Title page:

Title: Clinico-laboratory profile, intensive care needs, treatment details, and outcome of Pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS): A systematic review and Meta-analysis.

Authors:

- Vijai Williams, MD, DM, Associate Consultant, Pediatric Intensive Care Unit, Gleneagles Global Health City, Perumbakkam, Chennai, India. Phone: +919855179572, email: vijaiwilliams@gmail.com.
- Nabaneeta Dash, Pediatric Infectious Diseases Unit, Christian Medical College and Hospital, Vellore, Tamil Nadu, India. Phone: +918872435566, email: nabaneetadash@gmail.com.
- Renu Suthar, MD, DM, Division of Pediatric Neurology, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India 160012. Phone: +919855483969, email: drrenusuthar@gmail.com.
- 4. Vichithra Mohandoss, MD, Practising Pediatrician, Chennai, India. Phone:
 +919043529564, email: drvichithram@gmail.com.
- Nishant Jaiswal, MBBS, PhD, Consultant, Health Informatics, Department of Telemedicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India 160012. Phone: +919888812940, email: nishantjaiswal.1983@gmail.com.
- 6. TK Kavitha, MD, DM, Senior Resident, Division of Pediatric Critical Care, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India 160012. Phone: +918375822442, email: kavithatk12@gmail.com.

- Karthi Nallasamy, MD, DM, Division of Pediatric Critical Care, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India 160012. Phone: +919814376716, email: ny.karthi@gmail.com.
- Suresh Kumar Angurana, MD, DNB, DM, FCCP, FIMSA, Division of Pediatric Critical Care, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India 160012. Phone: +919855373969, email: sureshangurana@gmail.com.

Corresponding author: Suresh Kumar Angurana, MD, DNB, DM, FCCP, FIMSA, Division of Pediatric Critical Care, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India 160012. Phone: +919855373969, email: sureshangurana@gmail.com.

Running title: Pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS): A systematic review and meta-analysis.

Word count: Abstract: 250; Manuscript: 3500

Figure: 1

Tables: 5

Supplementary tables: 3

Keywords: COVID-19; Critically ill children; Hyperinflammation; Intravenous Immunoglobulin; Mechanical Ventilation; MIS-C, Myocarditis, PICU; PIMS-TS, SARS-CoV-2; Steroids.

Financial assistance: None

Conflict of interest: None.

Abstract:

Objectives: To synthesize the current data on clinico-laboratory features, intensive care needs, treatment, and outcome of Pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS) or multisystem inflammatory syndrome in children (MIS-C). Data Sources: Articles published in PubMed, Web of Science, Scopus, Google Scholar, and WHO COVID-19 research database, CDC database, and Cochrane COVID-19 study register between 1st December 2019 to 10th July 2020. Study Selection: Observational studies involving patients ≤ 21 years with PIMS-TS or MIS-C, that reported the clinico-laboratory features, intensive care needs, treatment, and outcome. Data Extraction: The search identified 422 citations and finally 18 studies with 833 participants were included and pooled estimate was calculated for parameters of interest utilising random effect model. **Data Synthesis:** The median age was 9 (8-11) years. Fever, gastrointestinal symptoms, rash, conjunctival injection, and respiratory symptoms were common clinical features. Majority had positive SARS-CoV-2 antibody test and only 1/3rd had RT-PCR positive. The commonest laboratory abnormalities were elevated CRP, D-dimer, procalcitonin, BNP, fibrinogen, ferritin, troponin, and IL-6; and lymphopenia, hypoalbuminemia, and thrombocytopenia. The cardiovascular complications included shock (65%), myocardial dysfunction (61%), myocarditis (65%), and coronary artery abnormalities (39%). Threefourth children required admission in PICU for mechanical ventilation (25%) and vasoactive drugs (61%). The common treatment provided was IVIG (82%), steroids (54%), antiplatelet drugs (64%), and anticoagulation (51%). The mortality was low (n=13). Conclusion: Fever, gastrointestinal and mucocutaneous symptoms, cardiac dysfunction, shock, and hyperinflammation are common manifestations of PIMS-TS or MIS-C. The short-term outcome is good with supportive intensive care and immunomodulatory treatment.

Introduction:

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected almost all the countries, overwhelming the healthcare system, and causing significant mortality^[1-6] The severe COVID-19 typically present in 2nd week of illness coinciding with decrease in viral load and increase in inflammatory markers. The host tissue damage is thought to be mediated by dysregulated and aberrant innate and adaptive immune response.^[7-11] Acute respiratory failure is the most common organ dysfunction in severe COVID-19 though other organ systems including cardiovascular system may be involved.^[7-9] As compared to adults, children are less frequently affected with mild symptoms in majority.^[1-3]

In mid-April 2020, clinicians from the United Kingdom (UK) reported a cluster of eight previously healthy children who presented with hyperinflammatory shock syndrome which was reported to be temporally associated with COVID-19.^[12] The Royal College of Pediatric and Child Health (RCPCH) (1st May 2020), Center for Disease Control and Prevention (CDC) (14th May 2020), and World Health Organization (WHO) (15th May 2020) issued health advisory and criteria to report children presenting with evidence of hyperinflammation and multisystem involvement. Thereafter, multiple reports of pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS), multisystem inflammatory syndrome in children (MIS-C), Kawasaki disease (KD), and Kawasaki-like syndrome were published from the countries with high case load of COVID-19 like the UK, France, Italy, and the United States of America (USA) describing the demographic details, clinical features, investigations, treatment details, and outcome.^[12-33] The case fatality of COVID-19 in children with PIMS-TS or MIS-C is higher than those without PIMS-TS or MIS-C.

