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Abstract 21 

Aims: Deep learning (DL), a sub-area of artificial intelligence, has demonstrated great promise 22 

at automating diagnostic tasks in pathology, yet its translation into clinical settings has been 23 

slow. Few studies have examined its impact on pathologist performance, when embedded into 24 

clinical workflows. The identification of H. pylori on H&E stain is a tedious, imprecise task which 25 

might benefit from DL assistance. Here, we developed a DL assistant for diagnosing H. pylori in 26 

gastric biopsies and tested its impact on pathologist diagnostic accuracy and turnaround time. 27 

Methods and results: H&E-stained whole-slide images (WSI) of 303 gastric biopsies with 28 

ground truth confirmation by immunohistochemistry formed the study dataset; 47 and 126 WSI 29 

were respectively used to train and optimize our DL assistant to detect H. pylori, and 130 were 30 

used in a clinical experiment in which 3 experienced GI pathologists reviewed the same test set 31 

with and without assistance. On the test set, the assistant achieved high performance, with a 32 

WSI-level area-under-the-receiver-operating-characteristic curve (AUROC) of 0.965 (95% CI 33 

0.934-0.987). On H. pylori-positive cases, assisted diagnoses were faster (𝛽", the fixed effect 34 

size for assistance= -0.557, p=0.003) and much more accurate (OR=13.37, p<0.001) than 35 

unassisted diagnoses. However, assistance increased diagnostic uncertainty on H. pylori-36 

negative cases, resulting in an overall decrease in assisted accuracy (OR=0.435, p=0.016) and 37 

negligible impact on overall turnaround time (𝛽"	for assistance=0.010, p=0.860). 38 

Conclusions: DL can assist pathologists with H. pylori diagnosis, but its integration into clinical 39 

workflows requires optimization to mitigate diagnostic uncertainty as a potential consequence of 40 

assistance.  41 

 42 

Keywords: Helicobacter, pathology, artificial intelligence, deep learning, machine learning, 43 
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Introduction 46 

Helicobacter pylori is the most prevalent chronic bacterial infection worldwide, affecting an 47 

estimated 4.4 billion individuals.1  A well-established association exists between chronic H. 48 

pylori infection and peptic ulcer disease, gastric cancer, and other gastric pathologies, as well 49 

as evidence linking infection to iron deficiency anemia, colorectal cancer, and other extra-gastric 50 

pathologies.2-4 Identifying and eradicating H. pylori in infected individuals reduces the risk of 51 

progression to long-term complications.5,6 Every gastric biopsy received in the pathology lab is 52 

evaluated for H. pylori, with the diagnosis resting on identification of one or more organisms 53 

upon high-magnification examination. Although the bacteria are readily identifiable on H&E stain 54 

in cases where high numbers of organisms are present, in other cases, making a diagnosis can 55 

be time consuming, tedious, and subject to interobserver variability, with missed diagnoses not 56 

uncommon. 7,8 Although ancillary stains are available, these add significant cost and turnaround 57 

time to diagnosis,8,9 are not recommended for reflex application,10,11 and may be unavailable in 58 

low-resource settings. H. pylori diagnosis on H&E stain provides an ideal opportunity for deep 59 

learning (DL) assistance, which has already shown promise at automating other pathology 60 

tasks.12-16 61 

 62 

Although DL (and other AI) models have demonstrated good performance on several 63 

histopathologic tasks, most studies have retrospectively compared model performance to that of 64 

a mixed group of diagnosticians of varying expertise levels. This may exaggerate the relative 65 

performance and clinical utility of the model, as the true end-users may be different (often with 66 

higher baseline diagnostic performance) from those against whom the model’s performance 67 

was compared. Furthermore, few studies have taken the next step of incorporating a model into 68 

a clinical workflow and evaluating its impact on users.17,18  69 

 70 
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In this study, we developed a DL ensemble of convolutional neural networks (CNNs) to assist 71 

pathologists with H. pylori diagnosis on H&E-stained whole-slide images (WSI), and sought to 72 

address the preceding gaps by testing the ensemble’s impact on the diagnostic performance of 73 

subspecialty GI pathologists.  74 

 75 

Materials and Methods 76 

Institutional Review Board approval was obtained (IRB #48684), with waived informed consent 77 

for use of all patient material and data. The Standards for Reporting of Diagnostic Accuracy 78 

