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ABSTRACT 

Background: Polygenic risk scores (PRS) have been developed to predict individual 

cancer risk and their potential clinical utility is receiving a great deal of attention. 

However, the degree to which the predictive utility of individual cancer-specific PRS 

may be augmented or refined by the incorporation of other cancer PRS,  non-cancer 

disease PRS, or the protective effects of health and longevity-associated variants, is 

largely unexplored.  

Methods: We constructed PRS for different cancers from public domain data as well as  

genetic scores for longevity (‘Polygenic Longevity Scores’ or ‘PLS’) for individuals in the 

UK Biobank. We then explored the relationships of these multiple PRS and PLS among 

those with and without various cancers.  

Results: We found statistically significant associations between some PLS and 

individual cancers, even after accounting for cancer-specific PRS. None of the PLS in 

their current form had an effect pronounced enough to motivate clinical cancer risk 

stratification based on its combined use with cancer PRS. A few variants at loci used in 

the PLS had known associations with Alzheimer’s disease and other diseases. 

Conclusion: Underlying heterogeneity behind cancer susceptibility in the population at 

large is not captured by PRS derived from analytical models that only consider marginal 

associations of individual variants with cancer diagnoses. Our results have implications 

for the derivation and calculation of PRS and their use in clinical and biomedical 

research settings. 

Impact:  Extensions of analyses like ours could result in a more refined understanding 

of cancer biology and how to construct PRS for cancer.
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INTRODUCTION 

 

While cancer treatments and outcomes have improved significantly over the past 40 years, 

overall cancer incidence continues to rise.(1) In 2019, an estimated 16.9 million cancer 

survivors lived in the United States, a seven-fold increase since 1971.(2) Cancers are primarily 

diseases of aging, with over 80% of cancers occurring in individuals over age 50.(1) Since this 

proportion of the US population is projected to increase steadily over the next several 

decades,(3) there is an urgent need to address this impending public health and medical crisis 

through the development of strategies to decrease rates of cancers in aging adults. Developing 

appropriate strategies will require identifying individuals at risk for cancer and providing them 

with specific risk mitigation interventions that go beyond current prevention and screening 

recommendations. In this light, cancer risk assessment can be greatly enhanced by using 

genetic profiling. Both monogenic and polygenic influences play an important role in 

susceptibility to and pathogenesis of cancers, however, cancers in the aged are less likely to 

be associated with monogenic germline variants(4-6) The  degree to which polygenic variants 

contribute specifically to aging-related cancer risk is the subject of much current research.(7,8) 

 

GWAS have identified thousands of common genetic variants associated with many different 

types of cancer.(9,10) Although each individual variant has a small effect on risk, especially 

relative to those contributing to monogenic forms of cancer, their cumulative effects can be 

pronounced. These polygenic effects can make individual contributions to risk equal to that of 

the individual rare variants contributing to monogenic forms of hereditary cancer (11) and also 

modify or compound the risk of these monogenic driver variants(12-14). These common 
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variant, polygenic effects are often summarized at the individual level as a polygenic risk score 

(PRS) that aggregates effects across multiple variants into a single estimate of the total cancer 

susceptibility burden in a given genome. Cancer PRS are derived in different ways, but often 

use simple weighted multiple regression and related prediction modeling techniques.(15-17).  

Supplementary Table 1 provides a list of recent cancer PRS studies.   

 

Interest in PRS grew from developing models that could discriminate specific cancer cases 

from controls, but has now expanded into multiple other areas. For example, PRS have been 

used to explore genetic, as opposed to phenotypic, correlations between cancers to better 

characterize shared genetic determinants of different cancers;(8,18) correlations between the 

PRS themselves for different cancer-related phenotypes;(19) the pleiotropic effects of variants 

across multiple different cancers;(20) and the causal effects of various measurable and 

potentially modifiable genetically-mediated factors on cancer via, e.g., Mendelian 

Randomization tests.(21-23) This work suggests that being susceptible to one type of cancer 

or phenotype can influence susceptibility - positively or negatively - to another type.(21,24) The 

degree to which this is the case is an open question. 

 

Fundamental processes mediating cancer susceptibility that are shared across cancers are 

also likely to mediate susceptibility to other diseases and conditions beyond cancer. Such 

processes are quite likely to be associated with aging and longevity, given that the 

manifestation of many common chronic diseases is age-related. By bringing together genetic 

insights into multiple cancers, diseases, aging and longevity, one might be able to develop not 

only better prediction models through, e.g., risk stratification, but also more insight into the 
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genetic etiology of cancer. Identifying variants associated with health span and longevity is 

challenging. Different definitions of longevity are used, sample sizes in studies focusing on 

extreme longevity are small, and the actual heritability of human lifespan is debated, as is the 

need to account for environmental factors in relevant studies.(25-27) Large-scale analyses of 

long-lived cohorts have enabled pooled analysis of multiple GWAS, as has been the focus of 

the National Institute on Aging's Longevity Consortium (LC), the Integrated Longevity Omics 

(ILO), and Long Life Family Study (LLFS) projects.(25) The results of these studies have yet to 

be integrated with studies of various diseases. GWAS focused on genetic ‘surrogates’ for 

individual lifespan, such as parental lifespan, have also been pursued.(28,29) Although not all 

studies are consistent, many of these analyses suggest that long lived individuals possess 

different disease PRS profiles from short lived individuals.(30-33) Some individuals possessing 

a genetic background consistent with a long-life – i.e., having an elevated Polygenic Longevity 

Score (PLS) – may have inherited genetic variants that protect them from cancer and other 

diseases. However, these variants may not have individual protective effects on cancer 

pronounced enough to be detected as significantly associated with a cancer diagnosis in 

cancer-specific GWAS.(34) 

 

We explored the relationships among PRS built from published GWAS results and PLS 

derived from different longevity-focused GWAS and their relationships to specific cancer 

diagnoses, general cancer risk, and age of cancer onset in the UK Biobank.(35,36) We also 

considered the development and performance of modified cancer risk prediction models that 

included longevity associated variants. We find that although many PLS are associated with 

cancers at some level, these effects are not pronounced enough to radically impact the use of 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.09.18.20197475doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.18.20197475
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6

cancer PRS prediction models. We do, however, argue that the relationship between longevity, 

cancers and disease protection needs greater exploration, especially given that some of the 

variants used in the cancer-associated PLS are strongly negatively associated with other 

diseases, like Alzheimer’s disease, raising important biological questions. 

 

METHODS  

 

Data Sources 

We calculated polygenic risk scores (PRS) for 16 cancers using publicly available 

data,(7,37,38) as well as polygenic longevity scores (PLS) using 8 different longevity measures 

derived from different publicly available longevity GWAS summary statistics and different p-

value thresholds (Table 1; SNPs and weights used for each PLS are provided in the 

supplementary material).  