In order to understand the illness and reduce the related morbidity and mortality with PIMS-TS or MIS-C, timely and appropriate information on epidemiology, spectrum of disease, clinical features and course, treatment details, and outcome is needed. This will facilitate development of effective interventions for early diagnosis and treatment as well as scaling up the adequate and effective hospital and intensive care facilities. Therefore, in this systematic review, we described the demographic details, clinical features, laboratory investigations, intensive care needs, management modalities, and outcome of children with PIMS-TS or MIS-C.

Methodology:

This systematic review was conducted as per the Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines.^[34] The review was registered in PROSPERO (CRD42020198231).

Search strategy:

Three investigators (KN, VW, and SKA) performed independent literature search in electronic databases including PubMed, Web of Science, Scopus, Google Scholar, and WHO COVID-19 research database, CDC database, and Cochrane COVID-19 study register of original articles published between 1st December 2019 and 10th July 2020 using predefined search strategy targeting children and adolescents \leq 21 years with PIMS-TS or MIS-C. In addition, preprints from medRxiv and bioRxiv were also screened.

The combination of the following keywords was used as the search strategy for literature search:

- Age group (infants, children, adolescents) with an age restriction of 21 years. AND
- Virus (COVID-19, novel coronavirus, SARS-CoV-2, 2019-nCoV, severe acute respiratory syndrome coronavirus 2)
 AND
- Condition [PIMS-TS, PIMS, MIS-C, KD, Kawasaki-like syndrome, toxic shock syndrome (TSS), hyperinflammation, hyperinflammatory shock, vasculitis, macrophage activation syndrome (MAS), hemophagocytic lymphohistiocytosis (HLH)].

The references of included studies and review articles were retrieved and screened. Articles published in the English language were included. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines was followed.^[35]

Study Selection:

All observational studies involving infants, children, and adolescents upto 21 years, who have been diagnosed with PIMS-TS or MIS-C in association with COVID-19, that reported the demographic profile, clinical features, laboratory investigations, intensive care needs, treatment details, and outcome were considered eligible for this systematic review. Three investigators (VW, KN, and SKA) independently screened the titles and abstracts for the eligibility and later on, all the authors examined the full articles and supplementary contents, if any for inclusion and exclusion criteria.

Inclusion criteria: Only studies meeting the following criteria were included:

- Age group: Infants, children, and adolescents ≤21 years with PIMS-TS or MIS-C in association with COVID-19.
- 2. Article types: Observational (prospective or retrospective) studies, case series correspondences, brief communications, or letters with data fulfilling data items criteria.
- 3. Data items: Studies reporting demographical details, clinical features, laboratory investigations, intensive care needs, treatment modalities, and outcome.

Exclusion criteria: The following type of studies were excluded:

- 1. Case reports.
- Case series reporting <10 cases (The case reports and case series with <10 cases were excluded as these might be part of large studies).
- 3. Narrative or systematic review.
- 4. Editorials, letter to editors, correspondences, viewpoints, and opinion letters without original data.
- 5. Dissertations and conference reports.
- 6. Other studies that do not meet the inclusion criteria or lack enough data on patient characteristics.

Data extraction:

We used a pre-designed standardized proforma for data extraction. The data entry was be done on Microsoft Excel. Three investigators (VW, KN, and SKA) extracted the data independently from the full text and supplementary contents of the eligible studies. The data collected included first author's name, journal name and the year of publication, country, study design, number of centres, number of cases, study population, age and sex distribution, method of confirmation of SARS-CoV-2 infection, criteria used to define PIMS-TS or MIS-C, clinical features, laboratory investigations, intensive care needs [PICU admission, mechanical ventilation, vasoactive drugs, renal replacement therapy (RRT), extracorporeal membrane oxygenation (ECMO)], treatment details, and outcome (mortality).

Any disagreement at any point between three investigators was sorted out through discussion and consensus with other two investigators (RS and VM). The data so extracted was rechecked by independent researchers for its accuracy and completeness (ND, KTK, and NJ). To avoid duplicity of the data, efforts were made to screen full text of all included studies for author names, setting, location, date and duration of the study, number of participants, and baseline data.

Quality assessment:

The quality of included studies was assessed using the National Institute of Health Study Quality Assessment Tools for case series studies and observational cohort and crosssectional studies. The overall risk of bias to each included study was independently assessed by three investigators (VW, KN, and SKA). If any disagreement, other investigators (ND, RS, and VM) were involved to resolve the disagreement. The studies were rated as either having low- or high-risk of bias.

Main outcome:

The outcome of this systematic review was to provide pooled estimate of demographic details, clinical features, laboratory investigations, intensive care needs, treatment details, and outcome (mortality) among children and adolescents (\leq 21 years) with PIMS-TS or MIS-C.

Data Synthesis:

The initial data entry was done using Microsoft Excel 2013 (Microsoft, Redmond, WA). The descriptive analysis was performed using SPSS version 23 (IBM Corp. 2015. IBM SPSS Statistics for Windows, Version 23.0. Armonk, NY: IBM Corp). The data was presented as number and percentages for categorical variables and median (IQR) for continuous variables.

Meta-analysis was performed by using STATA version 14 (Stata Corp LLC, College Station, Texas, USA). Individual parameters were presented as pooled estimates with a 95% confidence interval (CI) using Metaprop command. The data was pooled from individual studies utilising random effect model with the assumption that the frequency of various parameters was variable across the studies. The statistical heterogeneity among studies was assessed by Chi-Squared test and I² statistics. The heterogeneity was considered to be present if I² >50% and p<0.1.

The subgroup analysis was performed between studies published from the USA and European countries.