Studies (STARD)19 guidelines were used.  79 

 80 

Dataset and reference standard annotations 81 

The study dataset consisted of H&E WSI of 311 gastric biopsies from 245 patients (160 H. 82 

pylori-positive and 151 H. pylori-negative biopsies), all with diagnostic confirmation by both H&E 83 

and H. pylori immunohistochemical (IHC) evaluation, obtained through stratified random 84 

sampling (maintaining an approximate 50:50 class balance of H. pylori-positive and -negative 85 

biopsies, for adequate representation of the morphologic range of each class) of all gastric 86 

biopsies submitted to our institution from January 1, 2015-December 31, 2018. All WSI were 87 

scanned at 40x magnification (0.25 micrometers per pixel) on an Aperio AT2 scanner (Leica 88 

Biosystems, Germany). 89 

 90 

As WSI are too large to directly input into CNNs, they are subdivided into smaller image patches 91 

for input. Because not every patch in an H. pylori-positive WSI necessarily contains H. pylori, 92 

reference standard patch-level annotations were generated using H. pylori IHC. A sequential 93 

H&E de-stain/immunostain procedure was performed on the same tissue section to obtain 94 

annotations for the H. pylori-positive biopsies (see Figure 1a and Supplementary methods for 95 

details). This was done instead of using the original IHC slides, which contained sections cut at 96 
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different depths within the block from the H&E slides, resulting in differences in the tissue and H. 97 

pylori content of the H&E and IHC slides (precluding accurate tissue co-registration and 98 

generation of reference standard annotations). For H. pylori-negative biopsies, an original 99 

diagnostic H&E slide was scanned from each biopsy.  100 

 101 

During the de-stain/re-stain process, eight slides experienced focal tissue detachment and/or 102 

incomplete immunostaining; these were excluded, resulting in a final dataset of 303 H&E WSI 103 

(152 H. pylori-positive and 151 H. pylori-negative), which was grouped by patient, shuffled, and 104 

randomly split (maintaining an approximate 50:50 positive:negative balance within each set) into 105 

a training set of 47 WSI (27 positive and 20 negative), validation set of 126 WSI (60 positive and 106 

66 negative) for internal validation and optimization, and test set of 130 WSI (65 positive and 65 107 

negative), which was completely held out from model training and internal 108 

validation/optimization, and used for the pathologist experiment. All WSI from the same patient 109 

were assigned to the same set. Each WSI was subdivided into non-overlapping image patches 110 

of size 1024 x 1024 pixels (256 x 256 micrometers) for model input, yielding, on average, 486 111 

patches per WSI, and a total sample size of 147,258 patches. As multiple serial sections cut 112 

from the same block might be present on a WSI, only one section per WSI (the first, or left-most 113 

one on the slide) was used for training, yielding a training set of 24,786 patches. The 1024 x 114 

1024 pixel patch size was chosen to be large enough to provide background tissue context for 115 

the models to learn from, but small enough for pathologists to easily view the entire patch at 116 

maximum resolution (40x magnification). 117 

 118 

Model development 119 

Two CNN architectures, ResNet20 and DenseNet21, both of which have excelled on image 120 

classification benchmarks, were leveraged by averaging their predictions in a model ensemble, 121 

or set of CNNs whose outputs are combined to form a single prediction. Ensembling enables 122 
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more robust prediction that is less sensitive to outlier predictions, as the final prediction comes, 123 

not from a single network, but from a collection of networks. Our ensemble consisted of three 124 

