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Knowing COVID-19 epidemiological distributions, such as the time from patient admission to
death, is directly relevant to effective primary and secondary care planning, and moreover, the
mathematical modelling of the pandemic generally. We determine epidemiological distributions
for patients hospitalised with COVID-19 using a large dataset (N = 21,000 − 157,000) from the
Brazilian Sistema de Informação de Vigilância Epidemiológica da Gripe database. A joint Bayesian
subnational model with partial pooling is used to simultaneously describe the 26 states and one
federal district of Brazil, and shows significant variation in the mean of the symptom-onset-to-
death time, with ranges between 11.2-17.8 days across the different states, and a mean of 15.2
days for Brazil. We find strong evidence in favour of specific probability density function choices:
for example, the gamma distribution gives the best fit for onset-to-death and the generalised log-
normal for onset-to-hospital-admission. Our results show that epidemiological distributions have
considerable geographical variation, and provide the first estimates of these distributions in a low
and middle-income setting. At the subnational level, variation in COVID-19 outcome timings are
found to be correlated with poverty, deprivation and segregation levels, and weaker correlation is
observed for mean age, wealth and urbanicity.
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1. INTRODUCTION

Surveillance of COVID-19 has progressed from ini-
tial reports on 31st-Dec-2019 of pneumonia with un-
known etiology in Wuhan, China,[1] to the confirmation
of 9, 826 cases of SARS-CoV-2 across 20 countries one
month later,[2] to the current pandemic of greater than
12 million confirmed cases and 500, 000 deaths globally to
date.[3] Early estimates of epidemiological distributions
provided critical input that enabled modelling to iden-
tify the severity and infectiousness of the disease. The
onset-to-death distribution,[4, 5] characterising the range
of times observed between the onset of first symptoms in
a patient and their death, has for example proved crucial
in early estimates of the Infection Fatality Ratio (IFR)
[6], and was similarly integral to recent approaches to
modelling the transmission dynamics of SARS-CoV-2.[7–
12]

Initial estimates of COVID-19 epidemiological distri-
butions necessarily relied on relatively few data points,
with the events comprising these distributions occurring
a period of time that was short compared to the tem-
poral pathologies of the disease progression, resulting in
wide confidence or credible intervals and a sensitivity to
time-series censoring effects.[6] Global surveillance of the
disease over the past 197 days has provided more data to
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re-evaluate the time-delay distributions of the disease.
In particular, public availability of a large number of
patient-level hospital records – currently over 390, 000 in
total – from the SIVEP-Gripe (Sistema de Informação
de Vigilância Epidemiológica da Gripe) database pub-
lished by Brazil’s Ministry of Health (MoH),[13] pro-
vides an opportunity to make robust statistical estimates
of the onset-to-death and other time-delay distributions
such as onset-to-diagnosis, length of ICU stay, onset-to-
hospital-admission, onset-to-hospital-discharge, onset-
to-ICU-admission, and hospital-admission-to-death. In
this work we fit and present an analysis of these epidemi-
ological distributions, with the paper set out as follows.
Section 2 describes the data used from the SIVEP-Gripe
database,[13] and the methodological approach applied
to fit distributions using a hierarchical Bayesian model
with partial pooling. Section 3 provides a description of
the results from this study from fitting epidemiological
distributions at national and subnational level to a range
of probability density functions (PDFs). The results are
discussed in Section 4, including associations with so-
cioeconomic factors, such as education, segregation, and
poverty, and conclusions are given in Section 5.

