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Summary

We present a forecasting model aim to predict hospital occupancy in metropolitan areas
during the current COVID-19 pandemic. Our SEIRD type model features
asymptomatic and symptomatic infections with detailed hospital dynamics. We model
explicitly branching probabilities and non-exponential residence times in each latent and
infected compartments. Using both hospital admittance confirmed cases and deaths, we
infer the contact rate and the initial conditions of the dynamical system, considering
breakpoints to model lockdown interventions and the increase in effective population
size due to lockdown relaxation. The latter features let us model lockdown-induced 2nd
waves. Our Bayesian approach allows us to produce timely probabilistic forecasts of
hospital demand. We have applied the model to analyze more than 70 metropolitan
areas and 32 states in Mexico.

Introduction 1

The ongoing COVID-19 pandemic has posed a major challenge to public health systems 2

in many countries with the imminent risk of saturated hospitals and patients not 3

receiving proper medical care. Although the scientific community and public health 4

authorities had insight regarding the risks and preparedness measures required at the 5

onset of a zoonotic pandemic, our knowledge of the fatality and spread rates of 6

COVID-19 remains limited [1–4]. In terms of disease handling, two leading issues 7

determining the current situation are the lack of pharmaceutical treatment and our 8

inability to estimate the extent of the asymptomatic infection of COVID-19 [5–7]. 9

Under current circumstances, control measures reduce new infections by limiting the 10

number of contacts through mitigation and suppression [1]. Mitigation includes social 11

distancing, testing, tracing, and isolating infected individuals, while suppression imposes 12

temporary cancellation of non-essential activities. Mitigation and suppression pose a 13

burden on the economy, affecting more individuals living in low-income conditions, 14

challenging the population’s capacity to comply with control measures. As lockdown 15

measures are eased, more people become in contact with the outbreak, and there is a 16

risk of induced 2nd waves that may increase healthcare system pressure. 17

Broadly speaking, data-driven epidemiological models are built out of the necessity 18

of making forecasts. There are many lessons learned on emergency preparedness and 19

epidemic surveillance from previous pandemic events: AH1N1 influenza [8], MERS [9], 20
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SARS [10], Zika [11], Ebola [12], etcetera. However, surveillance data during a pandemic 21

event often suffer from serious deficiencies such as incompleteness and backlogs. 22

Another critical issue is the design of data acquisition, taking into account geographical 23

granularity [13]. Epidemic surveillance of COVID-19 is no different since there is an 24

unknown percentage of asymptomatic infections, and susceptibility is related to 25

economic vulnerability. 26

Undoubtedly, one key task during the early pandemic response efforts is using 27

epidemiological records and mathematical and statistical modeling to forecast excess 28

hospital care demand with formal quantified uncertainty. 29

In this paper, we pose a compartmental SEIRD model that considers both 30

asymptomatic and symptomatic infection, including hospital dynamics. We model the 31

residence time in each latent and infected compartments explicitly [14,15], and we use 32

records of daily confirmed cases and deaths to pose a statistical model that accounts for 33

data overdispersion [16,17]. Furthermore, we use Bayesian inference to estimate the 34

initial state of the governing equations, the contact rate, and a proxy of the population 35

size to make probabilistic forecasts of the required hospital beds, including the number 36

of intensive care units. The model output has been used by Mexican public health 37

authorities to assist decision making during the COVID-19 pandemic in more than 70 38

metropolitan areas and the country’s 32 states. 39

Contributions and limitations 40

• We developed a model to produce accurate midterm (several weeks) probabilistic 41

forecasting of COVID-19 hospital pressure, namely hospital beds and respiratory 42

support or mechanical ventilation demands, using confirmed records of cases at 43

hospital admittance and deaths. 44

• Our model accounts for policy changes in control measures, such as school 45

closures [18] and lockdowns, as breakpoints in the transmission rates. 46

• Assuming a given fraction of asymptomatic individuals, we infer changes in the 47

transmission rate and the effective population size before and after a given 48

lockdown–relaxation day. 49

• Inferred changes in effective population size allows us to produce a forecast of 50

lockdown-induced 2nd waves. 51

Since asymptomatic infection is not fully understood so far [19], the fraction of 52

asymptomatic individuals is yet unknown. Therefore: 53

• The effective population size is only a proxy, and its absolute value is not 54

meaningful, but only its relative value before and after a relaxation day. 55

• Without serological studies in the open population – ideally after an outbreak–it 56

is impossible to forecast the population fraction that will be in contact with the 57

virus by the end of the current outbreak. 58

• At this point, our model does not address next pandemic outbreaks beyond 59

lockdown-induced 2nd waves. 60

• Finally, although the model does not account explicitly for biases due to 61

behavioral changes [20,21], population clustering and super spreading events [22], 62

we argue that our approach to lockdowns and relaxation events is a proxy model 63

of these more general events. 64
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Related work 65

There are many modeling efforts aimed at forecasting the number of cases, deaths and 66

hospital occupancy during the ongoing COVID-19 pandemic [23–28]. Broadly speaking, 67

models are informed with evolving information about COVID-19 cases, clinical 68

description of the patient residence time in each compartment, fraction of cases per age 69

group, number of deaths, hospital bed occupancy, etc. Columbia University 70

metapopulation SEIR model [23] forecasts are based on assumptions relating an 71

effective contact rate with population density at a metropolitan area and social 72

distancing policies. The COVID Act Now model [24] forecasts the replacement number 73