10

Results:

The search identified 422 articles. The 233 duplicate articles and 69 irrelevant articles were removed. Out of 120 full text articles assessed, 102 articles were removed as per the exclusion criteria, and finally 18 articles were included in the final analysis (Figure 1). On quality assessment, eight studies were judged to have had low-risk of bias.^[13, 15-17, 21, 22, 27, 28] while 10 had high-risk of bias.^[14, 18-20, 23-26, 29, 30] (Table 1)

Study characteristics:

In 18 studies, 833 children were reported. All the studies were conducted between 1st March and 23rd May 2020 with median (IQR) length of the study duration being 39 (24-56) days. Seven studies were from the USA^[13, 15, 18, 21, 22, 25, 27] and 11 were from Europe^[14, 16, 17, 19, 20, 23, 24, 26, 28-30] with almost 50% cases from each region. The studies from Europe include 4 studies from UK^[16, 17, 19, 28], 5 from France^[14, 23, 24, 26, 29], 1 from France and Switzerland^[20], and 1 from Italy.^[30] Nine studies were single centre^[18, 19, 21, 23, 25, 27-30] and 9 were multicentre studies.^[13-17, 20, 22, 24, 26] The study design was retrospective in 14 studies,^[15, 17-22, 24-30] retrospective and prospective in 3,^[13, 14, 16] and prospective in 1 study.^[23] The criteria used to define the inflammatory syndrome in children in temporal relation to COVID-19 was CDC and/or New York State Department of Health (NYSDOH) criteria in 6 studies,^[13, 15, 18, 21, 22, 27] RCPCH criteria in 5 studies,^[14, 16, 17, 19, 28] and American Heart Association (AHA) KD criteria in 5 studies.^[23, 25, 26, 29, 30] Two studies enrolled cases with fever, shock, acute myocarditis/left ventricular (LV) dysfunction, and evidence of inflammation.^[20, 24] (Table 2)

There was overlap of few cases in studies from UK,^[16, 17, 19, 28] France,^[26, 29] and USA.^[22, 27] As the information to identify overlapping cases could not be derived, after discussion among 3 authors (VW, KN, and SKA), consensus was reached to include all these studies in the systematic review.

Clinical features:

11

All except one study (15) reported median (IQR) age and it was 9 (8-11) years. All studies reported gender and males were 57%. The median (IQR) duration of illness/fever was 5 (4-6) days as reported in 11 studies.^[13, 16, 20-26, 28, 30] Race was reported in 12 studies^[13, 15-18, 21-23, 25, 26, 28, 30] and common races noted were black (35%), white (27%), Asian (10%), and others (14%). All except 4 studies^[14, 19, 28, 29] reported comorbidities (29%); common comorbidities noted were underlying respiratory, cardiac, immunocompromising, autoimmune diseases, and obesity (Table 3).

Fever was the most common symptom reported in 96% children in all except one study.^[14] Gastrointestinal symptoms (pain abdomen, nausea/vomiting, and diarrhea) were noted in 86% in all expect 2 studies.^[14, 29] Other common clinical features noted were rash (58%), conjunctival injection (52%), respiratory symptoms (43%), oral mucosal changes (42%), peripheral extremity changes (39%), neurological symptoms (32%), cervical lymphadenopathy (24%), and musculoskeletal symptoms (17%) (Table 3).

The results of SARS-CoV-2 antibody test and RT-PCR were reported by all studies and these were positive in 84% and 37% children, respectively (Table 3).

Laboratory investigations:

The laboratory investigations are shown in Supplemental table 1. Radiological investigations were reported in 11 studies^[13, 15, 18, 19, 22, 23, 25-28, 30] and the findings are described in Supplemental table 2. Lymphopenia was noted in 85% and thrombocytopenia in 53% children. Among inflammatory markers, elevated CRP was noted in 98% children, elevated procalcitonin in 90%, elevated fibrinogen in 86%, elevated ferritin in 82%, and elevated IL-6 in 68% children. Elevation of D-dimer was noted in 92% children, hypoalbuminemia in 71%, and elevated ALT in 40%. Among cardiac markers, 89% children had elevated BNP (NT-BNP or Pro-BNP) and 78% had elevated troponin (Table 4).

Echocardiography findings:

12

Sixteen studies reported data on echocardiography which was done in 94% children.^[13, 15-18, 20-30] The common echocardiographic abnormalities include LV dysfunction or ejection fraction <55% (61%), myocarditis (as defined by clinical and/or biochemical and/or echocardiographic diagnosis) (65%), any coronary artery abnormality (39%), pericardial effusion (35%), coronary artery dilatation or aneurysm (16%), and coronary artery diameter >2.5 z-score (8%) children. About 10% children had residual LV dysfunction at discharge as reported in eight studies.^[20-22, 24-26, 28, 30] (Table 4)

Intensive care needs:

All studies reported intensive care admission and 76% children were managed in PICU where they received high flow nasal cannula oxygen (18%), non-invasive ventilation (22%), and invasive ventilation (25%). Shock was noted in 65% children and 61% required vasoactive/inotropic drugs. Acute kidney injury was noted in 35% children and 2% underwent RRT. The requirement of ECMO was reported in all except 3 studies^[14, 26, 30] and it was used in 4% children (n=32) (Table 5).

Treatment details:

All except two studies^[14, 19] reported data on intravenous immunoglobulin (IVIG) and steroids use that were given to 82% and 54% children, respectively. The second dose of IVIG was used in 25% of children who did not show improvement after the first dose.^[13, 20, 21, 23, 26, 28-30] The combination of steroid plus IVIG was used in 50% children.^[13, 15, 23, 30] Other biological and immunomodulator agents used were IL-6 inhibitors (12.6%) and IL-1Ra inhibitor (8.6%). Sixteen children received infliximab, 1 rituximab, and 5 received convalescent plasma therapy. Anticoagulation (prophylactic or therapeutic) and antiplatelet agents (any dose) were used in 51% and in 64% children, respectively (Table 5).