 

 

 

PLS were labeled according to the source reference for the summary statistics (‘dl’, ‘dl90’, 

‘tim’, etc. See Table 1). We note that some PLS were based on a subset of SNP markers 

identified from the various longevity-focused GWAS because there were no reported effect 

sizes and some were not among those in version-3 of the UK Biobank total SNP list, including 

imputed SNPs. All PRS and PLS were computed on each of the individuals in the UK Biobank 

with genotype calls from the UK Biobank version-3 genotype data using the linear scoring 

function in PLINK v2 software and published PRS effect sizes.(36,39,40) We restricted our 
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analyses to White British individuals (based on UK Biobank Data-Field 21000) as the PRS and 

PLS we used were derived from individuals with Northern European ancestry and the 

simultaneous study of multiple ancestries can confound PRS inference.  

 

Logistic Regression Modeling 

We used logistic regression to fit a number of prediction models to the UK Biobank data, with a 

specific cancer diagnosis or cancer PRS as a dependent variable and age, sex, PLS and the 

PRS for other cancer diagnoses as independent variables. For these analyses we included the 

first 10 principal components (PC) from the genome wide genetic relationship matrix (GRM) of 

the participants, although there is debate about the need or meaningfulness of including PCs 

in relevant analyses when the focus is on polygenic effects.(41-44) We also carried out 

stepwise logistic regression, using both forward and backward steps in a ‘both-way’ approach 

to calculate the best model, keeping independent variables in models in each step based on 

the Akaike information criterion (AIC) until no improvements in the model occurred. More 

details about the various models are described in corresponding sections in the Results 

section. All analyses were carried out using R version 3.6.3. 

 

Survival Analyses 

We performed survival analyses on each of the 16 cancers and for ‘any-cancer’ diagnosis 

using age-of-onset information as the dependent variable and an individual’s age at 

assessment, if that individual was not diagnosed with cancer, as a censoring time variable. 

The UK Biobank recruited individuals between the ages of 40 and 70. We therefore did not 

include any cancer age-of-onsets that were reported after age 70 in follow-up studies with UK 
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Biobank participants. Survival analyses were pursued using both the Kaplan-Meier models 

coupled with log-rank tests of differences in survival curves as a function of PLS, and Cox 

proportional hazards models with the first 10 PCs from the GRM (see above), cancer PRS and 

PLS as independent variables as implemented in the ‘survival’ R package.(45) 

 

Prediction Evaluation 

We evaluated Receiver-Operator Characteristic (ROC) curves for each logistic regression 

model fit with cancer diagnosis as a dependent variable. We computed the Area-Under-the-

Curve statistic (AUC) from the ROC analyses to gauge the performance of our logistic 

regression-based prediction models with age, sex, cancer PRS and PLS as independent 

variables. The R package pROC(46) was used for the relevant analyses.  

 

RESULTS 

 

Evidence for a shared genetic basis for different cancers. 

We first considered evidence that there might be a shared genetic basis to susceptibility to all 

cancers. We note that even if there is no evidence for a shared genetic basis for susceptibility 

across all or even most cancers, this does not preclude the possibility that one or a few 

cancers may share genetically-mediated determinants with longevity. Since individuals who 

live a long life did not die from cancer at earlier ages by definition, this suggests some degree 

of overlap in genetic determinants between cancers – and all diseases – and longevity (i.e., it 

may be that individuals who live a long life likely do not have genetic variants contributing to 

cancer susceptibility to the same degree as individuals who die earlier from cancer). We 
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explored evidence for common genetic factors among cancers in three ways: 1. we considered 

studies in the literature whose results were consistent with a shared genetic basis for cancers; 

2. we analyzed data in the UK Biobank to test the hypothesis of a shared genetic basis; and 3. 

we explored the consistency between genetic correlations and PRS correlations among 

cancers.  

 

Supplementary Table 2 shows the number of individuals in the UK Biobank diagnosed with 

one cancer and individuals with at least two different cancers. There were only 45 individuals 

with 3 or more cancers and there was a maximum of 4 cancers observed for any individual. 

Supplementary Table 3 depicts the AUC statistics from logistic regression models with 

specific cancer diagnosis as a dependent variable and age as well as other cancer diagnoses 

as independent variables, chosen based on stepwise logistic regression (see Methods). We 

note that some cancers are less frequent than others and as such some of these logistic 

regression analyses were likely underpowered, despite the large overall sample size of the UK 

Biobank. Both Supplementary Tables 2 and 3 suggest that many cancer diagnoses are 

significantly associated with, and predictive of, other cancer diagnoses. Many of the 

relationships between cancers that we identified are well known: e.g., breast and ovarian 

cancer; endometrial and colorectal cancer; but some are not: e.g., bladder and breast cancer. 

We acknowledge and emphasize that the associations between cancers could be, at least in 

part, attributable to environmental factors that contribute to both cancers. 

 

We explored the consistency between the strength of the genetic correlations and the strength 

of the PRS correlations, knowing that the different PRS used different sets of SNPs (see 
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Discussion section). Figure 1 provides a scatter plot of the estimates of genetic correlation 

obtained from Lindstrom et al(47) and corresponding PRS correlations computed on the UK 

Biobank subjects using the PRS of several cancers generated from the publicly available 

summary statistics (see Methods).(7)  

 

We note that genetic and PRS correlations can be computed under different assumptions, 

using different methods with different overall orientations. For example, genetic correlations 

consider all the variants in a GWAS, whereas PRS correlations only use variants in the 

individual PRS. Figure 1 suggests there is more variation in the genetic correlations than there 

is in the PRS correlations, perhaps reflecting the fact that the PRS correlations involve a small 

number of SNPs, even though many PRS correlations are significant. Figure 2 provides a 

heatmap of the cancer PRS correlations for the UK Biobank participants and suggests that 

many cancers exhibit positive and negative PRS correlations.  

Note we included PRS correlations for cancers that are sex-specific for both sexes since such 

correlations may be meaningful biologically in terms of the pathways and underlying processes 

implicated. Since an obvious potential source for PRS correlations is overlap in the variants 

considered in the PRS being correlated, we tallied the number of overlapping variants used in 

the PRS we considered. The Supplementary Material provides a matrix with the number of 

SNPs in the summary statistics used to generate cancer PRS and number of intersecting 

SNPs across the cancers. More in-depth studies of the linkage-disequilibrium (LD) 

relationships between variants used in different PRS is called for to rule out more subtle sets of 

overlapping variant effects in different PRS. 
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Associations Between Polygenic Longevity Score and Cancer 

 

We assessed the relationships between the 8 different PLS listed in Table 1 and cancer 

diagnosis, as well as cancer PRS. We note that one of our PLS, the PLS derived from the 

Timmers et al study, ‘tim,’(28) was derived from the UK Biobank data and studies involving 

actual UK Biobank participants, thus it should be kept in mind throughout our discussions that 

the study of this specific PLS could be confounded by an overfitting effect in our analyses. We 

took each cancer diagnosis as a dependent variable, and then considered the corresponding 

PRS for that cancer, PRS for the other cancers, age, and the different PLS as independent 

variables in stepwise logistic regression models. These analyses were pursued separately for 

each sex. The AUC statistics derived from these analyses consider: 1. age only; 2. age and 

cancer PRS; and 3. age, cancer PRS, and the PLS, and are summarized in Table 2 and 

Supplementary Table 4. (Specific models for each cancer with regression coefficients, etc. 

are available from the authors).  