Rt and the fraction of infections requiring hospitalization using the Bayesian paradigm 74

to fit a SEIR model to cases, hospitalization, death, and recovery counts. The Imperial 75

College response team mathematical model [25] uses an unweighted ensemble of four 76

models to produce forecasts of the number of deaths in the week ahead for each country 77

with active transmission. The IHME model [26] combines a mechanistic model of 78

transmission with curve fitting to forecast the number of infections and deaths. 79

Moghadas et al. [27] pose a mechanistic model parametrized with demographic data to 80

project hospital utilization in the United States during the COVID-19 pandemic. The 81

main goal of Moghadas et al. is to estimate hospital pressure throughout. 82

Other COVID-19 models have been used to explore exit strategies [29,30], the role of 83

recovered individuals as human shields [31], digital contact tracing [32], break points in 84

the contact rate to account for changes in suppression and mitigation policies [18] and 85

lockdown-induced 2nd COVID waves [33] under the assumption that population is 86

temporally geographically isolated. 87

Materials and Methods 88

“Models should not be presented as scientific truth” [34]. Indeed, models are tools 89

intended to serve a specific purpose, evaluate or forecast particular aspects of 90

phenomena and ideally should be developed following the processes of predictive 91

science [35]. Namely, identify the quantities of interest (QoI), verify the computational 92

and mathematical approximation error, including their implication in the estimation of 93

QoI, and calibrate the parameters to adjust the model in light of data to bring it closer 94

to experimental observation. When considering uncertainty, Bayesian inference may be 95

used to calibrate some key model features given data. Finally, a validation process must 96

be used to build confidence in the accuracy of the QoI predictions. Our model is built 97

out of three interrelated components; a law for dynamics, a law for uncertainty, and the 98

choice of parameters. 99

Dynamical model 100

As a proxy of hospital pressure, the quantities of interest in our model are the evolving 101

demand of ICU/respiratory–support beds and no-ICU hospital beds. We developed a 102

full compartmental SEIRD model featuring several compartments to describe hospital 103

dynamics (see Figure 1 and supporting materials, SM) with sub-compartments to model 104

explicitly residence rates as Erlang distributions [14,15]. The model has two variants, 105

one with age structure and one that assumes age-independent dynamics. Here we 106

describe the latter (see supporting material for some additional comments on the 107

age-dependent model). 108

Succinctly our model goes as follows: once the susceptible individuals (S) become
infected, they remain in the incubation compartment (E) for mean time of 1/σ1 days
(i.e. residence rate σ1). After the incubation period, exposed individuals become
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Fig 1. Schematic diagram of the dynamical model. Erlang sub-compartments not
shown. For a precise definition of parameters, see supplementary material.

infectious and a proportion f of them become sufficiently severe symptomatic cases (IS)
to approach a hospital, while the remaining cases become mild–symptomatic to
asymptomatic (IA). The asymptomatic/mild–symptomatic cases remain infectious a
mean time of 1/γ1 days and eventually recover. For the symptomatic cases (IS) we
assume that after an average time of 1/σ2 days a proportion g of infected individuals
will need hospitalization (H1), while the rest (IC) will receive ambulatory care,
recovering after an average convalescent time of 1/γ2 days in quarantine. The
hospitalized patients (H1) remain an average time of 1/σ3 days until a fraction h will
need assisting respiratory measures or ICU care such as mechanical ventilation (U1).
The remaining fraction 1− h of hospitalized patients (H2) will recover after 1/γ3 days
in average. Respiratory-assisted/ICU patients (U1) remain in that state an average of
1/σ4 days until a critical day is reached when a proportion i of them will die (D) and
the remaining proportion 1− i will recover (H3) after an average period of 1/γ4 days.
Similar models have been proposed by [2, 31,32,36]. For the infection force (λ) we
assume that only mild–symptomatic/asymptomatic (IA) and symptomatic (IS)
individuals spread the infection, that is

λ =
βAI

A + βSI
S

Neff

where βA and βS are the contact rates of asymptomatic/mild–symptomatic and 109

symptomatic individuals, respectively. 110

Parameters and observational model 111

The model has two kinds of parameters that have to be calibrated or inferred; the ones 112

related to COVID-19 disease and hospitalization dynamics (such as residence times and 113

proportions of individuals that split at each bifurcation of the model) and those 114

associated with the public response to mitigation measures such as the contact rates β’s 115

and the effective population size Neff during the outbreak. Some of these parameters 116

can be estimated from hospital records or found in recent literature or inferred from 117

reported cases and deaths, but some remain mostly unknown. In the latter category, we 118

have Neff and the fraction 1− f of asymptomatic/mild–symptomatic infections. 119
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Reported values of the proportion of asymptomatic/ mild–symptomatic infections cases 120

1− f range from 10% to 75%, and even 95% in children population [6, 7, 37]. The 121

number Neff is lower than the full population of a metropolitan area and depends on 122

different aspects. Still, it is likely to be a consequence of unequal observance of social 123

distancing public policies among the population that, in turn, yield some clustering 124

effects. As lockdown measures are relaxed, more people become in contact with the 125

outbreak, and Neff may change. This change is a proxy of the fact that the 126

connectivity between clusters increases, and new paths become open to the virus to 127

colonize the full population. Notice that in our model the total number of patients that 128

will visit a hospital is given roughly (bounded) by the product Neff × f and the total 129

number of patients admitted to the hospital is given by Neff × f × g, where g is the 130

portion of infected persons that need hospitalization. 131

Since our QoI are concerned with hospital pressure, we choose from the available 132

data two sources of information for the observational model: The registered confirmed 133