ResNet-18 and three DenseNet-121 architectures, each of which input an image patch and 125 

output a probability of H. pylori being present (for ensemble details, see Supplementary 126 

methods).  127 

 128 

Patch-level probabilities were aggregated into WSI-level probabilities by averaging the top 10 129 

patch-level probabilities from a single serial section (the first section) per WSI. As each WSI 130 

contained between 1-5 sections, only one section per WSI was used to avoid potential 131 

prediction bias related to the number of sections on a slide. The patch number (10) was 132 

determined empirically, based on the area under the receiver-operating-characteristic curve 133 

(AUROC) performance of the ensemble on the validation set. This 10-patch probability average 134 

was binarized using an optimal slide-level probability threshold (0.72) empirically determined 135 

from the ensemble’s performance on the validation set.  136 

 137 

Pathologist experiment  138 

In a diagnostic study designed to simulate the workload in a high-volume pathology practice, we 139 

evaluated the ensemble’s impact on the accuracy and turnaround time of three subspecialty GI 140 

pathologists with 8, 9, and 27 years of respective practice experience, who reviewed the same 141 

test set (65 H. pylori positive and 65 H. pylori negative biopsies) during a single session, without 142 

time constraint. Half of each subgroup (positive and negative) was randomly assigned to review 143 

with ensemble assistance, while the remaining half was reviewed unassisted. The WSI 144 

sequence and assistance status were randomized for each pathologist (Figure 2a). The 145 

pathologists were blinded to all patient identifying and clinical information.  146 

 147 
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QuPath22, an open-source digital pathology package, was used for WSI review. Prior to the 148 

experiment, the ensemble was run on the 130 test WSI to generate patch-level H. pylori 149 

probabilities for every tissue-containing patch across all sections in each WSI, with the 3-5 150 

highest-probability patches from each WSI and their corresponding probabilities selected for 151 

display. To avoid biasing the pathologists, binarized model predictions and the probability 152 

threshold for positivity were not shown. The ensemble made predictions on all sections present 153 

on the slide, reflective of a real-world practice scenario in which pathologists review all sections 154 

on a slide. (However, for the purposes of evaluating machine-learning performance metrics for 155 

the ensemble, only a single section per WSI was used.) For WSI containing only one section, 156 

bounding boxes for the 3 top-ranked patches were displayed. For WSI containing two or more 157 

sections, bounding boxes for the 5 top-ranked patches were displayed. This allowed the 158 

ensemble to make predictions across all tissue present in a WSI, while displaying a relatively 159 

limited number of patches, to avoid substantially slowing down the pathologists’ slide review.  160 

 161 

The ensemble’s outputs were incorporated into the QuPath interface as follows: a window 162 

adjacent to the main WSI-viewing window displayed the list of all bounding boxes for a given 163 

WSI, with corresponding patch-level H. pylori probabilities. By clicking on a particular bounding 164 

box, pathologists could jump directly to the corresponding region in the main WSI-viewing 165 

window (see Figure 2b for an example).  A numbered list of all 130 WSI was visible to the left of 166 

the main WSI-viewing window. WSI assigned for assisted review were marked with a text 167 

indicator (“Hierarchy”). On these cases, the pathologists were given discretion to review as few, 168 

or as many, of the bounding boxes and probabilities as they felt were necessary (including 169 

none). For WSI assigned to unassisted review, no bounding boxes or probabilities were 170 

displayed, and the pathologists simply navigated the WSI on their own.  171 

 172 
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For each WSI, the pathologist entered one of four diagnoses into a data entry software 173 

application which recorded a timestamp for computation of the diagnostic turnaround time: 174 

Positive (P) = H. pylori evident on H&E stain, Uncertain Positive (UP) = features suggestive of 175 

H. pylori infection, but would order IHC for confirmation, Uncertain Negative (UN) = most likely 176 

negative for H. pylori, but would order IHC for confirmation, and Negative (N) = would 177 

confidently diagnose as H. pylori negative on H&E stain. Use of the uncertain diagnostic choices 178 

(UP/UN) was intended to reflect clinical practice, where, rather than making an immediate 179 

choice between P or N, pathologists can be uncertain (resulting in a request for ancillary stains). 180 