 

These tables suggest that PLS and other cancer PRS are associated with some cancers – 

Bladder, Colon, Pancreas, Prostate and Testicular cancer for men and Bladder and Colon for 

women – independently of the individual PRS for those cancers.  However, the increase in the 

AUC score for these models when PLS are included are not large, and certainly not indicative 

of their potential for risk stratifying individuals in their current instantiation. We also computed 

correlations between the 16 cancer PRS and the 8 PLS. (Supplementary Table 5) We found 

small correlations, mostly negative as expected, although many were highly statistically 

significant. Supplementary Table 6 provides a matrix of the correlations of each of the 
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cancers with each of the eight PLS. Excluding the correlations for the ‘tim’ PLS, the largest 

negative correlation was between the ‘seb10’ PLS and the PRS for lung cancer and the largest 

positive correlation was between ‘sebp5’ and oral cancer. 

 

Age of Cancer Onset and Polygenic Longevity Score 

 

Since the age-of-onset of cancers can be influenced by a number of factors, including genetic 

factors, we explored the association of the 8 PLS to cancer age-of-onset. We took information 

about the age-of-onset of each cancer in the UK Biobank and considered it in Cox proportional 

hazards models as well as a standard Kaplan-Meier (KM) survival analysis (see Methods). The 

age of individuals at the time they participated in the UK Biobank studies was used as a 

censoring age for individuals without a cancer diagnosis. Supplementary Tables 7 and 8 

provides the results of the Cox and KM analyses for each cancer and PLS, as well as analyses 

considering the age-of-onset of any cancer, and suggest that many cancers have an age-of-

onset that is highly statistically significant in its association with one or another PLS, 

particularly the ‘dl’, ‘dl90’ and ‘dl99’ PLS. To depict the relationships between PLS and age-of-

onset of cancers, we generated KM-based survival curves for individuals whose PLS were in 

different PLS distribution percentiles. Figure 3 depicts the KM curves for analyses using age-

of-onsets of any cancer diagnosis as well as for female breast cancer using the ‘dl’ PLS, 

contrasting individuals with ‘dl’ PLS in the upper and lower 10th percentiles of the PLS scores 

among the UK Biobank participants.  (See Supplementary Figure 1 for KM curves for cervical 

cancer and PLS).  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.09.18.20197475doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.18.20197475
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13

Cancer Prediction Modeling Performance 

 

To determine the clinical utility of cancer prediction modeling that includes PLS in addition to 

cancer PRS (and age and sex), we computed Receiver Operator Characteristic (ROC) curves 

and the area-under-the-curve (AUC) statistic from logistic regressions with all the 16 cancer 

diagnoses combined and treated as a dependent variable (i.e., a dummy dependent variable 

was constructed whereby 1 = any-cancer diagnosis, and 0 = no cancer diagnosis) and all 

cancer PRS, age and sex as independent variables. We then added PLS as independent 

variables to the models and tested to see if the AUC was improved significantly, but did not 

find any statistically significant improvement (Table 3). We also carried out a similar analysis 

for each of the cancers; first using only age as an independent variable and then adding a 

single PLS. We also did not find significant improvements in AUCs (Supplementary Table 9). 

Thus, although PLS are significantly associated with cancer diagnoses and age at onset, their 

inclusion in clinical prediction models is not justified at this time. 

 

DISCUSSION 

 

Many cancers share underlying etiological processes and factors (e.g., faulty DNA repair 

capacity, immune surveillance dysfunctions, etc.),(48) suggesting that the genetic 

determinants of these processes and factors mediate all or different subsets of cancers. The 

degree of overlap in the genetic determinants of cancers has been explored through the 

examination of the genetic correlations derived from individual GWAS results and data, as well 

as studies of the pleiotropic effects of individual genetic variants on multiple 
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cancers.(7,18,20,49,50) In addition, many cancers have also been shown to be genetically 

correlated with non-cancer-related diseases.(24,51) These genetic correlations, possibly 

exacerbated by relevant environmental factors, are also quite likely to lead to cancer patients 

developing a second primary cancer (as opposed to recurrent cancers) or have comorbid 

illness. In this light, many other less obvious diseases have been found to be genetically 

correlated to specific cancers, such as psychiatric illness and lung and breast cancer.(52) Also, 

and perhaps more germane to our study of PRS and PLS, a recent study by Witte et al.(7) 

found that many variants associated with one form of cancer were also associated with 

another (e.g., exhibited pleiotropic effects across different cancer types) and that variants used 

in the PRS of one cancer are often included in the PRS of other cancers. They also found that 

PRS values were correlated for many pairs of cancers, as have many others.(8,18-20,53)  

 

Since cancers can compromise lifespan, it is possible that individuals who live a long time: 1. 

do not have the variants that predispose to cancer to the same degree as individuals who have 

not lived a long time; 2. possess variants that protect them from the deleterious effects of 

cancer predisposing variants; 3. have been exposed to environmental factors (e.g., diet, 

lifestyle, etc.) that protect them from cancer in some way; or 4. had or have a combination of 

the above. Since many published studies provide evidence that genetic variants exist that 

predispose to a long life,(30,31,34) a good question concerns the degree to which such 

variants are absent from cancer PRS, or whether the possession of longevity-enhancing 

variants protects individuals against the deleterious effects of having an elevated cancer PRS. 

This is of particular interest  given that cancer is primarily a disease of aging, and thus cancer’s 

genetically-mediated relationship to longevity may be pronounced. In addition, exploring and 
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characterizing the positive genetic correlations between cancers, between cancers and other 

diseases, and the likely negative genetic correlations between cancers and longevity, can shed 

light on the pathogenesis of aging-related diseases, and also potential risk stratification 

strategies for identifying individuals at risk for a specific cancer, multiple cancers, disease 

sequelae and correlated morbidities, and complex disease trajectories whose interventions 

may be complicated.  

