

0.636*** 
(0.08) 

0.764*** 
(0.074) 

Share of non-English speaker 0.287*** 
(0.073) 

0.365*** 
(0.071) 

0.336*** 
(0.076) 

0.399*** 
(0.072) 

0.248*** 
(0.074) 

0.374*** 
(0.078) 

0.232*** 
(0.069) 

0.337*** 
(0.071) 

Share of social grade C1 (lower middle class) 0.428*** 
(0.062) 

0.492*** 
(0.062) 

0.475*** 
(0.065) 

0.535*** 
(0.062) 

0.394*** 
(0.063) 

0.443*** 
(0.068) 

0.429*** 
(0.06) 

0.486*** 
(0.062) 

Accessibility 
Resident population density (1,000 inhabitants 
per km2) 

0.284*** 
(0.08) 

0.353*** 
(0.081) 

0.284*** 
(0.082) 

0.341*** 
(0.082) 

0.267*** 
(0.081) 

0.31*** 
(0.088) 

0.306*** 
(0.076) 

0.363*** 
(0.081) 

Activity commitments 
Share of self-employed workers -0.186*** 

(0.06) 
-0.196*** 

(0.063) 
-0.229*** 

(0.062) 
-0.245*** 

(0.064) 
-0.24*** 
(0.061) 

-0.238*** 
(0.069) 

-0.2*** 
(0.057) 

-0.2*** 
(0.063) 

Population health 
Share of population in poor health  0.397*** 

(0.075) 
0.465*** 
(0.074) 

0.435*** 
(0.078) 

0.492*** 
(0.075) 

0.335*** 
(0.076) 

0.446*** 
(0.082) 

0.356*** 
(0.072) 

0.441*** 
(0.075) 

Spatial autoregressive parameters 
Spatial lag coefficient (𝜌𝜌) 
 

0.22** 
(0.076) 

- 0.178** 
(0.078) 

- 0.31*** 
(0.073) 

- 0.272*** 
(0.072) 

- 

Spatial error coefficient (𝝀𝝀) - 0.077 

 (0.106) 
- 0.039  

(0.109) 
- 0.28*** 

(0.094) 
- 0.206* 

(0.099) 
Model fit metrics  
Log-likelihood -143.0 -145.7 -148.7 -150.8 -146.7 -150.6 -134.3 -138.7 
Pseudo R2 0.738 0.729 0.721 0.714 0.726 0.715 0.76 0.749 
𝑨𝑨𝑨𝑨𝑨𝑨𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 307.9 317.8 323.5 296.6 
𝑨𝑨𝑨𝑨𝑨𝑨𝑺𝑺𝑺𝑺𝑺𝑺 303 309.5 315.4 319.7 311.5 319.3 286.6 295.3 
∆𝑨𝑨𝑨𝑨𝑨𝑨𝑺𝑺𝑺𝑺𝑺𝑺 = (𝑨𝑨𝑨𝑨𝑨𝑨𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 − 𝑨𝑨𝑨𝑨𝑨𝑨𝑺𝑺𝑺𝑺𝑺𝑺) 4.9 -2.4 2.4 -2.1 12 4.2 10 1.3 

Note: *p<0.1; **p<0.05; ***p<0.01.  
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Table 3. Assessment of spatial heterogeneity in regression modelling, by date. 
Modelling approach  Model criterion  24 March 31 March 7 April 14 April 

OLS-equivalent Adj. R2 0.72 0.70 0.70 0.74 
𝐴𝐴𝐴𝐴𝐴𝐴 307.88 317.77 323.54 296.55 

GWR Adj. R2 0.75 0.72 0.75 0.77 
𝐴𝐴𝐴𝐴𝐴𝐴 273.87 291.21 270.19 256.79 
𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺  34.00 26.57 53.35 39.76 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 296.11 313.44 292.42 279.03 

MGWR Adj. R2 0.75 0.73 0.81 0.77 
RSS 42.32 43.97 27.15 38.26 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 292.49 310.64 259.29 275.87 
∆𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = (𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝐺𝐺𝐺𝐺𝐺𝐺 − 𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) 3.61 2.80 33.13 3.16 

ƚ AICc is often used when the ratio of estimated coefficients to cases is small. 
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Table 4A. Results for MGWR modelling of mobility reduction, 24 and 31 March. 
 24 March 2020 31 March 2020 