2. METHODS

2.1. Data

The SIVEP-Gripe database provides detailed patient-
level records for all individuals hospitalised with severe
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acute respiratory syndrome, including all suspected or
confirmed cases of severe COVID-19.[13] The records in-
clude the date of admission, date of onset of symptoms,
state where the patient lives, state where they are being
treated, and date of outcome (death or discharge), among
other diagnosis related variables. We extracted the data
for confirmed COVID-19 records starting on 25th Febru-
ary and considered records in our analysis ending on 7th
July. The dataset was filtered to obtain rows for onset-to-
death, hospital-admission-to-death, length of ICU stay,
onset-to-hospital-admission, onset-to-hospital-discharge,
onset-to-ICU-admission and onset-to-diagnosis. Onset-
to-diagnosis data were split into the diagnosis confirmed
by PCR and those confirmed by other methods, such
as rapid antibody and antigen tests, called non-PCR
throughout this manuscript. Entries resulting in distri-
bution times greater than 133 days were considered a
typing error and removed, as the first recorded COVID-
19 case in Brazil was on 25th February.[14]

Additional filtering of the data was applied for
onset-to-ICU-admission, onset-to-hospital-admission and
onset-to-death in order to eliminate bias introduced by
potentially erroneous entries identified in the data for
these distributions. We removed the rows where admis-
sion to the hospital or ICU or death happened on the
same day as onset of symptoms, assuming that these
were actually incorrectly inputted entries. The decision
to test removing the first day is motivated firstly by the
observation of a number of conspicuous data entry er-
rors in the database, and secondly by anomalous spikes
corresponding to same-day events observed in these dis-
tributions. An example of the anomalous spikes in the
onset-to-death distribution is shown in Appendix Figure
4 for selected states.

Sensitivity analyses on data inclusion, regarding the
removal of anomalous spikes in first-day data indicative
of reporting errors (e.g. in onset to hospital admission),
and regarding the sensitivity of the dataset to time-series
censoring effects, are set out in the Results Section 3.3.

A summary of the data, including number and a range
of samples per variable from the SIVEP-Gripe dataset
is given in Table I. A breakdown of the number of data
samples per state is provided in Appendix Table IX.

Basic exploratory analysis to explain geographic varia-
tion observed in time-delay distributions adopts GeoSES
(Índice Socioeconômico do Contexto Geográfico para Es-
tudos em Saúde) [15], which measures Brazilian socioeco-
nomic characteristics through an index composed of edu-
cation, mobility, poverty, wealth, deprivation, and segre-
gation. We investigate correlations between the GeoSES
indicators and the time-delay means that we estimate
at the state level. Additionally, we consider correlations
with the mean age of the population of the state and the
percentage of people living in urban areas, data we ob-
tained from Instituto Brasileiro de Geografia e Estat́ıstica
(IBGE ).[16]

Table I. Summary of the distribution data extracted from
SIVEP-Gripe database.[13] Number of samples (Nsamples) is
given for the whole country.

Distribution Nsamples Range (days)
Onset-to-death 59,271 1-114
Hospital-admission-to-death 52,821 0-99
ICU-stay 21,709 0-89
Onset-to-hospital-admission 141,618 1-129
Onset-to-hospital-discharge 69,478 0-120
Onset-to-ICU-admission 46,617 0-101
Onset-to-diagnosis (PCR) 156,558 0-129
Onset-to-diagnosis (non-PCR) 19,438 0-102

2.2. Model fitting

Gamma, Weibull, log-normal, generalised log-
normal,[17] and generalised gamma[18] PDFs are fitted
to several epidemiological distributions, with the specific
parameterisations provided in Appendix Section 10.1.
The parameters of each distribution are fitted in a joint
Bayesian hierarchical model with partial pooling, using
data from the 26 states and one federal district of Brazil,
extracted and filtered to identify specific epidemiological
distributions such as onset-to-death, ICU-stay, and so
on.