Outcome:

13

All studies reported the number of deaths. There were 13 deaths with pooled estimate% (95% CI) of 2 (1-3). The data on hospital discharge was given in all except one study.^[14] Majority of children (95%) were discharged at the time of reporting and only 3.6% were still hospitalized (n=77). The median (IQR) duration of hospital stay was 7.8 (5-10) days (Table 5).

Sub-group analysis:

We compared the studies from the USA and Europe region. Significant differences between two regions include differences in criteria used (USA: CDC and/or NYSDOH criteria; Europe: RCPCH and AHA KD criteria); higher proportion of children with comorbidity (36% vs. 19%, p=0.04), and greater frequency of treatment with IL-6 inhibitors (27% vs. 4%, p=0.02) and IL-1Ra inhibitors (13% vs. 5%, p=0.004) in studies from the USA; and higher need of mechanical ventilation in studies from Europe (33% vs. 12%, p=0.03) (Supplemental table 3).

Discussion:

In this systematic review, we summarized the epidemiological and clinical features, investigations, intensive care needs, treatment details, and outcome of children and adolescents (<21 years) with PIMS-TS or MIS-C. This illness is characterized by febrile hyperinflammatory state with gastrointestinal, mucocutaneous, dermatological, and cardiac manifestations. The peak incidence occurred about a month after the peak of COVID-19 epidemic (when COVID-19 activity was decreasing) and then the incidence decreased thereafter.^[13-16, 30] As several countries are progressing toward the peak of COVID-19 pandemic, the number of children presenting with PIMS-TS or MIS-C would increase with a possible surge in countries where this syndrome has not been reported till now. These countries should prepare themselves to manage the surge in children with this syndrome with in next few weeks after the peak of the COVID-19 pandemic. In this context, this systematic review describing clinico-epidemiological features, management options, and outcome of children with PIMS-TS or MIS-C assumes significance in sensitizing about this delayed but life-threatening complications of SARS-CoV-2 infection which otherwise causes mild illness in majority of children and adolescents.

The possible pathogenesis suggested for the development of PIMS-TS or MIS-C are immune-mediated injury and inflammatory vasculopathy triggered by SARS-CoV-2 infection rather than active viral infection.^[11, 13, 15] The facts supporting this hypothesis are onset of symptoms 2-4 weeks after SARS-CoV-2 infection; majority of children had laboratory evidence of recent or concurrent SARS-CoV-2 infection in form of positive SARS-CoV-2 antibody test or SARS-CoV-2 RT-PCR suggesting a temporal association between SARS-CoV-2 and PIMS-TS or MIS-C; an exuberant host inflammatory response; and potential benefit with immunomodulatory drugs (IVIG and/or steroids).

15

We noted that most children were older (median age 9 years), previously healthy, and presented 4-6 weeks after the peak of COVID-19. The proportion of children belonged to black race were higher (35%) similar to what was noted in adults with severe clinical presentations of COVID-19 for which a possible genetic predisposition needs to be explored.^[36] The most common presenting symptoms were fever, GI symptoms, rash, conjunctival injection, respiratory symptoms, and oral mucosal changes. GI symptoms (86%) were strikingly prominent.^[13, 15-22, 24-26, 28, 30] mimicking GI infection, acute abdomen, or inflammatory bowel disease.^[18, 19, 37] The possible mechanisms for the GI symptoms could be bowel wall edema or ischemia due to vasculitis, cardiac dysfunction and/or shock, mesenteric inflammation, and mesenteric lymphadenitis.^[19, 23, 37]

The symptom complex of fever, GI symptoms, and rash in children with SARS-CoV-2 infection (symptomatic or asymptomatic) in recent past (2-4 weeks prior) should alert clinicians to early recognize this syndrome, prompt investigation for hyperinflammation and organ dysfunction, close monitoring (including hemodynamic monitoring, electrocardiography, and echocardiography), and aggressive supportive and specific therapy.

Majority of children had elevated inflammatory markers (CRP, procalcitonin, fibrinogen, ferritin, D-dimer, IL-6), lymphopenia, hypoalbuminemia, and thrombocytopenia. These hyperinflammatory manifestations noted were similar to adults with COVID-19.^[38, 39]

Among cardiac manifestations, 65% children had evidence of myocarditis, 61% had evidence of LV dysfunction, 16% had coronary dilatation or aneurysm with 8% documented coronary artery diameter >2.5 z-score. About 10% children had residual LV dysfunction at discharge. In adults with COVID-19, myocardial dysfunction has been observed to be a prominent extrapulmonary manifestation that was associated with increased mortality.^[40, 41]

The common chest radiological abnormalities noted in children with COVID-19 are bronchial thickening, ground-glass opacities, or inflammatory lung lesions, suggestive of

16

pneumonia. These lung findings were also noted in asymptomatic children and those with mild symptoms, suggesting that SARS-CoV-2 infection induces a primary inflammation of lung parenchyma and lower respiratory tract.^[42, 43] The reporting of radiological features was not uniform in included studies.

Most children with acute SARS-CoV-2 infections are usually asymptomatic or having mild symptoms,^[1-4] while majority with PIMS-TS or MIS-C were noted to have severe disease requiring PICU admission (76%), vasoactive drugs (61%), and invasive mechanical ventilation (25%). The most common treatment strategies used were IVIG (82%) and steroids (54%). Small proportion of children also received IL-6 inhibitors, IL-1Ra inhibitor, infliximab, rituximab, and convalescent plasma therapy. Antiplatelets and anticoagulation were used in 64% and 51% children, respectively. The short-term morbidity was high in terms of higher requirement of intensive care interventions, but the mortality was low.