Diagnoses were binarized for statistical analysis as follows: P and N diagnoses concordant with 181 

the reference standard annotation were considered correct, whereas UP and UN diagnoses, 182 

and P and N diagnoses discordant with the reference standard, were treated as incorrect. The 183 

rationale for treating uncertain diagnoses as incorrect was that uncertainty results in the 184 

performance of ancillary stains, which increases diagnostic turnaround time and cost.  185 

 186 

The experiment was administered to each pathologist by the same administrator, who logged 187 

the time and duration of any interruptions (used to adjust the timestamp data for accurate 188 

determination of the per-slide turnaround time). All experiments were performed using the same 189 

workstation setup. Participants were given time at the beginning of each experiment to review a 190 

tutorial on use of QuPath and the data entry software application, and to practice the experiment 191 

workflow with 6 practice WSI that were not part of the 130 WSI test set.  192 

 193 

Statistical Analyses 194 

We evaluated both the WSI-level and patch-level diagnostic performance of our ensemble using 195 

the AUROC, precision (positive predictive value), recall (sensitivity), specificity, accuracy, and 196 

F1-score, based on the respective probability binarization thresholds of 0.504 and 0.72 for patch 197 
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and WSI-level predictions. Corresponding 95% confidence intervals for these metrics were 198 

calculated by bootstrapping, with a replicate size of 2,000. 199 

 200 

Patch-level model performance was assessed on 1024 x 1024 pixel patches sampled from 10 201 

H. pylori-positive and 10 H. pylori-negative WSI randomly selected from the 130 WSI test set. 202 

From each WSI, 100 patches were randomly sampled from a single section. If a WSI contained 203 

fewer than 100 patches in a section, all patches from that section were sampled. This resulted 204 

in a total of 871 patches from the 10 positive and 963 patches from the 10 negative WSI. Patch-205 

level reference standard diagnoses for positive cases were obtained using the de-stain/re-stain 206 

method detailed previously, with confirmation by the reference pathologist. After excluding 87 207 

patches with equivocal H. pylori status upon reference pathologist review, a total of 1,747 208 

patches were used for patch-level performance evaluation. 209 

 210 

The ensemble’s WSI-level performance was evaluated on all 130 WSI in the test set, where the 211 

average probability of H. pylori positivity across the 10 highest-probability patches from one 212 

section per WSI was binarized using the probability threshold of 0.72 WSI (Figure 1b). The 213 

same metrics used to evaluate patch-level performance were also calculated for WSI-level 214 

performance.  215 

 216 

Pathologist performance was reported using the diagnostic accuracy (with 95% Wilson score 217 

confidence intervals23) and per-slide turnaround time (with 95% t-score confidence intervals). 218 

Our first objective was to investigate whether assistance was effective at increasing accuracy, 219 

based on the definitions of correct and incorrect diagnoses used to binarize the pathologist 220 

diagnoses. A generalized linear mixed model (GLMM) which included the assistance status 221 

(with or without assistance) and pathologist as fixed effects, and WSI as a random effect, was 222 

applied. The main effect of assistance was evaluated using a Wald z-test.   223 
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 224 

Our second objective was to investigate whether assistance affected the amount of time spent 225 

reaching the diagnosis. A log-normal mixed effect model, which included the assistance status 226 

and pathologist as fixed effects, and WSI as a random effect, was applied to estimate the effect 227 

of these variables on diagnostic turnaround time. The main effect of assistance was evaluated 228 

using a Wald t-test.  229 

 230 

A significance level of α=0.05 (two-tailed) was used for all statistical tests. The mixed effect 231 

models were developed using the lme424 and MASS25 packages in R.  232 

 233 

Results  234 

Model performance 235 

On the validation set (126 WSI), our ensemble achieved a WSI-level AUROC=0.952 (95% CI 236 

0.913-0.983), with precision=0.873 (95% CI 0.788-0.953), recall=0.917 (95% CI 0.844-0.982), 237 

specificity=0.880 (95% CI 0.794-0.955), accuracy=0.897 (95% CI 0.841-0.944), and F1-238 

score=0.894 (95% CI 0.833-0.947). On the test set (130 WSI), the WSI-level AUROC=0.965 239 