As an example consider fitting a gamma PDF for the
onset-to-death distribution. The gamma distribution for
the ith state is given by

Gamma(αi, βi) , (1)

where shape and scale parameters are assumed to be
positively constrained, normally distributed random vari-
ables

αi ∼ N(αBrazil, σ1) (2)

and

βi ∼ N(βBrazil, σ2) . (3)

The parameters αBrazil and βBrazil denote the national
level estimates, and

σ1 ∼ N+(0, 1) , σ2 ∼ N+(0, 1) , (4)

where N+(·) is a truncated normal distribution. In this
case, parameters αBrazil and βBrazil are estimated by fit-
ting a gamma PDF to the fully pooled data, that is
including the observations for all states. Prior prob-
abilities for the national level parameters for each of
the considered PDFs are chosen to be N+(0, 1), ex-
cept for the generalised gamma distribution where we
used: µBrazil ∼ N+(2, 0.5), σBrazil ∼ N+(0.5, 0.5) and
sBrazil ∼ N+(1.5, 0.5).

Posterior samples of the parameters in the model are
generated using Hamiltonian Monte Carlo (HMC) with
Stan.[19, 20] For each fit we use 4 chains and 2, 000 iter-
ations, with half of the iterations dedicated to warm-up.
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The preference for one fitted model over another is
characterised in terms of the Bayesian support, with the
model evidence calculated to see how well a given model
fits the data, and comparison between two models using
Bayes Factors. The details of how to estimate the model
evidence and calculate the Bayes Factors for each pair of
models are given in Appendix Section 10.1.

3. RESULTS

3.1. Brazil epidemiological distributions

Five trial PDFs – gamma, Weibull, log-normal, gener-
alised log-normal and generalised gamma – were fitted to
the epidemiological data shown in Figure 1.

All of the models’ fits were tested by using the Bayes
Factors based on the Laplace approximation and cor-
rected using thermodynamic integration,[21–23] as de-
scribed in Appendix Section 10.1. The thermodynamic
integration contribution was negligible suggesting the
posterior distributions are satisfactorily approximated as
multivariate normal. The conclusions on the preferred
PDF were not sensitive to the choice of prior distribu-
tions, that is the preferred model was still the favoured
one even when more informative prior distributions were
applied for all PDFs. The Bayes Factors used for model
selection are shown in Appendix Table V.

The gamma PDF provided the best fit to the onset-to-
death, hospital-admission-to-death and ICU-stay data.
For the remaining distributions – onset-to-diagnosis
(non-PCR), onset-to-diagnosis (PCR), onset-to-hospital-
discharge, onset-to-hospital-admission and onset-to-ICU-
admission – the generalised log-normal distribution was
the preferred model. The list of preferred PDFs for each
distribution, together with the estimated mean, variance
and PDFs’ parameter values for the national fits are given
in Table II. The 95% credible intervals (CrI) for parame-
ters of each of the preferred PDFs was less than 0.1 wide,
therefore in Table II we show only point estimates.

Additionally, in Figure 1, in each instance the cumula-
tive probability distribution is given for the best model
fit, revealing that out of patients for whom COVID-19
is terminal, almost 70% die within 20 days of symptom
onset. Out of patients who die in the hospital, almost
60% die within the first 10 days since admission.

The estimated mean number of days for each distri-
bution for Brazil is compared in Table III with values
found in the literature for China, US and France. The
majority of the data obtained through searching the lit-
erature pertained to the early stages of the epidemic in
China, and no data was found for low- and middle-income
countries. The mean onset-to-death time of 15.2 (95%
CrI 15.1 − 15.3) days, from a best-fitting gamma PDF,
is shorter than the 17.8 (95% CrI 16.9–19.2) days esti-
mate from Verity et al.,[6] and 20.2 (95% CrI 15.1−29.5)
days estimate (14.5 days without truncation) from Lin-
ton et al.[12] In both cases, estimates were based on a

small sample size from the beginning of the epidemic in
China. The mean number of days for hospital-admission-
to-death of 10.8 (95% CrI 10.7−10.9) for Brazil matches
closely the 10 days estimated by Salje et al.[24]