 

Our study of the relationship between PLS and cancer diagnosis, age-of-onset and PRS in the 

UK Biobank suggests that although PLS are primarily negatively associated with many 

cancers, these associations are not strong enough to be used to modify risk assessments in 

clinical contexts in their current state. Our study used the UK Biobank data to evaluate 

associations between PLS, cancer PRS and cancer diagnoses and age-of-onsets, but 

considered PLS and cancer PRS for these analyses that were derived independently of the UK 

Biobank, with the exception of the ‘tim’ PLS, to avoid overfitting. Despite this, there are several 

limitations to our study that should motivate further research. First, we did not consider an 

analysis involving the genetic basis of many modifiable risk factors that could impact 

susceptibility to, or protection from, cancer, such as diet, stress, exercise, smoking, etc. that 

themselves might be under genetic control.(54,55) Second, our study, like most GWAS-based 

studies, is only relevant to individuals of Northern European descent, and it is known that many 

cancers are more prevalent in individuals of non-European descent.(1) This is a well-

documented criticism of PRS studies(56) and highlights the importance of conducting more 

diverse large-scale genomics research, inclusive of racially and ethnically diverse populations, 

such as the All-of-Us project, (57) before PRS (and PLS) can be exploited in a clinical setting.  
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Third, our analyses focused on common variants of the type used in most PRS calculations 

based on GWAS data and as such ignores rare variants that have been shown to enhance 

longevity and protect against diseases.(58-60) Fourth, most PRS have been derived from 

cross-sectional data (i.e., cases and controls) and yet are thought to be useful for both 

classifying individuals with and without cancer diagnoses, and  predicting disease. Future 

analyses should consider the association of PLS and cancer development with longitudinal 

data that considers age, aging, long term exposure to environmental factors, and overall health 

trajectory to get a clearer picture of their interplay. Fifth, for reasons of scope, we did not 

consider detailed functional assessments of the individual genes harboring the variants, nor 

the linkage disequilibrium patterns they exhibit, in the various longevity and cancer PRS, 

which, if pursued in future studies, could shed light on the more basic biology behind the 

relationship between the longevity and cancer. We do, however, point out that many of the 

variants used to construct the 8 PLS we studied have been shown to be negatively correlated 

with other diseases, suggesting there are important biological relationships between PLS and 

PRS variants. For example, the ‘dl’ PLS we studied is made up of only two SNPs, but those 

SNPs are known to be associated with Alzheimer’s disease (AD), suggesting a relationship 

between multilocus influences on AD and cancers.(61,62)[See the supplementary material for 

SNP information.)  

An additional issue concerns why variants associated with longevity used in the PLS we 

studied are not included in cancer PRS if, in fact, the PLS are associated with cancer 

diagnosis and cancer PRS. Although there are a number of explanations for this which should 

motivate further study, we believe this is ultimately due to small marginal effects each variant 

used to construct a cancer PRS (or PLS) has on cancer susceptibility and the fact that the 
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nearly the same score for a PRS can be obtained with different combinations of genotypes. 

Small individual effects make it unlikely that all biologically relevant variants are identified in 

studies used to derive PRS (or PLS) from a single finite data set. Also, there is likely great 

locus heterogeneity underlying cancer susceptibility and most diseases, as well as lifespan. 

Finally, cancer PRS are often trained on cases that possess a number of susceptibility 

variants, against controls that do not, and, as such, the variants used in PRS that are 

predictive of cancer diagnosis (or longevity) act as surrogates for the presence of others. 

Despite these issues, our results suggest that genetically-mediated factors that contribute to 

cancer susceptibility are indeed complex, but can be teased apart to some degree by 

leveraging insights into the genetic basis of not only different cancers, but also health-positive 

traits such as longevity. More detailed and focused studies of specific genetically-mediated 

factors that might contribute to both cancer risk reduction and longevity, including studies 

involving longitudinal data, are needed. 
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Table 1: Key to PRS/PLS labels with references of summary statistics used for each score.  

 
Labels Key Notes Reference # SNPS* 

16 
cancers** 

Labeled 
as cancer 

PRS 

Variants obtained from the 
supplementary tables of the 
referenced paper. 

Graff (7) 
See Graff et 

al. 

dl 

Abbreviati
on of 

‘Deelen’ 

Two snps only (subset of dl90) 
Deelen (30) 
GWAS 
Catalog(37)  

2/2 

dl90 
Longevity (age >90th survival 
percentile) 
 

GWAS 
Central(38) 

8/6 

dl99 
Longevity (age >99th survival 
percentile) 
 

GWAS 
Central(38) 

7/3 

tim 
Abbreviati

on of 
‘Timmers’ 

19 variants included Timmers (28) 
19/19 

seb10 

Abbreviati
on of 

‘Sebastian
i’ 

seb10 includes the 10 most 
significant SNPs reported in the 
paper 

Sebastiani (25) 

10/10 

sebp2 Includes SNPs filtered by p-value < 
10-2 

85715/83359 

sebp5 Includes SNPs filtered by p-value < 
10-5 

272/263 

sebp8 Includes SNPs filtered by p-value < 
10-8 

30/29 

 
* # SNPs lists the number of SNPs from the longevity GWAS / the number found in UK Biobank and 

used in the calculation of PLS. 

** The 16 cancers included melanoma, oral cancer, pancreas, colorectal, Non-Hodgkin’s Lymphoma, 

leukemia, kidney, testicular, endometrial, prostate, thyroid, and ovarian. 
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Figure 1: Scatter plot of the correlation strengths between 15 pairs of cancer PRS against the g

correlations of those cancers based on the results of Lindstrom et al,(47) reflecting greater va

amongst genetic correlations and minimal variation amongst PRS correlations. (b=b

c=colorectal; l=lung; o=ovarian; pa=pancreatic; pr=prostate)  
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Figure 2: Colored correlation table reflecting the strength of the PRS correlations among 16 cancers. 

Red indicates a negative correlation and blue indicates a positive correlation. The stronger the 

correlation, the darker the color. The strongest correlations seen are a negative correlation between 

cervical cancer and Non-Hodgkin’s Lymphoma, cervical cancer and oral cancer, and lung cancer and 

pancreas cancer. (mela=melanoma, oral=oral cancer, pan=pancreas, colon=colorectal, nhl=Non-

Hodgkin’s Lymphoma, leuk=leukemia, kid=kidney, testi=testicular, endom=endometrial, 

prost=prostate, thy=thyroid, ova=ovarian) 
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Table 2. AUC values derived for ROC analyses of the results of logistic regression modeling with 

specific cancer diagnosis as a dependent variable and the corresponding PRS for that cancer, PRS 

of the other cancers, age, and the different PLS as independent variables, including the first 10 

Principal Components(PC) from the whole genome genetic relationship matrix (see Methods). We fit 

three models to determine the significance of the contribution of PLS: a ‘trivial model’ with just age as 

an independent variable; a ‘basic’ model with age and the cancer-specific PRS as independent 

variables; and a ‘final’ model in which age, the cancer-specific PRS, the PRS of the other cancers, 

and the eight PLS were independent variables subjected to forward and backward stepwise logistic 

regression with age fixed in all models. P value column corresponds to the most significant p values 

for the ‘final’ AUC model. The significant ‘final’ AUC values are shown in bold. 