COVID-19 patients at hospitals, with or without hospitalization, and B deceased 134

patients. Even under an outbreak, these data are reasonably consistent and systematic 135

information on the inflow A and outflow B, hat “hedge” the hospital dynamics. We 136

have evidence (see SM) that given our choice of observation model, the inference of our 137

QoI only depends on the product Neff × f × g, and not on the value of their factors. 138

The fraction g is easy to estimate from hospital records (see SM) of admissions and 139

ambulatory patients. Thus we are only required to postulate a value for the product 140

Neff × f . 141

Lockdowns, relaxation and lockdown-induced 2nd waves 142

The model features lockdown intervention and lockdown relaxation as discontinuities in 143

the transmission rate and the effective population size Neff . To model lockdown 144

interventions, a breakpoint is established at which β = β1 before and β = β2 after the 145

intervention day. This creates a non-linear time-dependent β(t) [18,38]. In the same 146

fashion, further intervention days may be included by adding more change points and β 147

parameters. These additional parameters are then included in the inference. 148

Assuming that effective population size Neff and transmission rates are fixed, 149

SEIRD type models converge to the attractor E = 0, I = 0, i.e. the system models an 150

epidemic that dies out after one single acme. Even for sensible non–constant 151

transmission rates, these kinds of models are only able to produce single epidemic 152

outbreaks. Therefore, in order to be able to estimate secondary outbreak waves after 153

lockdown relaxation measures, one necessarily needs to estimate a different Neff before 154

and after relaxation days. An increase of Neff is aimed as a proxy to the rise in the 155

average connectivity between population clusters after relaxation days. Our approach 156

here is as follows: we include the new parameter(s) ωi ∈ (0, 1) and set Neff = ωiN , 157

where N is the total population of the metropolitan area or region under study. Next, 158

we postulate a value of f fixed and estimate ω1 and ω2 before and after the relaxation 159

day, respectively. To add flexibility to our method and model possible changes in 160

population behavior, we also force a shift from β1 to β2 before and after a relaxation 161

day. With this procedure, given f we are able to estimate Neff in terms of the ω’s. 162

Nevertheless, due to the confounding effect of the product Neff × f = N × ω × f , we 163

are still unable to estimate the real Neff ’s until the real value of f is known. Relaxation 164

days may include both lockdown relaxation day or mayor changes in the public response 165

to mitigation measures (see SM for a methodology on how to choose relaxation days). 166
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Setting lockdown and relaxation days 167

As explained before, we model interventions and relaxation days as discontinuities in β 168

and (β, ω), respectively. We consider a lockdown day on 22 March 2020, where a 169

country-wide lockdown started. In Mexico City, we include a second intervention day to 170

model a further local intervention in early April. The methodology to set the relaxation 171

days is as follows: we computed Rt following [39] and look for days where local 172

minimums occur. We choose the relaxation days judiciously, keeping them at least three 173

weeks apart to have enough data to perform the inference. A rise in Rt can be a 174

consequence of an increase in contact rates, effective population size, or both. In either 175

case, our model captures these changes, that serve as a model for the connectivity 176

changes in the outbreak cluster structure. 177

Observational model and data 178

To make our inferences, we use both confirm cases and deceased counts. In some 179

regions, sub reporting of COVID-19 related deaths may become relevant, especially in 180

places hit by a severe outbreak [40]. Nonetheless, deaths are a more reliable data source 181

to estimate a COVID-19 outbreak, especially in the forecast of hospital demand. The 182

problem here is that the number of confirmed cases depends heavily on local practices, 183

particularly with the intensity of testing, adding a level of complication if testing 184

intensity has varied due to ambiguous policies. Regarding data from Mexico, patients 185

are tested when arriving at hospitals with probable COVID-19 symptoms and limited 186

testing is done elsewhere; accordingly, most confirmed COVID-19 cases are limited to A 187

as described above. Therefore, for our inferences, we use both confirm cases A and 188

deceased counts B, as explained in the previous section. Regarding data availability for 189

our observational model, we use the patient’s reported onset of symptoms date. Due to 190

administrative reporting delays, we discard the last 11 days of reporting and add four 191

days as the time stamp for hospital admittance A. We use the registered deceased date 192

as the timestamp for B. 193

We consider daily deaths counts di and its theoretical expectation that is estimated
in terms of the dynamical model as µD(ti) = D(ti)−D(ti−1) for the metropolitan area
or region being analyzed. Analogously, we consider daily cases ci and its corresponding
µc(ti) given by the daily flux entering the H1 compartment, which may be calculated as
in [17], namely