3.2. Subnational Brazilian epidemiological
distributions

The onset-to-death distribution, and other time-delay
distributions such as onset-to-diagnosis, length of ICU
stay, onset-to-hospital-admission, onset-to-hospital-
discharge, onset-to-ICU-admission, and hospital-
admission-to-death, have been fitted in a joint model
across the 26 states and one federal district of Brazil
using partial pooling. The mean number of days,
plotted in Figure 2, shows substantial subnational
variability – e.g. the mean onset-to-hospital-admission
for Amazonas state was estimated to be 9.9 days (95%
CrI 9.7-10.1), whereas for Mato Grosso do Sul the
estimate was 6.7 (95% CrI 6.4-7.1) days and Rio de
Janeiro - 7.2 days (95% CrI 7.1-7.3). Amazonas state
had the longest average time from onset-to-hospital-
and ICU-admission. The state with the shortest average
onset-to-death time was Acre. Santa Catarina state on
the other hand had a longest average onset-to-death
and hospital-admission-to-death time, as well as longest
average ICU-stay. For a visualisation of the uncertainty
in our mean estimates for each state, see the posterior
density plots in Appendix Figures 5 and 6. Additional
national and state-level results for the onset-to-death
gamma PDF, including the posterior plots for mean and
variance, are shown in Figure 7 in the Appendix.

We also observe discrepancies between the five geo-
graphical regions of Brazil, for example states belonging
to the southern part of the country (Paraná, Rio Grande
do Sul and Santa Catarina) had a longer average ICU-
stay and hospital-admission-to-death time as compared
to the states in the North region. Full results, including
detailed estimates of mean, variance, and estimates for
each of the distributions’ parameters for Brazil and
Brazilian states can be accessed at https://github.
com/mrc-ide/Brazil_COVID19_distributions/blob/
master/results/results_full_table.csv.

3.3. Sensitivity analyses

In order to remove the potential bias towards shorter
outcomes from left- and right-censoring, we tested the
scenario in which the data to fit the models was trun-
cated. For example, based on a 95% quartile of 35 days
for the hospital-admission-to-death distribution, entries
with the starting date (hospital admission) after 2nd
June 2020 and those with an end-date (death) before 1st
April were truncated, and the models were refitted. With
censored parts of the data removed, the mean time from
start to outcome increased for every distribution, e.g. for
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Figure 1. Histograms for onset-to-death, hospital-admission-to-death, ICU-stay, onset-to-hospital-admission, onset-to-hospital-
discharge, onset-to-ICU-admission onset-to-diagnosis (PCR) and onset-to-diagnosis (non-PCR) distributions show data for
Brazil extracted from the SIVEP-Gripe database.[13] For each distribution, solid lines are for fitted PDFs and the dashed line
shows the cumulative distribution function of the best-fitting PDF. The left hand side y-axis gives the probability value for
the PDFs and the right hand side y-axis shows the value for the cumulative distribution function. All values on the x-axes are
given in days. State-level fits are shown in Figure 2 and Appendix Figures 5 and 6.

hospital-admission-to-death it increased from 10.0 (95%
CrI 9.9-10.0) to 10.8 (95 % CrI 10.7-10.9), and for onset-
to-death it changed from 15.2 days (95% CrI 15.1-15.3)
to 16.0 days (95% CrI 15.9-16.1). The effect truncation
on censored data is given in Appendix Figure 8.

To test the impact of keeping or removing entries
identified as potentially resulting from erroneous data
transcription (see the Methods Section 2), we fitted the
PDFs to some of the distributions on a national level
with and without those entries. For onset-to-hospital-
admission, onset-to-ICU and onset-to-death we find that
generalised gamma PDF was preferred when the first day

of the distribution was included, and gamma (for onset-
to-death) and generalised log-normal PDFs if the first
day was removed. For hospital-admission-to-death, a
gamma distribution fitted most accurately when the first
day was included, and Weibull when it was excluded.
The effect of removing the first day results in means
shifting to the right by approximately 1 day for both
onset-to-hospital- and ICU-admission, and by 0.5 days
for hospital-admission-to-death (see Appendix Figure 8).