The presentation of PIMS-TS or MIS-C had some overlapping features with KD, TSS, HLH, or MAS.^[15, 16] However, it differed from KD on following accounts: older age at presentation (older children and adolescents); higher proportion of children with GI and respiratory symptoms; predominance of severe cardiovascular system involvement in form of shock, LV dysfunction, or myocarditis; higher proportion of lymphopenia, thrombocytopenia, and elevated CRP and procalcitonin; and more children being cared in PICU and requiring vasoactive drugs and mechanical ventilation.^[11-13, 15, 16, 20, 30]

As per the available data, it seems that PIMS-TS or MIS-C is an uncommon manifestation of SARS-CoV-2 infection reported at greater frequency among specific age group, ethnicity (blacks), and region (scarcity of reports from Asia including China). These differences could be due to differences in exposure to SARS-CoV-2 infection, incomplete reporting, non-severe disease, predominance of SARS-CoV-2 infection among black race, differences in nasal expression of angiotensin-converting enzyme 2 (ACE2) receptors for

17

SARS-CoV-2 cell entry; socioeconomic status, and comorbidities. The susceptibility to inflammatory disease and response to treatment may also be influenced by the gut microbiome, signalling pathways, genetic variations and other host factors; and early treatment with immunomodulators.^[9, 13, 16, 44, 45]

There is great variation among clinicians in the use of immunomodulatory treatments of PIMS-TS or MIS-C and IVIG and steroids were used most commonly. However, good quality evidence from well-designed clinical trials are required to establish treatment guidelines. In absence of definite evidence of specific treatment, the supportive intensive care and multidisciplinary approach (intensivist, infectious disease specialist, cardiologist, haematologist, immunologist/rheumatologist, and pharmacologist) remains crucial for clinical management.

This systematic review has several strengths. To the best of our knowledge, this is the first review that summarized the available literature on epidemiology, clinical features, investigations, intensive care needs, treatment, and outcome of children with PIMS-TS or MIS-C. The search strategy was rigorous to include all studies that reported children with hyperinflammatory syndrome associated with COVID-19 irrespective of the description (PIMS-TS, MIS-C, KD, cardiac involvement, acute heart failure, acute myocarditis, GI manifestations, or imaging findings). We also performed a sub-group analysis to compare studies from two continents (USA and Europe) which did not demonstrate significant differences in characteristics despite ethnic differences.

The systematic review also has several limitations. All the included studies were conducted over a short period of time. Most of the studies were retrospective and with small sample size. More than half of the studies had high-risk of bias. The criteria used were different across the region. There was a small overlap of few cases in few studies which we could not delineate. The long-term follow-up data was not available which is needed to

18

identify long-term health issues (especially those with myocardial dysfunction and coronary artery abnormalities). We do not have studies from other countries with high burden of COVID-19 (Brazil, India, Russia, South Africa, Mexico, Spain etc.) at the time this review was performed which could possibly contribute to publication bias.

Conclusion:

The children with PIMS-TS or MIS-C were reported from the USA and Europe regions 4-6 weeks after the peak of COVID-19 pandemic. Most of the affected children were previously healthy and had laboratory evidence of recent or concurrent SARS-CoV-2 infection. Fever, GI symptoms, rash, and mucocutaneous manifestations were commonest clinical features. Majority of children had evidence of systemic inflammation, cardiovascular involvement, required PICU admission, and treated with vasoactive drugs and immunomodulators (IVIG and/or steroids). The short-term outcome was good with low mortality.

Figure legend:

Figure1: Flow diagram of the study selection.

References:

- Castagnoli R, Votto M, Licari A, et al. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection in Children and Adolescents: A Systematic Review. JAMA Pediatr. 2020.
- Lu X, Zhang L, Du H, et al. SARS-CoV-2 Infection in Children. N Engl J Med. 2020;382(17):1663-5.
- Meena J, Yadav J, Saini L, Yadav A, Kumar J. Clinical Features and Outcome of SARS-CoV-2 Infection in Children: A Systematic Review and Meta-analysis. Indian Pediatr. 2020.
- Ma X, Liu S, Chen L, Zhuang L, Zhang J, Xin Y. The clinical characteristics of pediatric inpatients with SARS-CoV-2 infection: A meta-analysis and systematic review. J Med Virol. 2020.
- 5. Potere N, Valeriani E, Candeloro M, et al. Acute complications and mortality in hospitalized patients with coronavirus disease 2019: a systematic review and metaanalysis. Crit Care. 2020;24(1):389.
- Armstrong RA, Kane AD, Cook TM. Outcomes from intensive care in patients with COVID-19: a systematic review and meta-analysis of observational studies. Anaesthesia. 2020.
- Zhao XY, Xu XX, Yin HS, et al. Clinical characteristics of patients with 2019 coronavirus disease in a non-Wuhan area of Hubei Province, China: a retrospective study. BMC Infect Dis. 2020;20(1):311.
- Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708-20.

- Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62.
- Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol. 2020;20(5):269-70.
- 11. Rowley AH. Understanding SARS-CoV-2-related multisystem inflammatory syndrome in children. Nat Rev Immunol. 2020.
- Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet. 2020;395(10237):1607-8.
- Feldstein LR, Rose EB, Horwitz SM, et al. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents. N Engl J Med. 2020.
- Belot A, Antona D, Renolleau S, et al. SARS-CoV-2-related paediatric inflammatory multisystem syndrome, an epidemiological study, France, 1 March to 17 May 2020. Euro Surveill. 2020;25(22).
- Dufort EM, Koumans EH, Chow EJ, et al. Multisystem Inflammatory Syndrome in Children in New York State. N Engl J Med. 2020.
- 16. Davies P, Evans C, Kanthimathinathan HK, et al. Intensive care admissions of children with paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS) in the UK: a multicentre observational study. Lancet Child Adolesc Health. 2020.
- Whittaker E, Bamford A, Kenny J, et al. Clinical Characteristics of 58 Children With a Pediatric Inflammatory Multisystem Syndrome Temporally Associated With SARS-CoV-2. JAMA. 2020.

- 18. Miller J, Cantor A, Zachariah P, Ahn D, Martinez M, Margolis K. Gastrointestinal symptoms as a major presentation component of a novel multisystem inflammatory syndrome in children (MIS-C) that is related to COVID-19: a single center experience of 44 cases. Gastroenterology. 2020.
- Hameed S, Elbaaly H, Reid CEL, et al. Spectrum of Imaging Findings on Chest Radiographs, US, CT, and MRI Images in Multisystem Inflammatory Syndrome in Children (MIS-C) Associated with COVID-19. Radiology. 2020:202543.
- 20. Belhadjer Z, Meot M, Bajolle F, et al. Acute heart failure in multisystem inflammatory syndrome in children (MIS-C) in the context of global SARS-CoV-2 pandemic. Circulation. 2020.
- Capone CA, Subramony A, Sweberg T, et al. Characteristics, Cardiac involvement, and Outcomes of Multisystem Inflammatory Disease of Childhood (MIS-C) Associated with SARS-CoV-2 Infection. J Pediatr. 2020.
- Kaushik S, Aydin SI, Derespina KR, et al. Multisystem Inflammatory Syndrome in Children (MIS-C) Associated with SARS-CoV-2 Infection: A Multi-institutional Study from New York City. J Pediatr. 2020.
- 23. Toubiana J, Poirault C, Corsia A, et al. Kawasaki-like multisystem inflammatory syndrome in children during the covid-19 pandemic in Paris, France: prospective observational study. BMJ. 2020;369:m2094.
- 24. Grimaud M, Starck J, Levy M, et al. Acute myocarditis and multisystem inflammatory emerging disease following SARS-CoV-2 infection in critically ill children. Ann Intensive Care. 2020;10(1):69.
- Cheung EW, Zachariah P, Gorelik M, et al. Multisystem Inflammatory Syndrome Related to COVID-19 in Previously Healthy Children and Adolescents in New York City. JAMA. 2020.

- 26. Pouletty M, Borocco C, Ouldali N, et al. Paediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawa-COVID-19): a multicentre cohort. Ann Rheum Dis. 2020.
- Riollano-Cruz M, Akkoyun E, Briceno-Brito E, et al. Multisystem Inflammatory Syndrome in Children (MIS-C) Related to COVID-19: A New York City Experience. J Med Virol. 2020.
- Ramcharan T, Nolan O, Lai CY, et al. Paediatric Inflammatory Multisystem Syndrome: Temporally Associated with SARS-CoV-2 (PIMS-TS): Cardiac Features, Management and Short-Term Outcomes at a UK Tertiary Paediatric Hospital. Pediatr Cardiol. 2020.
- Ouldali N, Pouletty M, Mariani P, et al. Emergence of Kawasaki disease related to SARS-CoV-2 infection in an epicentre of the French COVID-19 epidemic: a timeseries analysis. Lancet Child Adolesc Health. 2020.
- Verdoni L, Mazza A, Gervasoni A, et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet. 2020;395(10239):1771-8.
- Perez-Toledo M, Faustini SE, Jossi SE, et al. Serology confirms SARS-CoV-2 infection in PCR-negative children presenting with Paediatric Inflammatory Multi-System Syndrome. medRxiv. 2020.
- 32. Chiotos K, Bassiri H, Behrens EM, et al. Multisystem Inflammatory Syndrome in Children During the Coronavirus 2019 Pandemic: A Case Series. Journal of the Pediatric Infectious Diseases Society. 2020.
- Wolfler A, Mannarino S, Giacomet V, Camporesi A, Zuccotti G. Acute myocardial injury: a novel clinical pattern in children with COVID-19. Lancet Child Adolesc Health. 2020.

- Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283(15):2008-12.
- Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.
- Khunti K, Singh AK, Pareek M, Hanif W. Is ethnicity linked to incidence or outcomes of covid-19? BMJ. 2020;369:m1548.
- 37. Tullie L, Ford K, Bisharat M, et al. Gastrointestinal features in children with COVID19: an observation of varied presentation in eight children. Lancet Child Adolesc
 Health. 2020;4(7):e19-e20.
- Goyal P, Choi JJ, Pinheiro LC, et al. Clinical Characteristics of Covid-19 in New York City. N Engl J Med. 2020;382(24):2372-4.
- 39. Qin C, Zhou L, Hu Z, et al. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762-8.
- 40. Shi S, Qin M, Shen B, et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 2020.
- Guo T, Fan Y, Chen M, et al. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020.
- 42. Han Q, Lin Q, Jin S, You L. Coronavirus 2019-nCoV: A brief perspective from the front line. J Infect. 2020;80(4):373-7.
- Chen ZM, Fu JF, Shu Q, et al. Diagnosis and treatment recommendations for pediatric respiratory infection caused by the 2019 novel coronavirus. World J Pediatr. 2020;16(3):240-6.