µc(ti) =

∫ ti

ti−1

gσ2I
S
m(t)dt,

where ISm(t) is the last state variable in the IS Erlang series. We calculate the above 194

integral using a simple trapezoidal rule with 10 points (1/10 day). 195

Bayesian Inference 196

In order to carry out a likelihood-based analysis, we assume that epidemic data has 197

more variation than implied by a standard Poisson process, as is the case in other 198

ecological studies. Following [16], we postulate that the number of both the confirmed 199

cases and deaths follows a negative binomial distribution NB. Denoting the mean and 200

variance as µ and σ2, and requiring that σ2 = ωµ+ θµ2 > µ we enforce overdispersion 201

for suitable chosen parameters ω and θ. For data yi, namely ci and di, we reparametrize 202

the negative binomial distribution and let yi ∼ NB(pµ(ti), ω, θ), with fixed values for 203

the overdispersion parameters ω, θ and an additional reporting probability p (see SM for 204

further details). 205

We assume conditional independence in the data, and therefore from the NB model, 206

we obtain a likelihood. Our parameters are the contact rate parameter β’s, the ω’s and 207
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crucially we also infer the initial conditions E(0), IA(0), IS(0). Letting 208

S(0) = N − (E(0) + IA(0) + IS(0)) and setting the rest of the parameters to zero, we 209

have all initial conditions defined and the model may be solved numerically to obtain 210

µD and µc to evaluate our likelihood. 211

Finally, regarding the elicitation of the parameters prior distribution, we use Gamma 212

distributions with scale 1 and shape parameter 10 to model the initial conditions 213

E(0), IA(0), IS(0) of the community transmission. Following the argumentation of Cori 214

et al. [39], we assume that local transmission starts when there are 10 confirmed cases. 215

The rationale for using Gamma distribution priors is that we can specify the 216

distribution by prescribing its first two moments, and the resulting distribution verifies 217

a maximum entropy condition. Namely, we obtain the less informative distribution that 218

has the prescribed mean and (log) variance [41]. The prior for the first transmission 219

rate β0, is a long tail, log Normal with σ2 = 1 and scale parameter 1; that is 220

log(β0) ∼ N(0, 1). For the subsequent β’s, we use autoregressive priors to impose some 221

coherence from one change point to the next with log(βi) ∼ N(log(βi−1), 1). The prior 222

on ωi is a Beta(1 + 1/6, 1 + 1/3) restricted to ωi > ωi−1. This beta distribution is a 223

fairly flat near uniform density in [0, 1], touches zero in 0 and 1, and is slightly skewed 224

to lower values. We model here the unlikely values ωi = 0, 1 and that under current 225

social distancing measures we expect smaller rather than larger Neff . Otherwise, the 226

prior for the ωi’s is rather diffuse and non-informative. 227

To sample from the posterior we resort to MCMC using the “t-walk” generic 228

sampler [42]. The MCMC runs semi-automatic, with consistent performances in most 229

data sets. For any state variable V , the MCMC allows us to sample from the posterior 230

predictive distribution for V (ti). By plotting some of its quantiles sequentially, we may 231

produce predictions with quantified probabilistic uncertainty, as seen in Figure 3. 232

As in the case of climate forecasting, due to the stochastic nature of a pandemic 233

outbreak point-wise estimates such as the maximum a posteriori estimate (MAP) does 234

not provide good descriptions of the outbreak evolution. No single trajectory of the 235

SEIRD model provides a good description of the outbreak evolution, nor give accurate 236

forecasts. 237

Results 238

Local transmission started at different dates in each Mexican metropolitan area given 239

the different communicability with Mexico City and with the rest of the world. On the 240

other hand, a country-wide general lockdown started on May 22nd until June 1st where 241

each state started differently local control measures. Figure 3 (a) shows the model 242

forecast, with quantified uncertainty, of the daily records of COVID-19 confirmed cases 243

in Mexico City. Gray bars correspond to two weeks of trimmed data to assess the model 244

performance. 245

Figure 3 (b) depicts records and forecasts incidence of deaths. In Figure 3 (c) and 246

(d) we compare the model forecasts with hospital bed and ICU occupancy obtained 247

from a secondary official source of epidemiological surveillance depicted as red bars. 248

Notice that the forecast begins after June 20th, and an uncertainty cone opens to the 249

right the next 3 to 4 weeks. However, the attractor of the dynamical system closes the 250

cone for longer times, and the predictive power of our forecast decreases. 251

The estimate of total hospital bed occupancy corresponds to the daily integral of H1
252

and H2 in the model and the ICU occupancy corresponds to the U1 daily integral. We 253

consistently overestimated the total number of hospital beds and ICU units and shifted 254

to earlier times. We calibrate residence times from reports on daily demand of hospital 255

beds and intensive care unit records from Instituto Mexicano del Seguro Social or 256

Mexican Social Security Institute (IMSS) at the early stages of the outbreak. Given the 257
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virus’s emerging nature and evidence of an excess of hospital pressure in places like 258

Spain, Italy, and New York. We deliberately assumed value parameters to forecast 259

higher demands in both types of hospital occupancy. 260

In Figure 3 (a) and (b), black and red vertical lines represent lockdown and 261

relaxation days, respectively. Our model forecasts three different bump-shape regions 262

where the effective population size increases. 263

Mexico city, metropolitan area 264

(a) (b)

(c) (d)

Fig 2. Outbreak analysis for Mexico city metropolitan area, using data from 7 July
2020. Gray bars correspond to two weeks of trimmed data. (a) Incidence of confirmed
cases, (b) Incidence of deaths (c) No ICU, and (d) ICU demand of hospital beds. Total
population 21, 942, 666 inhabitants

Cancun metropolitan area 265

We present the case of Cancun’s metropolitan area since it is a medium-sized city with 266

considerable international connectivity was among the first ones with an outbreak in 267