Sensitivity analysis regarding the model selection ap-
proach is detailed in Appendix Section 10.1.
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Figure 2. Estimates of the mean time in days for onset-to-death, hospital-admission-to-death and each of the other distributions
fitted in the joint model of Brazil. Estimates are grouped by the five regions of Brazil, North (blue), Northeast (light-blue),
Central-West (green), Southeast (orange), South (red), and are shown for Acre (AC), Amazonas (AM), Amapá (AP), Pará
(PA), Rondônia (RO), Roraima (RR), Tocantins (TO), Alagoas (AL), Bahia (BA), Ceará (CE), Maranhão (MA), Paráıba (PB),
Piaúı (PI), Pernambuco (PE), Sergipe (SE), Rio Grande do Norte (RN), Distrito Federal (DF), Goiás (GO), Mato Grosso do
Sul (MS), Mato Grosso (MT), Esṕırito Santo (ES), Minas Gerais (MG), Rio de Janeiro (RJ), São Paulo (SP), Paraná (PR),
Rio Grande do Sul (RS), Santa Catarina (SC). For state Acre, the onset-to-diagnosis (non-PCR) mean diverged due to the
small number of samples (n=1). The full posterior distribution for each mean estimate is given in Appendix Figures 5 and 6.
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Table II. For each COVID-19 distribution the preferred PDF with the largest Bayesian support is listed, along with the
estimated mean, variance and other parameter of the PDF. 95% credible intervals are given in brackets for mean and vari-
ance. The parameters p1, p2 and p3 for the preferred PDFs gamma and generalised log-normal (GLN) are given in the form
Gamma(x|p1, p2) = Gamma(α, β) and GLN(x|p1, p2, p3) = GLN(µ, σ, s), with the formulae of the PDFs given in Appendix
Section 10. The credible intervals for parameters p1, p2 and p3 are less than 0.1 wide, so only the point estimates are shown.
† The variance diverges for the onset-to-diagnosis (non-PCR) PDF.

Distribution Preferred PDF Mean (days) Variance (days2) p1 p2 p3

Onset-to-death Gamma 15.2 (15.1, 15.3) 105.3 (103.7, 106.9) 2.2 0.1 -
Hospital-admission-to-death Gamma 10.0 (9.9, 10.0) 84.8 (83.2, 86.4) 1.2 0.1 -

ICU-stay Gamma 9.0 (8.9, 9.1) 64.9 (63.1, 66.8) 1.2 0.1 -
Onset-to-hospital-admission Gen. log-normal 7.8 (7.7, 7.8) 35.7 (35.0, 36.5) 1.8 0.6 1.8
Onset-to-hospital-discharge Gen. log-normal 17.6 (17.6, 17.7) 248.7 (233.7, 265.6) 2.7 0.3 1.2

Onset-to-ICU-admission Gen. log-normal 8.5 (8.4, 8.5) 48.0 (46.1, 50.0) 1.9 0.6 1.8
Onset-to-diagnosis (PCR) Gen. log-normal 12.5 (12.5, 12.6) 252.3 (236.4, 269.6) 2.3 0.3 1.2

Onset-to-diagnosis (non-PCR) Gen. log-normal 14.5 (14.3, 14.7) † 2.3 0.3 1.0

Table III. Epidemiological distributions for COVID-19 have been fitted for Brazil, and sources worldwide have been obtained
from the literature. PDF means for Brazil have been obtained using Markov Chain Monte Carlo (MCMC) sampling, using the
PDF with the maximum Bayesian support for each data distribution (see Appendix Table V). All values are given in days,
and 95% CrI are given in brackets unless stated otherwise. ∗ adjusted for censoring, † PCR confirmed, ‡ non-PCR confirmed,
a median (interquartile range), b mean (standard deviation).