Cancer Number of 
Cases 

AUC 
(trivial) 

AUC 
(basic) 

AUC 
(final) 

p 
value 

Additional PRS/PLS in the 
Final Model 

MALES 

Bladder 835 0.7046 0.7202 0.7253 ns lung, dl99, kidney, thyroid 

Colon 835 0.7047 0.7340 0.7369 0.006 dl90, oral, prostate 

Thyroid 90 0.5366 0.6598 0.6742 ns kidney, tim 

Melanoma 1492 0.6031 0.6312 0.6312  - 

Kidney 377 0.6366 0.6488 0.6500 ns sebp2 

Leukemia 397 0.6199 0.6652 0.6710 ns bladder, colon, melanoma 

Lung 227 0.6886 0.6889 0.6961 ns prostate, colon, kidney 

NHL 513 0.5875 0.6134 0.6165 ns kidney 

Oral 293 0.6312 0.6336 0.6476 ns dl90, lung, melanoma, tim 

Pancreas 49 0.6900 0.6903 0.7416 0.0027 lung, dl99, tim, thyroid 

Prostate 3700 0.7480 0.8032 0.8036 0.05 kidney, melanoma, sebp8+ 
testicular, pancreas, NHL 

Testicular 774 0.5803 0.7284 0.7296 ns dl99, bladder 

FEMALES 
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Bladder 302 0.7019 0.7379 0.7462 0.003 colon, thyroid, dl99, tim, 
NHL, leukemia 

Colon 638 0.6937 0.7277 0.7293 0.036 dl, pancreas 

Thyroid 330 0.5325 0.6356 0.6406 ns endometrium, dl99 

Melanoma 2101 0.5730 0.6189 0.6201 ns kidney, endometrium, oral 

Kidney 219 0.6360 0.6404 0.6603 ns 
NHL, lung, endometrium, 

melanoma, pancreas 

Leukemia 276 0.5955 0.6306 0.6377 ns thyroid, p2, cervix 

Lung 174 0.6854 0.6906 0.7009 ns colon, ovarian, kidney 

NHL 383 0.5897 0.6229 0.6329 ns Leukemia, bladder, lung 

Oral 184 0.6039 0.6050 0.6307 0.0038 sebp8, sebp2, cervix, sebp5 

Pancreas 34 0.6044 0.6138 0.6559 ns thyroid, p2 

Cervix 3569 0.5483 0.5674 0.5695 0.04 lung, p2, oral 

Ovarian 755 0.6019 0.6099 0.6130 ns thyroid, endometrium, 
breast 

Breast 10091 0.6232 0.6724 0.6732 0.0143 
colon, oral, p5, dl99, tim, 
endometrium, melanoma 

Endometrium 1137 0.6693 0.6741 0.6774 0.0047 
Leukemia, kidney, dl90, 

dl99, cervix 
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Figure 3: Kaplan-Meier curves showing effect of the ‘dl’ PLS on age-of-onset of select cancer

indicates individuals in the lower 10th percentile of PLS and green indicates individuals in the

10th percentile of PLS scores. Upper left panel: females with any cancer; Upper right panel: 

with any cancer. Lower panel: Females with breast cancer. All p-values for tests of the relation

the percentile categories and cancer age-of-onset are p<10-16 and thus highly significant eve

multiple comparisons corrections (see Methods). 
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Table 3. AUC values derived from ROC curve analysis of logistic regression models in which all 16 

cancer diagnoses were combined and treated as a dependent variable and all cancer PRS, age, sex, 

and the PLS were considered independent variables. Independent variables for each case are shown 

inside the brackets. (Analysis results involving each individual cancer are provided in Supplementary 

Table 7.) 

 

Population AUC (age) AUC (age, cancer PRS) AUC (age, cancer and PLS) 

male 0.66610 0.68355 0.68360 

female 0.59181 0.61491 0.61518 

general 0.64256 0.65164 0.65174 
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Supplementary Material 
 

Supplementary Table 1. Recent papers on polygenic risk scores and cancer* 

Study Year Cancer 
Type 

Number of 
SNPs 

p value 
cutoff Cases Controls AUC 

Shieh(63)** 2020 Breast 180 p < 5 x 10-8 4658 7622 0.63 

Mavaddat(64) 2019 Breast 313 p<10-5 94,075 75,017 0.63 

Seibert(65) 2018 Prostate 54 p<10-7 18,868 12,879 n/a 

Yang(66) 2018 Ovarian 96 p<10-5 750 1428 0.60 

Loveday(67) 2018 Testicular 37 p<10-8 4167 12,368 n/a 

Lecarpentier(68) 2017 
Male 

Breast 88 p<10-5 308 1469 0.59 

Lecarpentier(68) 2017 Prostate 103 p<10-5 255 1469 0.62 

Kuchenbaecker(69) 2017 Breast 88 p<10-8 12,127 11,336 0.56-
0.58 

Kuchenbaecker(69) 2017 Ovarian 17 p<10-8 3093 20,370 0.58-
0.63 

 

*Ancestry represented in the studies is predominantly European unless indicated.  

**Latinas and Latina-American Women 
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Supplementary Tables 2a-b. Matrices with cancer diagnosis by sex. Central diagonal contains the 

number of individuals diagnosed with an individual cancer. Corresponding non-diagonal positions 

contain the number of individuals diagnosed with a combination of cancers. 

2a) Male individuals with cancers  
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2b) Female individuals with cancers  
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Supplementary Table 3. AUCs of ROC curves based on a logistic regression model with specific cancer 

diagnosis as a dependent variable and age as well as other cancer diagnoses as independent variables. No 

cancer PRS were included in these models. Other cancers are chosen after both-way stepwise logistic 

regression keeping age fixed. We call this model the final model.  

 

Cancer Cases Controls AUC (age) AUC 
(final) Cancers in the Final Model 

MALES 

Bladder 835 196731 0.7020 0.7123 prostate, kidney, testicular, lung 

Colon 835 196731 0.6991 0.7074 lung, pancreas, leukemia 

Thyroid 90 197476 0.5090 0.5090 - 

Melanoma 1492 196074 0.6015 0.6037 testicular, NHL 

Kidney 377 197189 0.6317 0.6565 lung, bladder, prostate, testicular, pancreas 

Leukemia 397 197169 0.6161 0.6217 NHL, colon 

Lung 227 197339 0.6758 0.7409 colon, kidney, testicular, oral, bladder, prostate 

NHL 513 197053 0.5836 0.5891 leukemia, testicular, melanoma 

Oral 293 197273 0.5959 0.5969 lung 

Pancreas 49 197517 0.6413 0.6705 colon, prostate, kidney 

Prostate 3700 193866 0.7476 0.7494 bladder, kidney, pancreas 

Testicular 774 196792 0.5764 0.5872 lung, bladder, NHL, melanoma, kidney 

FEMALES 

Bladder 302 232761 0.6962 0.7068 kidney, lung, colon, cervix, melanoma 

Colon 638 232425 0.6929 0.7041 lung, ovarian, endometrium, kidney, bladder, 
pancreas, breast, cervix 