(95% CI 0.934-0.987), with precision=0.919 (95% CI 0.846-0.983), recall=0.877 (95% CI 0.788-240 

0.948), specificity=0.924 (95% CI 0.857-0.984), accuracy=0.900 (95% CI 0.846-0.946), and F1-241 

score=0.898 (95% CI 0.837-0.947).  On the validation set, patch-level performance metrics 242 

were: AUROC=0.877 (95% CI 0.863-0.881), accuracy=0.872 (95% CI 0.862-0.881), F1=0.604 243 

(95% CI 0.574-0.633), precision=0.616 (95% CI 0.580-0.651), recall=0.593 (95% CI 0.558-244 

0.629), and specificity=0.927 (95% CI 0.918-0.935), using a probability threshold of 0.504 for H. 245 

pylori positivity. On the test set, the patch-level AUROC=0.911 (95% CI 0.888-0.933), with 246 

accuracy=0.892 (95% CI 0.878-0.907), F1=0.573 (95% CI 0.516-0.627), precision=0.488 (95% 247 

CI 0.428-0.549), recall=0.692 (95% CI 0.623-0.760), and specificity=0.916 (95% CI 0.902-248 

0.929).  249 
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 250 

Model impact on pathologist performance 251 

During the pathologist study, four reads were excluded due to data entry errors made by the 252 

pathologists while recording diagnoses into the software application, resulting in a final set of 253 

386 pathologist reads for analysis. The overall accuracy of the pathologists was 0.680 (95% CI 254 

0.611-0.742) on unassisted cases and 0.573 (95% CI 0.502-0.641) on assisted cases. After 255 

controlling for pathologist and WSI effects, we found that assistance had a significant positive 256 

impact on H. pylori-positive cases, with assisted diagnoses being more accurate (OR=13.37, 257 

95% CI 3.622-49.320, p<0.001) than unassisted diagnoses. However, on H. pylori-negative 258 

cases, assistance had a negative impact, with unassisted diagnoses being 2.30 times more 259 

likely to be correct than assisted diagnoses (OR for correct diagnosis=0.435, 95% CI, 0.215-260 

0.844 p=0.016), resulting in a decrease in overall accuracy (Figure 3b). 261 

 262 

The average per-slide turnaround time was 67.15 seconds (95% CI 59.11-75.20 s, range 6-408 263 

s) in the unassisted state, and 70.69 seconds (95% CI 63.00-78.38 s, range 11-356 s) in the 264 

assisted state. The average per-slide turnaround time for each diagnostic category was: 265 

P=43.16 seconds (95% CI 35.60-50.73 s, range 6-356 s), N=51.87 seconds (95% CI 46.53-266 

57.21 s, range 16-168 s), UP=129.68 seconds (95% CI 115.30-144.07 s, range 47-408 s), and 267 

UN=84.13 seconds (95% CI 75.74-92.53 s, range 39-221 s) (Figure 4a). After controlling for 268 

pathologist and WSI effects, we found a significant reduction in diagnostic turnaround time for 269 

H. pylori-positive cases (𝛽", the fixed effect size for assistance= -0.557, 95% CI -0.338-  270 

-0.119, p=0.003), which was offset by a slower average turnaround time on negative cases, 271 

resulting in an overall negligible change in turnaround time with assistance (𝛽"=0.010, 95% CI -272 

0.097-0.116, p=0.860). 273 

 274 
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Discussion 275 

In this study, we evaluated the impact of DL assistance on the diagnostic accuracy and 276 

turnaround time of subspecialty GI pathologists, for the routine task of diagnosing H. pylori on 277 

H&E-stained gastric biopsies. We observed a significant improvement in both metrics with 278 

assistance on H. pylori-positive cases, but a detrimental effect of assistance on both metrics for 279 