Distribution Brazil China France US

Onset-to-death
15.2 (15.1, 15.3)
16.0∗ (15.9, 16.1)

17.8 (16.9, 19.2)[6]
18.8∗ (15.7, 49.7)[6]
14.5 (12.5, 17.0)[12]
20.2∗ (15.1, 29.5)[12]

13.59b (7.85)[25]

Hospital-admission-to-death
10.0 (9.9, 10.0)

10.8∗ (10.7, 10.9)

5.0a (3.0, 9.3)[26]
8.9 (7.3-10.4)[12]

13.0∗ (8.7-20.9)[12]
10.0[27]

ICU-stay
9.0 (8.9, 9.1)

10.1∗ (9.9, 10.2)
8.0a (4.0, 12.0)[28] 17.6 (17.0, 18.2)[27]

Onset-to-hospital-admission 7.8 (7.7, 7.8) 10.0a (7.0-12.0)[26]
Onset-to-hospital-discharge 17.6 (17.6, 17.7) 22.0a (18.0, 25.0)[28]
Onset-to-ICU-admission 8.5 (8.4, 8.5) 9.5a (7.0, 12.5)[29]

Onset-to-diagnosis
12.5†(12.5, 12.6)
14.5‡(14.3, 14.7)

5.5 (5.4, 5.7)[24]

4. DISCUSSION

We fitted multiple probability density functions to a
number of epidemiological datasets, such as onset-to-
death or onset-to-diagnosis, from the Brazilian SIVEP
Gripe database,[13] using Bayesian hierarchical models.
Our findings provide the first reliable estimates of the
various epidemiological distributions for the COVID-19
epidemic in Brazil and highlight a need to consider a
wider set of specific parametric distributions. Instead of
relying on the ubiquitous gamma or log-normal distribu-
tions, we show that often these PDFs do not best capture
the behaviour of the data. For instance, the generalised
log-normal is preferable for several of the epidemiolog-
ical distributions in Table II. These results can inform
modelling of the epidemic in Brazil [30], and other low-
and middle-income countries,[31] but we expect they also
have some relevance more generally.

In terms of modelling the epidemic in Brazil, the vari-
ation observed at subnational level – see Figure 2 –
can be shown to be important to accurately estimat-

ing disease progression. Making use of the state-level
custom-fitted onset-to-death distributions reported here,
we have estimated the number of active infections on
23rd June 2020 across ten states spanning the five re-
gions of Brazil, using a Bayesian hierarchical renewal-
type model.[7, 30, 32] The relative change in the number
of active infections from modelling the cases using hetero-
geneous state-specific onset-to-death distributions, com-
pared to using a single common Brazil one is shown in
Figure 3 to be quite substantial. The relative changes
observed, up to 18% more active infections, suggest as-
sumptions of onset-to-death homogeneity are unreliable
and closer attention needs to be paid when fitting models
of SARS-CoV-2 transmission dynamics in large countries.

On the origin of the geographic variation displayed
in Figure 2 for the average distribution times across
states, there are multiple potential factors that could
generate the observed variability and in this work we
present an elementary exploratory analysis. We exam-
ine the correlation between socioeconomic factors, such
as education, poverty, income, etc., using a number of
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socioeconomic state-level indicators obtained from Bar-
rozo et al.(2020) [15] and additional datasets containing
the mean age per state and percentage of people living in
the urban areas (urbanicity).[16] The Pearson correlation
coefficients, shown in the Appendix Table VII, suggest
that segregation, poverty and deprivation elements were
most strongly correlated with the analysed onset-time
datasets. E.g. poverty was strongly negatively corre-
lated with hospital-admission-to-death (-0.68), whereas
income and segregation had a high positive correlation
coefficient for the same distribution (+0.60, +0.62 re-
spectively). The strongest correlation was observed for
hospital-admission-to-death and deprivation indicator,
which measures the access to sanitation, electricity and
other material and non-material goods.[15] Interestingly,
the indicators measuring economical situation were more
correlated with average hospitalisation times than mean
age per state, which suggests that although the low- and
middle-income countries typically have younger popula-
tions, their healthcare systems are more likely to strug-
gle in response to the COVID-19 epidemic. More de-
tailed analysis is necessary to fully appreciate the impact
of the economic components on the COVID-19 epidemic
response.