Thyroid 330 232733 0.5212 0.5248 oral, ovarian 

Melanoma 2101 230962 0.5689 0.5702 kidney, pancreas, bladder 

Kidney 219 232844 0.6299 0.6430 bladder, melanoma, colon 

Leukemia 276 232787 0.5921 0.5921 - 

Lung 174 232889 0.6631 0.7229 ovarian, breast, colon, bladder, endometrium, oral 

NHL 383 232680 0.5814 0.5859 breast 

Oral 184 232879 0.5879 0.5907 thyroid 

Pancreas 34 233029 0.5390 0.5824 melanoma, colon 

Cervix 3569 229494 0.5448 0.5521 endometrium, breast, ovarian, bladder, colon 

Ovarian 755 232308 0.5983 0.6204 endometrium, lung, colon, breast, cervix, thyroid, 
leukemia 

Breast 10091 222972 0.6226 0.6244 lung, ovarian, cervix, endometrium, NHL, colon 

Endometrium 1137 231926 0.6671 0.6821 ovarian, cervix, colon, breast, lung 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.09.18.20197475doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.18.20197475
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 22, 2020. ; https://doi.org/10.1101/2020.09.18.20197475doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.18.20197475
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35

Supplementary Table 4. AUC values derived for ROC analyses of the results of logistic regression modeling 

with specific cancer diagnosis as a dependent variable and the corresponding PRS for that cancer, PRS of the 

other cancers, age, and the different PLSs as independent variables. We fit three models to determine the 

significance of the contribution of PLS: a ‘trivial model’ with just age as an independent variable; a ‘basic’ 

model with age and the cancer-specific PRS as independent variables; and a ‘final’ model in which age, the 

cancer-specific PRS, the PRSs of the other cancers, and PLSs were independent variables subjected to 

forward and backward stepwise logistic regression with age fixed in all models. The bolded entries included a 

significant PLS effect. 

 

Cancer 
Number 

of 
Cases 

AUC 
(trivial) 

AUC 
(basic) 

AUC 
(final) 

Additional 
PRS/PLS in the 

Final Model 

P-values of 
PLS in Final 

Model 
MALES 

Bladder 835 0.7020 0.7185 0.7235 lung, dl99, kidney, 
thyroid dl99=0.06 

Colon 835 0.6991 0.7309 0.7340 dl90, oral, prostate dl90=0.0057 

Thyroid 90 0.5090 0.6440 0.6604 kidney, tim tim=0.1 

Melanoma 1492 0.6015 0.6306 0.6306 - - 

Kidney 377 0.6317 0.6448 0.6454 pancreas - 

Leukemia 397 0.6161 0.6612 0.6673 
bladder, colon, 

melanoma - 

Lung 227 0.6758 0.6761 0.6834 
prostate, colon, 

kidney - 

NHL 513 0.5836 0.6076 0.6107 kidney - 

Oral 293 0.5959 0.5994 0.6285 
dl90, lung, 

melanoma, tim, 
pancreas 

dl90=0.15 
tim=0.09 

Pancreas 49 0.6413 0.6416 0.7193 lung, dl99, tim, 
thyroid 

dl99=0.002 
tim=0.023 

Prostate 3700 0.7476 0.8030 0.8035 
kidney, melanoma, 
sebp8, testicular, 
pancreas, NHL 

sebp8=0.0549 

Testicular 774 0.5764 0.7275 0.7287 dl99, bladder dl99=0.0919 
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FEMALES 

Bladder 302 0.6962 0.7356 0.7440 colon, thyroid, dl99, 
tim, NHL, leukemia 

dl99=0.003 
tim=0.018 

Colon 638 0.6929 0.7275 0.7291 dl, pancreas dl=0.036 

Thyroid 330 0.5212 0.6310 0.6356 endometrium, dl99 dl99=0.147 

Melanoma 2101 0.5689 0.6159 0.6173 kidney, 
endometrium, oral 

- 

Kidney 219 0.6299 0.6344 0.6496 NHL, lung, 
endometrium 

- 

Leukemia 276 0.5921 0.6278 0.6344 thyroid, sebp2 sebp2=0.0959 

Lung 174 0.6631 0.6705 0.6806 colon, ovarian, 
kidney - 

NHL 383 0.5814 0.6206 0.6289 Leukemia, bladder - 

Oral 184 0.5879 0.5918 0.6252 sebp8, sebp2, 
cervix, sebp5 

sebp2=0.051, 
sebp5=0.137 

sebp8=0.0004 
Pancreas 34 0.5390 0.5730 0.6277 thyroid, sebp2 sebp2=0.126 

Cervix 3569 0.5448 0.5647 0.5667 lung, sebp2, oral sebp2=0.04 

Ovarian 755 0.5983 0.6065 0.6094 
thyroid, 

endometrium, 
breast 

- 

Breast 10091 0.6226 0.6723 0.6731 
colon, oral,  sebp5, 
dl99, endometrium, 

tim, melanoma 

sebp5=0.02 
dl99=0.014 

tim=0.11 

Endometrium 1137 0.6671 0.6723 0.6754 Leukemia, kidney, 
dl90, dl99 

dl90=0.012 
dl99=0.0055 
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Supplementary Table 5. Correlations of Cancer-PRS vs Longevity Scores. 

The table shows p-values for significant correlations (p-value < 0.05). Bold type-face indicates a 

statistically significant negative correlation or positive correlation between the specific longevity score 

and cancer type. 

 

Cancer dl 
(p-val) 

dl90 
(p-val) 

dl99 
(p-val) 

tim 
(p-val) 

seb10 
(p-val) 

sebp2 
(p-val) 

sebp5 
(p-val) 

sebp8 
(p-val) 

Bladder 0.0023 0.0015 0.0024 -0.0004 0.0011 0.0017 -0.0017 0.0002 

Colon 0.0009 
0.0047 
(0.002) 0.0008 

0.0349 
(<10-100) -0.0004 0.0002 

0.0300 
(<10-50) -0.0003 

Thyroid 
-0.0033 
(0.028) -0.002 -0.0033 

(0.032) -0.0029 -0.0025 0.0015 -0.0003 -0.0021 

Melanoma 
-0.0032 
(0.033) -0.0014 -0.0027 -0.0011 

-0.0041 
(0.0068) 

-0.0067 
(10-5) -0.0013 -0.0026 

Kidney -0.0010 -0.0023 -0.0014 -0.0007 0.0001 0.0017 -0.0018 -0.0009 
 

Leukemia 0.0002 -0.0003 -0.0001 
-0.0061 

(0.00006) 0.0005 
-0.0074 
(<10-5) 

-0.0042 
(0.0055) 0.0015 

Lung 0.0004 -0.0001 0.0005 
-0.1925 
(<10-100) 

-0.0134 
(<10-17) 

-0.0081 
(<10-6) 