H. pylori-negative cases.  280 

 281 

In particular, the negative impact of assistance when evaluating H. pylori-negative cases 282 

resulted in a decrease in overall pathologist accuracy, which might be explained by increased 283 

diagnostic uncertainty with assistance, with 81 versus 60 uncertain diagnoses made in the 284 

assisted and unassisted states, respectively. Because the pathologists were not informed of the 285 

probability threshold for positivity (to avoid biasing their diagnoses), subjectivity in their 286 

interpretation of the probabilities could have contributed to increased uncertainty. Based on the 287 

method used to binarize diagnoses into correct and incorrect categories (uncertain diagnoses 288 

counted as incorrect, Figure 4b), 20 more incorrect diagnoses were made with assistance. 289 

However, when uncertain diagnoses were excluded from analysis, more correct diagnoses were 290 

made with, versus without, assistance, suggesting that the detrimental effect of assistance was 291 

primarily attributable to increased diagnostic uncertainty, rather than to increased diagnostic 292 

error. Increased uncertainty may be an unintended consequence of AI assistance, which should 293 

be considered when designing and incorporating AI models into clinical practice. For example, a 294 

follow-up study of the current model might evaluate the impact of assistance when binarized 295 

outputs are displayed, rather than probabilities.   296 

 297 

During the experiment, the pathologists were provided with the 3-5 top-ranked patches on each 298 

assisted case, regardless of what the corresponding patch-level probabilities were. Although 299 
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they were allowed to review these patches at their discretion, they might have felt obligated to 300 

view at least some, or even all, patches, simply because these were being presented. This 301 

might have introduced diagnostic uncertainty where there initially was not, contributing to 302 

additional turnaround time. Given the significant benefit of assistance on H. pylori-positive 303 

slides, future user interfaces might be designed so that assistance is provided only when 304 

patches exceed a probability threshold for positivity, and model outputs are hidden when a slide 305 

is predicted to be negative.   306 

 307 

While many studies of medical AI models have emphasized diagnostic accuracy, sensitivity, or 308 

specificity as primary metrics, less attention has been devoted to examining the impact on other 309 

practical considerations, such as turnaround time. In our study, the average per-slide 310 

turnaround time was approximately 67 seconds unassisted and 71 seconds assisted, with no 311 

statistically significant difference in turnaround time with assistance, after controlling for 312 

pathologist and WSI effects.  Given these relatively quick turnaround times, the impact of 313 

assistance on this metric might be considered inconsequential, from a clinical standpoint. 314 

However, the potential for human-computer interaction to increase turnaround time in 315 

prospective diagnostic settings should be highlighted, as it may cause unintended harm to 316 

patients when occurring in situations where diagnostic turnaround time is of utmost importance. 317 

For the current application, the longer turnaround times for uncertain diagnoses (approximately 318 

130 and 84 seconds for UP and UN diagnoses, respectively) suggest that a decrease in overall 319 

turnaround time could be reached by reducing uncertainty in human-AI interaction during clinical 320 

workflow integration.   321 

 322 

Potential solutions for mitigating uncertainty might be to present the binarization threshold used 323 

for H. pylori positivity, to display explicitly binarized model outputs, or, as previously discussed, 324 
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to set a probability threshold for presenting pathologists with model outputs. Another solution 325 

might be to deploy the model, not as a primary diagnostic assistant, but as an automated pre-326 

screening tool, given its fast processing time, ability to correctly diagnose H. pylori on slides 327 

where the bacteria are present, and lack of human diagnostic uncertainty. The model’s accuracy 328 

on the test set was 90%. In contrast, the pathologists’ unassisted accuracy was 89.2%, when 329 