In the work presented we acknowledge numerous lim-
itations. The database from which distributions have
been extracted, though extensive, contains transcription
errors, and the degree to which these bias our estimates
is largely unknown. Secondly, the PDFs fitted are based
on observational hospital data, and therefore should be
cautiously interpreted for other settings. Thirdly, though
we have fitted PDFs at subnational as well as national
level, this partition is largely arbitrary and further work
is required to understand the likely substantial effect of
age, sex, ethnic variation,[33] co-morbidities, and other

Roraima
Santa Catarina

Maranhão
Rio Grande do Sul

Amazonas
Paraná

District Federal
São Paulo

Mato Grosso
Bahia

0 5 10 15
Change in active infections (%)

12

14

16

Mean

Figure 3. This figure shows the percentage change in ac-
tive infections, estimated on the 23rd-Jun-2020, that results
from using state-specific onset-to-death distributions (see Ap-
pendix Table VI) compared to a single national-level one. The
effect for each state is coloured according to the mean of the
state’s onset-to-death gamma distribution, given in days. The
mean onset-to-death for Brazil is 15.2 days.

factors.

5. CONCLUSIONS

We provide the first estimates of common epidemiolog-
ical distributions for the COVID-19 epidemic in Brazil,
based on the SIVEP-Gripe hospitalisation data.[13] Ex-
tensive heterogeneity in the distributions between differ-
ent states is reported. Quantifying the time-delay for
COVID-19 onset and hospitalisation data provides use-
ful input parameters for many COVID-19 epidemiologi-
cal models, especially those modelling the healthcare re-
sponse in low- and middle-income countries.
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at https://github.com/mrc-ide/Brazil_COVID19_
distributions/blob/master/results/results_
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is available to download from Brazil Ministry of
Health website https://opendatasus.saude.gov.br/
dataset/bd-srag-2020.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 24, 2020. ; https://doi.org/10.1101/2020.07.15.20154617doi: medRxiv preprint 

https://github.com/mrc-ide/Brazil_COVID19_distributions
https://github.com/mrc-ide/Brazil_COVID19_distributions
https://github.com/mrc-ide/Brazil_COVID19_distributions/blob/master/results/results_full_table.csv
https://github.com/mrc-ide/Brazil_COVID19_distributions/blob/master/results/results_full_table.csv
https://github.com/mrc-ide/Brazil_COVID19_distributions/blob/master/results/results_full_table.csv
https://opendatasus.saude.gov.br/dataset/bd-srag-2020
https://opendatasus.saude.gov.br/dataset/bd-srag-2020
https://doi.org/10.1101/2020.07.15.20154617
http://creativecommons.org/licenses/by-nc-nd/4.0/


8

9. REFERENCES

[1] World Health Organisation, WHO, Coronavirus disease
2019 (COVID-19) Situation Report – 1, (2020).

[2] World Health Organisation, WHO, Coronavirus disease
2019 (COVID-19) Situation Report – 11, (2020).

[3] World Health Organisation, WHO, Coronavirus disease
2019 (COVID-19) Situation Report – 175, (2020).

[4] C. A. Donnelly, A. C. Ghani, G. M. Leung, A. J. Hedley,
C. Fraser, S. Riley, L. J. Abu-Raddad, L.-M. Ho, T.-Q.
Thach, P. Chau, K.-P. Chan, L.-Y. T. Tai-Hing Lam,
S.-H. L. Thomas Tsang, E. M. C. L. James H B Kong,
N. M. Ferguson, and R. M. Anderson, Epidemiological
determinants of spread of causal agent of severe acute
respiratory syndrome in Hong Kong, The Lancet 361,
1761 (2003).