0.0166 
(<10-27) 0.0007 

NHL 0.0002 0.0002 0.0001 
-0.0243 
(<10-50) -0.0005 -0.0004 0.0006 -0.0005 

Oral -0.0002 0.0005 -0.0002 
0.0054 

(0.0004) 
-0.0041 
(0.0077) 

0.0103 
(<10-10) 

0.0551 
(<10-100) 0.0001 

Pancreas 0.0005 0.0012 0.0003 
-0.0311 
(<10-50) 0.0008 -0.0009 0.0012 0.0003 

Prostate 0.0008 -0.0007 0.0008 
-0.0124 
(<10-15) -0.0021 

-0.0054 
(0.00035) -0.0001 -0.0006 

Testicular -0.0004 -0.0006 -0.0004 0.0018 0.0002 
0.0306 
(<10-50) 0.0030 0.0004 

Cervix 
-0.0043 
(0.005) 

-0.0035 
(0.02) 

-0.0039 
(0.01) 

-0.0535 
(<10-100) -0.0028 

-0.0057 
(0.0002) -0.0001 -0.0023 

Ovarian -0.0013 -0.0025 -0.0013 
-0.0035 
(0.023) -0.0014 -0.0016 -0.0012 -0.0014 

Breast 0.0002 0.0001 0.0003 -0.0029 -0.0006 0.0001 -0.0002 
-0.0005 

 

Endometrium 0.0009 0.0008 0.0012 -0.0005 0.0015 
0.0110 
(<10-12) 0.0023 0.0002 
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Supplementary Table 6. Matrix with number of SNPs in the summary statistics used to generate 

cancer PRSs (in the diagonal) and number of intersecting SNPs across the cancers (in corresponding 

non-diagonal positions).  
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Supplementary Table 7. Cox proportional hazards models testing the difference in the upper and 

lower 50th percentiles of the 8 different PLS against specific cancer age-of-onsets. The first 10 PCs of 

the genome-wide GRM for individuals considered in the study as well as the cancer PRS for the 

specific cancer whose onset is of focus were included as covariates. The upper entries provide the 

estimated hazard ratios for those in the upper 50th percentile of the PLS distribution and the lower 

entries provide the p-value for the difference from those in the lower 50th percentiles. Bold entries 

have p<0.05. 

 
 

Cancer dl dl90 dl99 tim seb10 sebp2 sebp5 sebp8 

MALES   

Bladder 5.435e-01 
< 2e-16 

8.991e-01 
0.1276 

7.620e-01 
0.00011 

1.016e+00 
0.82375 

1.040e+00 
0.57079 

9.855e-01 
0.83543 

1.076e+00 
0.29245 

1.059e+00 
0.41390 

Colon 4.369e-01 
<2e-16 

8.033e-01 
0.00167 

5.880e-01 
2.64e-14 

8.786e-01 
0.063 

9.301e-01 
0.298 

1.104e+00 
0.154 

8.727e-01 
0.0506 

9.459e-01 
0.424 

Thyroid 3.413e-01 
1.7e-06 

1.064e+00 
0.770 

4.935e-01 
0.00115 

1.415e+00 
0.107 

1.266e+00 
0.269 

1.061e+00 
0.783 

8.919e-01 
0.590 

1.337e+00 
0.175 

Melanoma 3.881e-01 
<2e-16 

8.695e-01 
0.00734 

5.029e-01 
< 2e-16 

1.067e+00 
0.21506 

9.905e-01 
0.85551 

1.051e+00 
0.33856 

9.909e-01 
0.86052 

9.568e-01 
0.39683 

Kidney 4.461e-01 
1.49e-14 

9.644e-01 
0.726774 

5.846e-01 
2.46e-07 

1.068e+00 
0.527939 

1.020e+00 
0.848966 

9.478e-01 
0.605769 

1.120e+00 
0.27491 

9.442e-01 
0.579380 

Leukemia 3.949e-01 
<2e-16 

9.397e-01 
0.541 

6.008e-01 
6.03e-07 

1.110e+00 
0.3043 

9.766e-01 
0.8155 

1.038e+00 
0.7116 

1.036e+00 
0.7264 

9.023e-01 
0.312 

Lung 4.882e-01 
1.15e-07 

8.862e-01 
0.3661 

6.429e-01 
0.000984 

1.023e+00 
0.8672 

1.118e+00 
0.4032 

1.043e+00 
0.7513 

1.182e+00 
0.2131 

9.961e-01 
0.9769 

NHL 4.035e-01 
< 2e-16 

1.020e+00 
0.8249 

5.337e-01 
2.71e-12 

9.621e-01 
0.6633 

1.029e+00 
0.7470 

1.053e+00 
0.5593 

9.933e-01 
0.9394 

1.059e+00 
0.5164 

Oral 4.296e-01 
1.59e-12 

1.039e+00 
0.7416 

6.966e-01 
0.00211 

1.108e+00 
0.3799 

1.313e+00 
0.0211 

1.147e+00 
0.2454 

1.143e+00 
0.2556 

1.112e+00 
0.3673 

Pancreas 3.064e-01 
6.45e-05 

6.330e-01 
0.116 

5.097e-01 
0.0193 

1.037e+00 
0.898 

9.027e-01 
0.721 

1.326e+00 
0.334 

1.214e+00 
0.499 

8.000e-01 
0.437 

Prostate 8.402e-01 
1.04e-06 

9.856e-01 
0.6656 

1.030e+00 
0.3939 

1.044e+00 
0.2018 

1.037e+00 
0.2772 

9.729e-01 
0.4118 

1.032e+00 
0.3492 

1.062e+00 
0.0743 

Testicular 1.411e-01 
<2e-16 

8.024e-01 
0.0023 

1.820e-01 
<2e-16 

9.258e-01 
0.2841 

9.013e-01 
0.1495 

1.055e+00 
0.4606 

9.142e-01 
0.2126 

8.666e-01 
0.0470 

FEMALES   

Bladder 5.681e-01 
1.60e-06 

1.137e+00 
0.2701 

7.054e-01 
0.00272 

8.963e-01 
0.3456 

1.058e+00 
0.6251 

1.130e+00 
0.2921 

9.736e-01 
0.8174 

1.028e+00 
0.8129 

Colon 3.674e-01 
<2e-16 

7.812e-01 
0.00192 

5.434e-01 
2.18e-14 

9.854e-01 
0.853 

8.993e-01 
0.182 

1.004e+00 
0.961 

9.547e-01 
0.559 

8.664e-01 
0.0711 

Thyroid 2.711e-01 
<2e-16 

9.931e-01 
0.950 

4.105e-01 
2e-14 

1.067e+00 
0.555 

1.073e+00 
0.521 

8.544e-01 
0.157 

1.106e+00 
0.363 

1.008e+00 
0.940 

Melanoma 2.836e-01 
<2e-16 

8.804e-01 
0.003662 

3.905e-01 
< 2e-16 

9.733e-01 
0.536857 

9.741e-01 
0.549792 

1.037e+00 
0.409485 

1.020e+00 
0.649891 

1.043e+00 
0.336585 
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Kidney 3.926e-01 
1.46e-11 