Mexico. The forecast shows a clear first wave, with a long decreasing tail and a 268

lockdown-induced 2nd wave after a lockdown easing and reopening of touristic activities. 269

In Figure 4 we show the three posterior distributions for ω. In (a), we show the 270

Mexico City case, and in (b), we show the Cancun metropolitan area case. In the 271

supplementary material, we show the outbreak analysis for some other cities to illustrate 272

different aspects of our forecasting model’s performance. Besides this paper’s examples, 273

we apply our model to 70 metropolitan areas and the 32 states in Mexico (“ama” model; 274

https://coronavirus.conacyt.mx/proyectos/ama.html, in Spanish). 275
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(a) (b)

(c) (d)

Fig 3. Outbreak analysis for Cancun metropolitan area, using data from 7 July 2020.
(a) Incidence of confirmed cases, (b) Incidence of deaths (c) No ICU, and (d) ICU
demand of hospital beds. Total population 891, 843 inhabitants.

(a) (b)

Fig 4. Posterior distribution for ω’s (Neff = Nωi, f = 0.4) (a) Mexico city (b)
Cancun.

Discussion 276

We present a compartmental SEIRD model to make probabilistic forecasts of hospital 277

pressure during COVID-19 outbreaks in metropolitan areas. In this work, we also 278

consider lockdowns and lockdown-relaxations as two different kinds of interventions. We 279

model the former as a change in transmission rates while the latter also allows for 280

changes in the effective population size. These changes in effective population size and 281
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Fig 5. Daily Rt’s calculated as in [39] for Cancun metropolitan area. Two relaxation
days, marked with red vertical lines, were judiciously included at local minimums,
allowing for a minimum gap of 3 weeks.

transmission rates are used as a proxy of behavioral changes, changes in the 282

connectivity between population clusters and super spreading events. 283

We in-line monitor exogenous changes in SEIRD parameters to inform the model of 284

interventions and relaxation days, in the same spirit of our inferences in the 285

transmission rate and initial conditions. Our analysis showed that we account for the 286

outbreak evolution in many metropolitan areas by setting one lockdown on 22 May 287

2020, the beginning of country-wide lockdown, and two more relaxation days. One 288

around 10 May, mother’s day, a popular celebration in Mexican culture where families 289

gather together. The other relaxation day is set around four to eight days after 1 June, 290

the announced date for the country-wide lockdown relaxation measures. In some cases, 291

we also impose somewhat different relaxation days to account for local changes, such as 292

the opening of tourist activity. Of note, all relaxation days where set exclusive by our 293

Rt based methodology. The interpretation, as above, came afterward. 294

(a) (b)

Fig 6. Posterior distribution of f × ω0 for (a) Mexico city and (b) Cancun
metropolitan areas, as explained in Section . Note how, using the proxy value of
f = 0.4, the proportion f × ω0 is estimated close to 0.05. In a previous version of this
model we postulated ω = 1 and f = 0.05.

In a prior version of this ama model –before reaching the first acme– we did not infer 295

the effective population size, namely ω. Instead, by modeling several countries that 296

already had passed the acme, we postulated ω = 1 and f = 0.05. This yields some 297

controversy that even reached the news media [43]. With the current model we can 298

show that the product ω × f , that is the quantity that affects the estimates, takes 299
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maximum a posteriori values between 0.04 and 0.12 in most of our studied cases, see 300

Figure 6. This fact explains the reason why our forecast weeks ahead on the acme have 301

been rather accurate. It is also important to notice that this is evidence of a 302

confounding effect between ω, , and the transmission rates β on the early stages of the 303

outbreak. Many forecasting models that fail to recognize this fact will consequently fail 304

on their acme estimates. 305

We note that after the acme SEIRD type models converge to the attractor 306

E = 0, I = 0, and long term estimates tend to overestimate the decline of an outbreak. 307

The underlying assumption that social contact and other conditions remain constant is 308

not reasonable for most societies over long periods (e.g., more than eight weeks). 309

Conservative short to mid-term forecasts most be preferred and change points added 310

when necessary. 311

The age-independent model has proven to be adequate to produce accurate forecasts 312

for the hospitalization dynamics during current outbreaks. Therefore the added 313

complexity of the age-structure model may not justify its use at this point. However, we 314

continue to work in our age structure model. 315

Since our QoI are related to the hospital pressure, we choose all parameters 316

conservatively. However, Erlang densities can not correctly approximate residence times 317

of some cases real distributions and more general distributions should be considered. 318

Moreover, as health professionals learn to treat the disease, hospital residence times also 319

change. Both these effects should also be considered to obtain more accurate estimates. 320

Our observation model is designed to integrate data after the nonlinear term in the 321

flow diagram of the dynamic model (see Figure 1) and the rest of the dynamics is 322

proportional to the hospital occupancy curves, therefore the model forecasts can be used 323

as a proxy of the full outbreak. We follow this idea to predict the date when an 324

outbreak will reach its first peak as well as lockdown induced second waves. 325

The confounding effect between the population size, namely ω, and the fraction of 326

asymptomatic/mild–symptomatic infections 1− f makes it impossible to forecast the 327

population that will be in contact with the virus at the end of an outbreak reliably. 328