P/UP diagnoses were counted as positive and N/UN diagnoses counted as negative (the 330 

closest post-hoc approximation of a “no-uncertainty” scenario). The reported pathologist 331 

sensitivity and specificity of H. pylori diagnosis on H&E stain ranges from 69-93% and 87-90%, 332 

respectively.8  Our ensemble achieved a comparatively good sensitivity of 87.7% and a 333 

specificity of 92.0% (higher than the upper range of reported pathologist specificities). If a 334 

different operating point on the ensemble’s ROC curve were selected to further maximize the 335 

sensitivity while retaining acceptable specificity, cases flagged as negative by the ensemble 336 

might be shifted to the end of the pathologist queue, while those flagged as positive might be 337 

prioritized for review. Negative cases would no longer need to be painstakingly reviewed for H. 338 

pylori or submitted for ancillary testing, while positive cases could be reviewed with the top-339 

ranked patches shown first, potentially reducing diagnostic turnaround time and ancillary 340 

staining costs. Yet another deployment option might be to incorporate the ensemble into an 341 

automated “double-check” tool, which could run in the background and alert the pathologist of 342 

any disagreement between their diagnosis and the ensemble’s prediction.   343 

  344 

In this study, we tested the impact of the ensemble on subspecialty GI pathologists, as this is 345 

the group that most commonly reviews gastric biopsies (and the only one that does so at our 346 

institution). Given their high baseline unassisted accuracy (when uncertain diagnoses were 347 

excluded, a total of only 2 incorrect diagnoses were made), it is somewhat expected that 348 

assistance did not result in a statistically significant improvement in accuracy. While we did not 349 

test the impact on non-GI pathologists, trainees, or other subgroups with less experience at the 350 
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task, it is possible that our ensemble could significantly improve accuracy and turnaround time 351 

for these other subgroups. In practices where there is a shortage of GI-trained pathologists, 352 

models such as the one in this study might provide value as a pre-screening or primary 353 

diagnostic tool. To our knowledge, this is the first study to develop and test the impact of an AI 354 

model for the direct detection of H. pylori organisms on H&E-stained whole-slide images.  355 

 356 

Our study was subject to limitations. While the ensemble’s accuracy was dependent on the 357 

selected binarization threshold for H. pylori positivity, the pathologists’ accuracy was dependent 358 

on binarization of four possible diagnoses into correct and incorrect categories. Use of the UP 359 

and UN categories precluded direct comparison of ensemble performance with that of the 360 

pathologists. In theory, a direct comparison might be made if the ensemble’s outputs were 361 

thresholded into the same diagnostic choices available to the pathologists. In reality, the degree 362 

of interobserver variability in the uncertainty threshold among different pathologists would make 363 

it nearly impossible to establish a reliable threshold for the uncertain categories (whereas H. 364 

pylori-positive and -negative diagnoses have a ground truth, there is none for uncertain 365 

diagnoses).  366 

 367 

Our ensemble was developed to help pathologists identify the presence of H. pylori, an 368 

essential task which is performed, without exception, on every gastric biopsy. We acknowledge 369 

that other concurrent pathologies may be present in the same biopsy, which are not currently 370 

addressed by the ensemble, and which could be incorporated into future diagnostic suites 371 

meant to assist with general gastric biopsy review.    372 

 373 

Finally, our study was limited to data from a single pathology department serving a regional 374 

healthcare system, with an imposed 50:50 class balance of positive and negative cases (chosen 375 
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to obtain broad representation of the morphologic range of cases, but which also reflects the 376 

worldwide prevalence of H. pylori infection1). Future studies incorporating datasets from multiple 377 

institutions and regions, as well as more pathologists, are recommended to validate our 378 

findings. 379 

 380 

Conclusions 381 

DL can diagnose H. pylori in H&E-stained gastric biopsies with high performance, and holds 382 

potential for automating this common diagnostic task. However, contrary to prevailing 383 

expectations regarding AI assistance, even a DL model with good performance metrics may fail 384 

to improve human diagnostic performance, if it is not integrated into clinical workflows in an 385 

optimal way. Although AI holds promise for improving healthcare quality and efficiency, its 386 

ultimate clinical impact may be determined, not by model performance metrics, but by the 387 

manner in which clinicians interact with these models. Our results suggest that increased 388 

diagnostic uncertainty is an important unintended consequence of human-AI interaction, which 389 

may decrease diagnostic accuracy and lead to longer case turnaround times. We hope that our 390 

findings present a realistic picture of AI’s impact on pathologists, while encouraging greater 391 

attention toward addressing the various aspects of human-computer interaction that will 392 