8.298e-01 
0.169 

5.381e-01 
5.66e-06 

9.636e-01 
0.784 

9.650e-01 
0.793 

1.065e+00 
0.643 

1.027e+00 
0.842 

1.007e+00 
0.960 

Leukemia 4.418e-01 
3.75e-11 

8.574e-01 
0.2020 

5.334e-01 
2.59e-07 

1.079e+00 
0.5277 

1.078e+00 
0.533 

1.188e+00 
0.1553 

9.885e-01 
0.9233 

1.338e+00 
0.0170 

Lung 4.131e-01 
1.08e-08 

7.580e-01 
0.0706 

7.654e-01 
0.0821 

9.999e-01 
0.9994 

8.252e-01 
0.2103 

9.259e-01 
0.6151 

8.107e-01 
0.1706 

9.743e-01 
0.8647 

NHL 3.334e-01 
< 2e-16 

8.360e-01 
0.0818 

5.694e-01 
5.55e-08 

1.028e+00 
0.7882 

8.910e-01 
0.2624 

1.130e+00 
0.2381 

1.188e+00 
0.0958 

9.995e-01 
0.9964 

Oral 2.569e-01 
<2e-16 

6.738e-01 
0.00828 

3.487e-01 
1.81e-11 

9.127e-01 
0.536 

8.955e-01 
0.455 

8.148e-01 
0.168 

9.145e-01 
0.545 

8.424e-01 
0.246 

Pancreas 3.980e-01 
0.00944 

1.338e+00 
0.403 

4.249e-01 
0.0158 

1.280e+00 
0.475 

1.143e+00 
0.697 

1.372e+00 
0.365 

1.413e+00 
0.321 

8.704e-01 
0.686 

Cervix 1.792e-01 
< 2e-16 

8.927e-01 
0.000739 

2.003e-01 
< 2e-16 

1.019e+00 
0.573878 

1.008e+00 
0.818883 

9.589e-01 
0.213458 

1.016e+00 
0.627755 

1.058e+00 
0.092896 

Ovarian 2.912e-01 
< 2e-16 

8.655e-01 
0.048299 

4.456e-01 
< 2e-16 

8.760e-01 
0.070408 

1.024e+00 
0.742515 

1.009e+00 
0.907721 

9.500e-01 
0.482307 

9.469e-01 
0.455129 

Breast 2.989e-01 
< 2e-16 

8.909e-01 
7.19e-09 

4.649e-01 
< 2e-16 

1.017e+00 
0.411124 

1.016e+00 
0.437377 

1.016e+00 
0.433947 

1.048e+00 
0.017952 

1.013e+00 
0.506141 

Endometrium 3.751e-01 
< 2e-16 

8.845e-01 
0.039065 

5.355e-01 
< 2e-16 

9.855e-01 
0.80527 

1.075e+00 
0.22649 

1.004e+00 
0.94651 

1.037e+00 
0.53849 

1.156e+00 
0.01496 
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Supplementary Table 8. Kaplan-Meier analyses for each cancer and each PLS. Values represent 

the rounded p-values from comparison of the two survival curves based on the upper and lower 

halves (50th percentiles) of PLS. The values are tabulated for each of the PLS and for each of the 16 

cancers as well as ‘any cancer’. PLSs ‘dl’, ‘dl90’ and ‘dl99’ show consistently significant differences 

between the upper and lower 50th percentile curves. 
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Cancer tim dl dl90 dl99 seb10 sebp2 sebp5 sebp8 

MALES 

Any 0.1 <2e-16 7e-05 <2e-16 0.4 0.6 0.06 0.8 

Bladder 0.9 <2e-16 0.2 4e-04 0.8 0.7 0.3 0.4 

Colon 0.1 <2e-16 0.003 1e-13 0.2 0.2 0.1 0.5 

Thyroid 0.1 7e-07 0.8 0.001 0.3 0.9 0.6 0.2 

Melanoma 0.2 <2e-16 0.01 <2e-16 0.6 0.5 0.9 0.5 

Kidney 0.6 4e-15 0.8 5e-07 1 0.6 0.3 0.6 

Leukemia 0.3 <2e-16 0.6 1e-06 0.7 0.8 0.7 0.3 

Lung 1 6e-08 0.4 0.002 0.5 0.8 0.2 0.9 

NHL 0.5 <2e-16 0.8 9e-12 0.9 0.6 1 0.5 

Oral 0.4 4e-13 0.7 0.004 0.03 0.3 0.2 0.3 

Pancreas 0.9 2e-05 0.1 0.02 0.7 0.5 0.5 0.5 

Prostate 0.5 1e-07 0.7 0.3 0.6 0.1 0.3 0.2 

Testicular 0.2 <2e-16 0.004 <2e-16 0.07 0.3 0.2 0.05 

FEMALES 

Any 0.9 <2e-16 <2e-16 <2e-16 0.1 0.2 0.02 0.04 

Bladder 0.3 2e-06 0.2 0.005 0.8 0.4 0.8 0.8 

Colon 0.9 <2e-16 0.003 8e-14 0.1 0.8 0.8 0.09 

Thyroid 0.6 <2e-16 1 2e-14 0.7 0.1 0.3 0.9 

Melanoma 0.5 <2e-16 0.006 <2e-16 0.2 0.9 0.6 0.3 

Kidney 0.8 5e-12 0.2 7e-06 0.7 0.7 0.8 0.9 

Leukemia 0.6 2e-11 0.2 5e-07 0.6 0.2 0.9 0.01 

Lung 0.7 4e-09 0.08 0.1 0.2 0.5 0.2 0.9 

NHL 0.9 <2e-16 0.1 1e-07 0.2 0.4 0.09 0.9 

Oral 0.5 <2e-16 0.009 9e-12 0.4 0.1 0.6 0.3 

Pancreas 0.5 0.008 0.4 0.02 0.7 0.5 0.3 0.7 

Cervix 1 <2e-16 0.002 <2e-16 0.6 0.02 0.5 0.05 

Ovarian 0.06 <2e-16 0.06 <2e-16 1 0.8 0.5 0.5 

Breast 0.6 <2e-16 5e-08 <2e-16 0.8 0.6 0.006 0.2 

Endometrium 0.8 <2e-16 0.06 <2e-16 0.4 0.8 0.5 0.01 
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Supplementary Table 9. AUCs of ROC of each cancer prediction with age (triv) and AUCs with age 

plus each of the PLSs. 
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Supplementary Figure 1. Kaplan Meier Curves showing age at onset of cervical cance

function of different PLSs. Green indicates individuals in the lower 10th percentile of PLS a

indicates individuals in the upper 10th percentile of PLS. (a) Results for PLS ‘dl’ (p<0.0001) (b

‘dl90’ (p=0.7) (c) PLS ‘dl99’ (p<0.001).  
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