Likewise, although it is possible to make a model based analyses of scenarios of 329

lockdown exit strategies, scenario estimation is limited due to the lack of information 330

regarding population viral seroprevalence. Therefore, without serological studies in the 331

open population after a COVID-19 outbreak it is not possible to assess the final 332

outbreak size. 333

Up to our knowledge, there are very few models that can produce forecast 334

lockdown-induced 2nd waves with quantified uncertainty. Although more elaborate 335

models can be considered, our model is simple and flexible enough to deliver reliable 336

and useful forecasts. 337
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S1 Other examples 359

S1.1 Toluca 360

(a) (b)

(c) (d)

Fig S1. Outbreak analysis for Toluca (the state of Mexico, Mexico central highlands)
metropolitan area, using data from 7 July. (a) Incidence of confirmed cases, (b)
Incidence of deaths (c) No ICU, and (d) ICU demand of hospital beds. Total population
2, 377, 828 inhabitants. Forecast for the city of Toluca is in course with one relaxation
event.
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S1.2 Merida 361

(a) (b)

(c) (d)

Fig S2. Outbreak analysis for Merida (state of Yucatan, Yucatan peninsula)
metropolitan area, using data from 7 July. (a) Incidence of confirmed cases, (b)
Incidence of deaths (c) No ICU, and (d) ICU demand of hospital beds. Total population
1, 237, 697 inhabitants. There is an evident ongoing second outbreak in the city of
Merida.
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S1.3 Cuernavaca 362

(a) (b)

(c) (d)

Fig S3. Outbreak analysis for Cuernavaca (the state of Morelos, Mexico central
highlands) metropolitan area, using data from 7 July. (a) Incidence of confirmed cases,
(b) Incidence of deaths (c) No ICU, and (d) ICU demand of hospital beds. Total
population 1, 059, 521 inhabitants. In the city of Cuernavaca, the model captures the
slow decline of the outbreak.
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S1.4 Acapulco 363

(a) (b)

(c) (d)

Fig S4. Outbreak analysis for Acapulco (the state of Guerrero, Mexico south pacific
shore) metropolitan area, using data from 7 July. (a) Incidence of confirmed cases, (b)
Incidence of deaths, (c) No ICU, and (d) ICU demand of hospital beds. Total
population 1, 059, 521 inhabitants. The outbreak in the city of Acapulco is an example
of a second outbreak of the same size.
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S1.5 Culiacan 364

(a) (b)

(c) (d)

Fig S5. Outbreak analysis for Culiacan (state of Sinaloa, Mexican north pacific shore)
metropolitan area, using data from 7 July. (a) Incidence of confirmed cases, (b)
Incidence of deaths, (c) No ICU, and (d) ICU demand of hospital beds. Total
population 962, 871 inhabitants. Example of secondary outbreak with two
lockdown-induced second waves.

S2 Model 365

We developed a dynamic transmission compartmental model to simulate the spread of
the novel coronavirus SARS-CoV-2. A definition of the state variables is given in
Table S1. Additionally, an “Erlang series” is included for most of these state variables
to account for non-exponential residence times. The model may be described
conceptually with the graph in Figure 1. Without showing the Erlang series for the
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Table S1. Description of the state variables in the dynamic model

Variable Description
S Susceptibles
E Latent individuals
IA Asymptomatic/mild–symptomatic individuals
IS Symptomatic individuals
IC Out-patients
H1 Hospitalized patients, initial stage
H2 Hospitalized patients (no ICU)
U1 Hospitalized patients (ICU or respiratory support)
U2 Hospitalized patients (ICU or respiratory support) critical day
H3 Hospitalized patients recovering after ICU or respiratory support
R Recovered
D Deceased

sub-compartments the system of equations in the model is as follows:

dS

dt
= −

(
βAI

A + βSI
S
)

ωN
S

dE

dt
=

(
βAI

A + βSI
S
)

ωN
S − σ1E

dIA

dt
= (1− f)σ1E − γ1IA

dIS

dt
= fσ1E − σ2IS

dIC

dt
= (1− g)σ2I

S − γ2IC
dH1

dt
= gσ2I

S − σ3H1

dH2

dt
= (1− h)σ3H

1 − γ3H2 dU1

dt
= hσ3H

1 − σ4U1

dU2

dt
= σ4U

1 − µU2 dD

dt
= iµU2

dH3

dt
= (1− i)µU2 − γ4H3

dR

dt
= γ1I

A + γ2I
C + γ3H

2 + γ4H
3 .

In Table S2, we give a brief description of all the parameters in the model. 366

S2.1 Infection force and basic reproductive number R0 367

For the infection force (λ) we assume that individuals that spread the infection
correspond to the mild–symptomatic/asymptomatic (IA) and symptomatic individuals
(IS) before they get contact with the health care system or doctor, e.g.

λ =
βAI

A + βSI
S

Neff

We compute the basic reproductive number R0 of the epidemic by the next
generation matrix method [44] and obtain

R0 = (1− f)
βA
γ1

+ f
βS
σ2
.

S2.2 Values of model parameters 368

Since our QoI are related to the hospital pressure we choose all parameters 369

conservatively. For each metropolitan area, we assume that N corresponds to its full 370
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Table S2. Description of model parameters.