- 44. Bunyavanich S, Do A, Vicencio A. Nasal Gene Expression of Angiotensin-Converting Enzyme 2 in Children and Adults. JAMA. 2020.
- Esposito S, Polinori I, Rigante D. The Gut Microbiota-Host Partnership as a Potential Driver of Kawasaki Syndrome. Front Pediatr. 2019;7:124.

Table 1: Details of studies included in the systematic review

S. no	Author	Country	No. of cent res	No. of cases	Study design	Age group	Criteria used	Study period during 2020	Risk of bias*
1	Feldstein et al (13)	USA	53	186	Retrospective and Prospective	0-21 years	CDC	15-Mar to 20-May	Low
2	Belot et al (14)	France	7	108	Retrospective and Prospective	0-15 years	RCPCH	01-Mar to 17-May	High
3	Dufort et al (15)	USA	106	99	Retrospective	0-21 years	NYSDOH	01-Mar to 10-May	Low
4	Davies et al (16)	UK	21	78	Retrospective and prospective	0-18 years	RCPCH	01-Apr to 10-May	Low
5	Whittaker et al (17)	UK	8	58	Retrospective	0-18 years	RCPCH	23-Mar to 16-May	Low
6	Miller et al (18)	USA	1	44	Retrospective	0-21 years	CDC	18-Apr to 22-May	High
7	Hameed et al (19)	UK	1	35	Retrospective	4-14 years	RCPCH	14-Apr to 09-May	High
8	Belhadjer et al (20)	France and Switzerl and	13	35	Retrospective	2-16 years	Fever, cardiogenic shock, or acute left ventricular dysfunction with inflammatory state	22-Mar to 30-Apr	High
9	Capone et al (21)	USA	1	33	Retrospective	0-21 years	CDC	17-Apr to 13-May	Low
10	Kaushik et al (22)	USA	3	33	Retrospective	0-21 years	CDC	03-Apr to 23-May	Low
11	Toubiana et al (23)	France	1	21	Prospective	0-18 years	AHA KD	27-Apr to 11-May	High
12	Grimaud et al (24)	France	4	20	Retrospective	0-18 years	Fever, shock, acute myocarditis	15-Apr to 27-Apr	High
13	Cheung et al (25)	USA	1	17	Retrospective	0-21 years	AHA KD	18-Apr to 05-May	High
14	Pouletty et al (26)	France	7	16	Retrospective	0-18 years	AHA KD	1 April to 30 April	High
15	Riollano-Cruz et al (27)	USA	1	15	Retrospective	0-21 years	CDC and NYSDOH	24-Apr to 14-May	Low
16	Ramcharan et al (28)	UK	1	15	Retrospective		RCPCH	10-Apr to 09-May	Low
17	Ouldeli et al (29)	France	1	10	Retrospective	1.5-15.8 years	AHA KD	04-May to 28-Apr	High
18	Verdoni et al (30)	Italy	1	10	Retrospective	3-16 years	AHA KD	18-Feb to 20-Apr	High

*Study quality was assessed using National Institute of Health Study Quality Assessment Tools for case series studies and observational cohort and cross-sectional studies.

AHA: American Heart Association, CDC: Centers for Disease Control and Prevention, KD: Kawasaki Disease, NYSDOH: New York State Department of Health, RCPCH: Royal College of Pediatric and Child Health, UK: United Kingdom, US: United States of America.

-	-
٠,	6
_	υ

Study characteristics	Studies, n (%)	Cases, n (%)
Included in review	18 (100)	833 (100)
Region		
USA	7 (38.9)	427 (51.3)
Europe	11 (61.1)	406 (48.7)
Country		
USA	7 (38.9)	427 (51.3)
UK	4 (22.2)	186 (22.3)
France	5 (27.8)	175 (21)
France and Switzerland	1 (5.6)	35 (4.2)
Italy	1 (5.6)	10 (1.2)
Number of centres		
Single centre	9 (50)	200 (24)
Multiple centres	9 (50)	633 (76)
Study design		
Retrospective	14 (77.8)	440 (52.8)
Retrospective and prospective	3 (16.7)	372 (44.7)
Prospective	1 (5.6)	21 (2.5)
Study duration in days, median (IQR)	39 (24-56)	
Criteria used		
CDC and/or NYSDOH	6 (33.3)	410 (49.2)
RCPCH	5 (27.8)	294 (35.5)
Kawasaki disease (AHA)	5 (27.8)	74 (8.9)
Fever, shock, acute myocarditis/LV	2 (11.1)	55 (6.6)
dysfunction, and inflammation		

Table 2: Characteristics of the included studies.