 Min. 1st Qu. Median 3rd Qu. Max. Band 
width 

Min. 1st Qu. Median 3rd Qu. Max. Band 
width 

(Intercept) 0.14 0.15 0.16 0.177 0.19 188 0.12 0.13 0.14 0.140 0.15 188 

Socio-economic status  

Share of households in top  
household income quintile at national level 

0.74 0.74 0.85 1.058 1.09 148 0.73 0.73 0.80 0.962 1.00 164 

Share of non-English speaker 0.32 0.33 0.35 0.354 0.36 188 0.36 0.37 0.38 0.394 0.40 188 

Share of social grade C1  
(lower middle class) 

0.40 0.42 0.46 0.464 0.47 188 0.47 0.48 0.50 0.500 0.51 188 

Accessibility 

Resident population density 
(1,000 inhabitants per km2) 

0.23 0.28 0.51 0.759 1.09 62 0.20 0.27 0.41 0.587 1.17 40 

Activity commitments 

Share of self-employed workers -0.20 -0.18 -0.14 -0.123 -0.11 186 -0.23 -0.21 -0.18 -0.164 -0.16 188 

Population health 

Share of population in poor health  0.49 0.50 0.53 0.563 0.57 188 0.50 0.51 0.53 0.556 0.56 188 

Model fit metrics 

Residual sum of squares (RSS) 42.32 43.97 

AICc 292.49 310.64 

R2 0.78 0.77 

Adj. R2 0.75 0.73 
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Table 4B. Results for MGWR modelling of mobility reduction, 7 and 14 April. 
 7 April 2020 14 April 2020 

 Min. 1st Qu. Median 3rd Qu. Max. Band 
width 

Min. 1st Qu. Median 3rd Qu. Max. Band 
width 

(Intercept) 0.31 0.32 0.33 0.338 0.34 188 -0.21 -0.07 0.14 0.294 0.34 63 

Socio-economic status    

Share of households in top  
household income quintile at national level 

0.65 0.66 0.92 1.543 1.76 67 0.68 0.68 0.80 1.059 1.09 148 

Share of non-English speaker 0.38 0.38 0.39 0.394 0.40 188 0.27 0.30 0.34 0.352 0.35 181 

Share of social grade C1  
(lower middle class) 

0.37 0.38 0.39 0.396 0.40 188 0.40 0.41 0.41 0.412 0.43 188 

Accessibility    

Resident population density 
(1,000 inhabitants per km2) 

-0.24 0.19 0.39 0.755 1.85 22 0.27 0.27 0.27 0.286 0.30 188 

Activity commitments   

Share of self-employed workers -0.30 -0.26 -0.22 -0.163 -0.16 153 -0.27 -0.25 -0.20 -0.177 -0.16 167 

Population health   

Share of population in poor health  0.61 0.62 0.62 0.626 0.64 188 0.51 0.51 0.53 0.547 0.55 188 

Model fit metrics   

Residual sum of squares (RSS) 27.15 38.26 

AICc 259.29 275.87 

R2 0.86 0.80 

Adj. R2 0.81 0.77 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 5, 2021. ; https://doi.org/10.1101/2020.10.28.20221770doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.28.20221770
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 5. Locally specific coefficients in MGWR model, 7 April 2020. 
Local authority districts City of London City of Bristol Birmingham Manchester Leeds Newcastle upon 

Tyne 
(Intercept) 0.09 0.10 0.08 0.12 0.05 0.11 
Socio-economic status 

Share of households in top household  
income quintile at national level 

0.65 0.73 0.79 1.08 1.19 1.31 

Share of non-English speaker 0.39 0.29 0.13 0.03 0.15 0.17 
Share of social grade C1  
(lower middle class) 

0.50 0.46 0.38 0.26 0.34 0.30 

Accessibility 
Resident population density 
(1,000 inhabitants per km2) 

0.34 0.41 0.62 0.88 0.74 0.77 

Activity commitments 
Share of self-employed workers -0.17 -0.25 -0.25 -0.26 -0.40 -0.35 

Population health 
Share of population in poor health  0.44 0.39 0.36 0.39 0.42 0.47 

Model fit metrics       
Pseudo R2 0.87 0.64 0.71 0.66 0.72 0.73 
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Figures 
 

 
a. 24 March 

 
b. 31 March 
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c. 7 April d. 14 April 

Figure 1. Maps of mobility reduction across England, by date. 
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a. 24 March b. 31 March 
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c. 7 April d. 14 April 

Figure 2. Maps of hot and cold spots in mobility reduction across England, by date. 
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Figure 3. Spatial distribution of the lowest (above) and highest quintiles (below) of household income across England. 
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a. 24 March b. 31 March 
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c. 7 April d. 14 April 

Figure 4. Local R2 in the MGWR model, by date. 
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