Parameter Description Units

N Total number individuals in the population –
ω(t) Percentage susceptible individuals in the population at time t –
βA(t) Transmission rate of asymptomatic/mild–symptomatic per day

individuals (asx/mild–sym) at time t
βS(t) Transmission rate of symptomatic individuals at time t per day
κ Relative strength between the transmission the rate of –

asx/mild–sym and symptomatic
f Proportion of infected persons with strong enough –

symptoms to visit a hospital
g Proportion of infected persons that need hospitalization –
h Proportion of hospitalized patients requiring respiratory –

support or ICU care
i Proportion of Respiratory-assisted or ICU patients deceased –

1/σ1 Average incubation time day
1/σ2 Average time from symptomatic onset to hospital visit day
1/σ3 Average time from hospital admission to respiratory day

support or ICU care
1/σ4 Average time with respiratory support or ICU care day
1/µ Average length of critical stage of respiratory–support/ICU day

between death and recovery
1/γ1 Average time that asymptomatic/mild–symptomatic day

individuals remain infectious
1/γ2 Average time of symptomatic individuals that recover day

without visiting a hospital
1/γ3 Average time from hospital admission to hospital discharge day
1/γ4 Average time from respiratory–support/ICU day

care release to hospital discharge
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population, as defined by Instituto Nacional de Estadistica y Geografia (INEGI). The 371

values of the transition probabilities are summarized in Table S3. 372

Table S3. Transition probabilities at bifurcations in the model

Parameter Value Reference

f 0.40 postulated
g 0.04375 [1], IMSS
h 0.25 [1], IMSS
i 0.5 [1], IMSS

S2.3 Erlang series and sub-compartments 373

To make the intrinsic generation-interval of the renewal equation in each compartment 374

more realistic we divide each compartment of the model into m equal sub-compartments 375

to generate an Erlang–distributed waiting time [14]. The Erlang distributions of each 376

compartment is calibrated by two parameters: the rate λE and the shape m, a positive 377

integer that corresponds to the number of sub-compartments on the model. In terms of 378

these parameters the mean of the Erlang distribution is m/λE , this mean correspond to 379

the average times in the dynamic model. 380

We use recent publications and information generously shared by the Instituto 381

Mexicano de Seguridad Social (IMSS) to estimate the average time and the shape 382

parameter of the Erlang series in each compartment. In Table S4, we give details of 383

Erlang series lengths, residence times and imputed values. 384

Table S4. Average times and Erlang shape parameters for sub-compartments

Variable Rates Average time Erlang shape m Reference
S βS Inferred 1 –
E 1/σ1 5 days 4 [2]
IA 1/γ1 7 days 3 [45]
IS 1/σ2 4 days 3 [46]
IC 1/γ1 7 days 3 [47]
H1 1/σ3 2 days 10 [3]
H2 1/γ3 10 days 3 [3]
U1 1/σ4 10 days 3 IMSS
U2 1/µ 1 day 1 [47]
H3 1/γ4 4 days 5 [3]
R None – – –
D None – – –

S2.4 Relative strength between the transmission the rate of 385

asymptomatic/mild–symptomatic and symptomatic 386

In our methodology, we aim to infer the force of the infection λ. This parameter is 387

defined in terms of contact rate of asymptomatic/mild–symptomatic individuals βA and 388

contact rate of symptomatic individuals βS . Due to the functional dependence of λ in 389

these parameters, there is a lack of identifiability between βA and βS that can not be 390

resolved without further assumptions. We assume that the relative strength between the 391

transmission rate of asymptomatic/mild–symptomatic and symptomatic is modeled as a 392
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fixed ratio κ. We model the value of κ directly as the ratio of the viral load of 393

symptomatic and asymptomatic/mild–symptomatic patients [48,49] and fixed it to 394

κ = 2. Hence, the force of infection becomes λ = βS(IS + κIA)/Neff . 395

S3 Data and observational model 396

For inference, we, therefore, consider daily confirmed cases ci of patients arriving at H1
397

and daily reported deaths di, for the metropolitan area or region being analyzed. 398

The first default model for count data is a Poisson distribution; however, 399

epidemiological data tends to be over disperse. Thus, an over disperse generalized 400

Poisson distribution may be needed to correctly, and safely, model these types of data. 401

Following [16] (see main paper) the NB distribution is re parametrized in terms of its 402

mean µ and “overdispersion” parameters θ and ωNB , with r = µ
ωNB−1+θµ and 403

pNB = 1
ω+θµ , the number of failures before stopping and the success probability, 404

respectively, in the usual NB parametrization. For data yi we let yi ∼ NB(pµ(ti), ω, θ), 405

with fixed values for the overdispersion parameters ωNB , θ and an additional reporting 406

probability p. The index of dispersion is σ2/µ = ωNB + θµ. Over dispersion with 407

respect to the Poisson distribution is achieved when ωNB > 1 and the index of 408

dispersion increases with size if θ 6= 0; both desirable characteristics in outbreak data, 409

adding variability as counts increase. In both cases we found good performance fixing 410

ωNB = 2. To model daily deaths, we fixed θ = 0.5 and for daily cases θ = 1 implying 411

higher variability for the later. The reporting probabilities are 0.95 for deaths and 0.85 412

for cases, with the assumption that the ci’s are confirmed sufficiently severe cases 413

arriving at hospitals. As explained in the main paper, the theoretical expectations 414

estimated in terms of the dynamical model are given by µD(ti) and µc(ti) for dead and 415

cases, respectively. 416

S4 Modeling interventions and Bayesian Inference 417

We assume conditional independence in the data, and therefore from the NB model, we 418

obtain a likelihood. Our parameters are the contact rate parameters β’s, the ω’s and 419

crucially we also infer the initial conditions E(0), IA(0), IS(0). Letting 420

S(0) = N − (E(0) + IA(0) + IS(0)) and setting the rest of the parameters to zero, we 421

have all initial conditions defined and the model may be solved numerically to obtain 422