determine the ultimate real-world impact of these models. 393 
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Figure 1. Training dataset preparation and model prediction process. a, The training 
dataset consisted of 24,786 non-overlapping image patches of size 1024 x 1024 pixels, 
extracted from one serial tissue section per H&E-stained slide (20 H. pylori negative and 27 H. 
pylori positive slides), input into a convolutional neural network (CNN) ensemble of 3 DenseNet-
121 (top) and 3 ResNet-18 (bottom) architectures. To generate patch-level ground truth labels 
for the 27 H. pylori-positive slides, an H&E-stained slide was prepared from the paraffin block 
and digitized, then de-stained, re-stained with an H. pylori immunohistochemical (IHC) stain, 
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and digitized to generate a paired IHC WSI for tissue co-registration with the H&E WSI. b, The 
ensemble’s WSI-level prediction of H. pylori status involved extracting all tissue-containing 
patches from a single level for input, computing the average of the patch-level probabilities for 
the top 10 highest probability patches, and binarizing this with a threshold of 0.72.   
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Figure 2. Design of the pathologist experiment and user interface. a, The 3 pathologists 
reviewed the same test set of 130 WSI (containing 65 positive and 65 negative WSI) during a 
single session, without time constraint. Half of the positive and negative WSI were randomly 
assigned to be reviewed with model assistance, with the remaining half assigned to be reviewed 
without assistance. Each pathologist received a unique randomized WSI review sequence and 
assignment of WSI to be reviewed with or without assistance. b, The WSI viewer interface 
consisted of a main WSI-viewing window (showing red bounding boxes around patches most 
likely to contain H. pylori) and a smaller window to the left displaying the list of all bounding 
boxes for that WSI, with their corresponding probabilities. By clicking on a bounding box in the 
smaller window, the user could automatically navigate to the corresponding region of the WSI in 
the main WSI-viewing window. The top panel shows a low magnification view, while the middle 
and bottom panels show higher magnification views with corresponding probabilities for two 
different bounding boxes from the same WSI. On the assisted cases, only the 3 to 5 bounding 
boxes that were most likely to contain H. pylori were displayed for each WSI. On unassisted 
cases, no bounding boxes or probabilities were displayed.  
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Figure 3. Performance of the model ensemble and impact of assistance on pathologist 
accuracy and diagnostic turnaround time. a, The WSI (left) and patch (right) level receiver-
operating-characteristic (ROC) curves for the best-performing model ensemble on the validation 
(orange, n=126 WSI) and test (blue, n=130 WSI) datasets are shown, along with respective 
area under the curve (AUROC). b, The assisted and unassisted pathologist accuracies on H. 
pylori positive and negative WSI in the 130 WSI test set are shown. On H. pylori-positive WSI, 
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accuracies for individual pathologists ranged from 0.774-0.818 without assistance, and 0.688-
0.906 with assistance. On H. pylori negative WSI, individual pathologist accuracies ranged from 
0.375-0.758 unassisted and 0.161-0.677 assisted. The accuracy of the DL ensemble alone on 
the test set was 0.900. c, The average per-WSI diagnostic turnaround times (TAT) with and 
without assistance are shown. On H. pylori-positive WSI, individual pathologist TAT ranged from 
49.7-73.7 seconds unassisted and 46.1-71.6 seconds assisted. On H. pylori negative WSI, 
individual TAT ranged from 47.8-110.8 seconds unassisted and 50.9-133.0 seconds assisted. 
 

 
 
Figure 4. Results of the pathologist experiment. a, The number and percentage of total 
observations (diagnoses made by the pathologists) and turnaround time (TAT) in seconds are 
shown for each diagnostic category, where P=Positive, N=Negative, UP=Uncertain Positive, 
UN=Uncertain Negative. b, The numbers and percentages of correct and incorrect diagnoses 
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made by the pathologists, given different possible definitions of correctness, are shown. For the 
analyses performed in the study, the last definition of correctness, where all Uncertain 
diagnoses were considered incorrect, was used. 
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