27

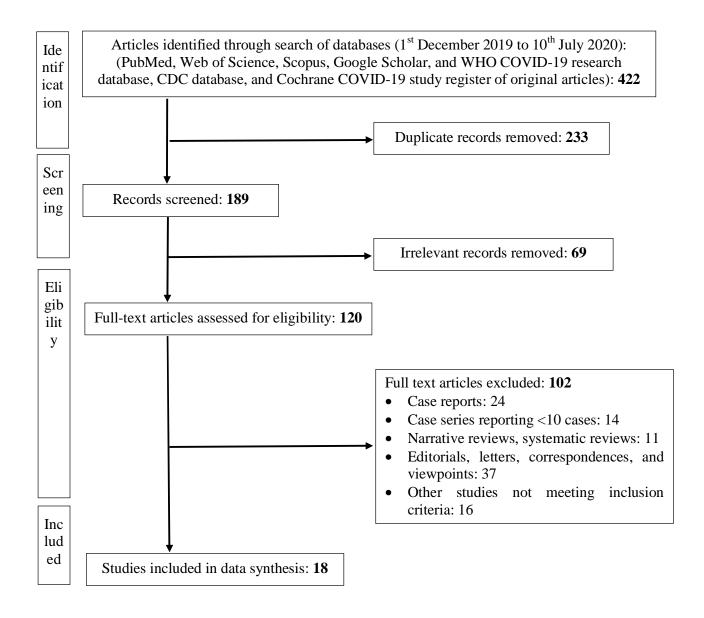
Characteristics	Number of studies	Number of cases	Pooled estimate % (95% CI)	Heterogeneity $(I^2 \%)$
Age in years, Median (IQR)	17	734	9 (8-11)	
Duration of illness in days,	11	725	5 (4-6)	
Median (IQR)				
Male gender	18	833	57 (51-62)	88*
Race	12	610		
Black			35 (28-42)	69*
White			27 (10-35)	83*
Other			14 (6-22)	84*
Asian			10 (5-15)	76*
Comorbidity	14	665	29 (22-36)	74*
Clinical features				
Fever	17	725	96 (89-100)	89*
Gastrointestinal symptoms	16	715	86 (82-90)	51*
Rash	14	667	58 (52-65)	63*
Conjunctival injection	13	632	52 (40-63)	89*
Respiratory symptoms	8	445	43 (27-59)	91*
Oral mucosal changes	10	504	42 (29-55)	78*
Peripheral extremity changes	6	306	39 (24-52)	82*
Neurological symptoms	11	529	32 (10-42)	82*
Cervical adenopathy	9	462	24 (14-34)	88*
Musculoskeletal symptoms	5	337	17 (10-24)	55*
Confirmation of exposure				
SARS-CoV-2 RT-PCR and/or antibody positive	14	722	85 (74-91)	89*
SARS-CoV-2 antibody test positive	18	833	84 (72-93)	89*
SARS-CoV-2 RT-PCR positive	18	833	37 (28-46)	89*

Table 3: Clinical features in children with inflammatory syndrome in association with SARS-CoV-2 infection.

*P value for $I^2 < 0.1$

Characteristics	Number	Number	Pooled estimate	Heterogeneity	
	of studies	of cases	% (95% CI)	$(I^2 \%)^{-1}$	
Lymphopenia	10	514	85 (76-93)	50*	
Thrombocytopenia	4	330	53 (43-98)	96*	
Elevated CRP	13	603	98 (79-100)	93*	
Elevated procalcitonin	7	221	90 (76-100)	82*	
Elevated fibrinogen	5	330	86 (73-96)	85*	
Elevated ferritin	8	477	82 (67-98)	88*	
Elevated IL-6	6	178	68 (32-98)	74*	
Elevated D-dimer	8	477	92 (82-100)	97*	
Hypoalbuminemia	7	401	71 (50-93)	91*	
Elevated ALT	7	330	40 (23-56)	86*	
Elevated BNP (any)	11	510	89 (82-96)	90*	
Elevated troponin	12	371	78 (63-93)	86*	
Thrombosis	3	297	2 (2-7)	25*	
Arrythmia	7	347	7.2 (2.5-13.3)	30	
Echocardiography	16	681	94 (91-96)	44	
performed					
Myocardial dysfunction or ejection fraction <55%	15	603	61 (50-72)	77*	
Myocarditis (clinical and/or biochemical and/or echocardiography)	12	588	65 (49-80)	87*	
Any coronary artery abnormality	9	248	39 (25-63)	90*	
Coronary artery dilatation or aneurysm	16	681	16 (12-20)	51*	
Coronary artery diameter >+2.5 z score	12	551	8 (6-11)	16	
Pericardial effusion	12	477	35 (24-46)	74*	
Residual myocardial dysfunction at discharge	8	179	10.4 (2.5-18.3)	20	

Table 4: Laboratory abnormalities, echocardiographic findings and other cardiovascular manifestations.


*P value for $I^2 < 0.1$

Characteristics	Number	Number	Pooled estimate %	Heterogeneity	
	of studies	of cases	(95% CI)	$(I^2 \%)$	
Admission in PICU	18	833	76 (65-88)	80*	
HFNC	5	389	18 (7-29)	73*	
Non-invasive ventilation	9	497	22 (13-31)	84*	
Invasive ventilation	18	833	25 (19-37)	92*	
Shock	18	833	65 (54-73)	88*	
Vasoactive drugs	18	833	61 (53-70)	86*	
Acute kidney injury	8	477	35 (21-50)	95*	
Renal replacement therapy	5	363	2 (1-4)	65*	
ECMO	15	699	4 (1-8)	33	
IVIG	16	690	82 (74-89)	65*	
2 nd dose IVIG (among those who received 1 st dose)	8	326	25 (11-33)	83*	
Steroids	16	690	54 (41-67)	94*	
Steroids + IVIG	4	306	50 (39-62)	67*	
IL-6 inhibitors	13	533	12.6 (1-26)	88*	
(Tocilizumab or siltuximab)					
IL-1Ra inhibitor (Anakinra)	12	549	8.6 (5-12)	0.00	
Infliximab	9	469	2.9 (0.1-6.8)	54*	
Rituximab	6	210	0.2 (0-0.8)	43	
Plasma therapy	7	333	2 (0-4)	24	
Anticoagulation	11	487	51 (25-77)	93*	
Antiplatelets (any dose)	9	238	64 (30-78)	95*	
Discharged at the time of reporting	17	725	95 (91-100)	92*	
Still hospitalized at the time of reporting	17	725	3.6 (0.5-7.8)	88*	
Deaths at the time of reporting	18	833	2 (1-3)	44	
Duration of stay, median (IQR)	11	376	7.8 (5-10)		

 Table 5: Intensive care needs, treatment details, and outcome.

*P value for $I^2 < 0.1$

Figure 1: Flow diagram of study selection