µD and µc to evaluate our likelihood. We use the lsoda solver available in the 423

scipy.integrate.odeint Python function. 424

Moreover, as explained in the main paper, we also estimate ωi with Neff = ωiN , 425

both before and after a change point (“relaxation day”; we show intervention days with 426

black vertical lines and relaxation change points with red vertical lines in our plots, see 427

next section). To make it a bit simple, we also force the model to have a new β 428

parameter after a relaxation day. However, the process of numerically solving the 429

system of ODE’s is slightly more complex. For a set of parameter values, including the , 430

to evaluate the likelihood, one needs to apply the solver from time t = 0 to the first 431

relaxation day, considering Neff = ω1N . Then for ω2 > ω1 we use the last values of all 432

state variables as initial values for a second solve now with Neff = ω2N , and so forth. 433

To sample from the posterior we resort to MCMC using the “t-walk” generic 434

sampler [42]. The MCMC runs semi-automatic, with a fairly consistent burn-in of 1,000 435

iterations (sampling initial values from the prior). We perform subsampling using the 436

Integrated Autocorrelation Time, with pseudo-independent sample sizes of 1,000 to 437

1,500 with 400,000 iterations of the MCMC. This process takes roughly 60 min in a 2.2 438

GHz processor. 439
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To illustrate the whole posterior distribution, for any state variable V (or µc(ti)), for 440

each sampled initial conditions and β’s the model is solved at time t1, t2, . . . , tk, 441

including possibly future dates, obtaining a sample of V (ti) values for each ti. The 442

median and other desired quantiles are plotted vertically for each date considered, 443

obtaining the plots as in Figure 3. Note that the traced median or other plotted 444

quantiles do not necessarily correspond to any given model trajectory. It provides a far 445

richer Uncertainty Quantification approach than the classical parameter estimates 446

plug-in approach. Indeed, the sampled values for V (ti) do correspond to Monte Carlo 447

samples of the posterior predictive distribution for V (ti). 448

S5 Adding age structure 449

Adding group ages is straightforward in these types of models. The number a of age 450

groups is decided, and our model is repeated a times. Different residence times may be 451

included [50] but we preferred to concentrate on the different transition probabilities 452

g, h that vary nearly two orders of magnitude using age groups 453

[0, 25], (25, 50], (50, 65], (65, 100] [1]. The age structure is used to divide the initial 454

infectious and susceptible population proportional to each age group size. We infer the 455

same number of parameters, using a single β, with an optional weighting contact 456

matrix [51] to model different contact rates among age groups in specific regions. Using 457

a sufficiently flexible software design, progressing to an age-structure model is not 458

complex; nonetheless, the MCMC may run substantially slower. We have experimented 459

with our age-structured model using census data from Mexico and both uniform and 460

non-uniform contact matrices. However, we do not report any of these results here, 461

given that our non-age structure model has sufficiently enough predictive power, as 462

already discussed. 463

S6 Confounding effect of Neff × f 464

To explain the confounding effect of Neff × f we have two observations. First, if we let

f = f̃/α for some α ∈ (0, f̃) then differential equations for the variables Ic, H1, H2,
H3, U1, U2 and D remain invariant and the equations for Is becomes

dIS

dt
=
f̃

α
σ1E − σ2IS .

By letting Ẽ = E/α the equation for Is is also invariant with the substitution of E by
Ẽ. Now, the equation for Ẽ is given by

dẼ

dt
=

(
βAI

A + βSI
S
)

αNeff
S − σ1Ẽ.

By letting Ñeff = αNeff the latter equations becomes also invariant under the 465

substitution of E by Ẽ. Therefore for the lower branch in the model (see Figure ??) the 466

system of equations is invariant under the change of f and Neff by f̃ and Ñeff 467

provided Ñeff × f̃ = Neff × f holds. We need to adapt the equations for S, IA, and R 468

to get a consistent system of equations. 469

Second, to infer parameter β we inform the system with data at H1 and D 470

compartments. If Ñeff × f̃ = Neff × f holds, in view of our first observation, to fit 471

these data the fluxes fσ1E and f̃σ1Ẽ in either case have to be the same. The solutions 472

in the compartment IS and after do not change in this case, but the individuals in the 473

IA compartment does change depending on which combination of Neff and f or Ñeff 474
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Fig S6. Outbreak analysis for Mexico city metropolitan area, data until 15 May. Total
number of recovered R; with Neff = N , total population, and f = 0.05, R(∞) reaches
approximately 17.5 · 106 while with Neff = N/3, f = 0.05 · 3, R(∞) only reaches
roughly 5.5 · 106. However, the fit for cases and deaths and the predictive curves for
hospital demand are identical (results not shown).

and f̃ is considered. There is a range of validity for α where the inference of β does not 475

change, but we do not explore this property further. 476

We also present numerical simulations to confirm this confounding effect (see 477

Figure S6), but until the asymptomatic infection is fully described, it is not possible to 478

resolve this issue. 479

S7 Data sources 480

We take metropolitan areas delimitation and population from [52] and [53], respectively.
Official records of COVID-19 confirmed cases and deaths are reported in [54].
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