[5] T. Garske, J. Legrand, C. A. Donnelly, H. Ward,
S. Cauchemez, C. Fraser, N. M. Ferguson, and A. C.
Ghani, Assessing the severity of the novel influenza
A/H1N1 pandemic, BMJ 339, 10.1136/bmj.b2840
(2009), https://www.bmj.com/content.

[6] R. Verity, L. C. Okell, I. Dorigatti, P. Winskill, C. Whit-
taker, N. Imai, G. Cuomo-dannenburg, H. Thomp-
son, P. G. T. Walker, H. Fu, A. Dighe, T. Jamie,
K. Gaythorpe, W. Green, A. Hamlet, W. Hins-
ley, D. Laydon, and G. Nedjati, Estimates of the
severity of COVID-19 disease, Lancet Infect Dis 20,
https://doi.org/10.1016/S1473-3099(20)30243-7 (2020).

[7] S. Flaxman, S. Mishra, A. Gandy, H. J. T. Unwin,
H. Coupland, T. A. Mellan, H. Zhu, T. Berah, J. W.
Eaton, I. C. R. Team, A. Ghani, C. A. Donnelly, S. Ri-
ley, L. C. Okell, M. A. C. Vollmer, N. M. Ferguson, and
S. Bhatt, Estimating the effects of non-pharmaceutical
interventions on COVID-19 in Europe, Nature , 1 (2020).

[8] J. T. Wu, K. Leung, N. K. Mary Bushman, R. Niehus,
P. M. de Salazar, B. J. Cowling, M. Lipsitch, and G. M.
Leung, First-wave COVID-19 transmissibility and sever-
ity in China outside Hubei after control measures, and
second-wave scenario planning: a modelling impact as-
sessment, The Lancet 395, 1382 (2020).

[9] S. Dana, A. B. Simas, B. A. Filardi, R. N. Rodriguez,
L. L. da Costa Valiengo, and J. Gallucci-Neto, Brazilian
Modeling of COVID-19 (bram-cod): a Bayesian Monte
Carlo approach for COVID-19 spread in a limited data
set context, medRxiv (2020).

[10] J. T. Wu, K. Leung, N. K. Mary Bushman, R. Niehus,
B. J. C. Pablo M. de Salazar, M. Lipsitch, and G. M.
Leung, Estimating clinical severity of COVID-19 from
the transmission dynamics in Wuhan, China, Nature
Medicine 26, 506–510 (2020).

[11] T. Jombart, K. Van Zandvoort, T. W. Russell, C. I.
Jarvis, A. Gimma, S. Abbott, S. Clifford, S. Funk,
H. Gibbs, Y. Liu, et al., Inferring the number of COVID-
19 cases from recently reported deaths, Wellcome Open
Research 5 (2020).

[12] N. M. Linton, T. Kobayashi, Y. Yang, K. Hayashi, A. R.
Akhmetzhanov, S.-m. Jung, B. Yuan, R. Kinoshita, and
H. Nishiura, Incubation period and other epidemiolog-
ical characteristics of 2019 novel coronavirus infections

with right truncation: a statistical analysis of publicly
available case data, Journal of clinical medicine 9, 538
(2020).

[13] SRAG 2020 - Banco de Dados de Śındrome Respiratória
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10. APPENDIX

10.1. Model selection

To characterise which model (gamma, log-normal, etc.)
best fits the data, the Bayesian model evidence z =
z(y|Mi) is evaluated. Here and throughout this section
y denotes the data and Mi denotes the ith model from
the analysed model set. As determining the model evi-
dence requires calculating an integral over the model pa-
rameters (θ) which is generally intractable, we approxi-
mate it with z0 = z0(y|Mi), which is based on a second-
order Laplace approximation,[34] q0 = q0(θ|Mi, y), to the
true un-normalised posterior density q = q(θ|Mi, y). The
second-order approximated density is estimated as:

q0 = q(θ̂) exp

(
−1

2
(θ − θ̂) Σ−1 (θ − θ̂)T

)
. (5)

Here q(θ̂) denotes the value of the un-normalised poste-
rior evaluated using the mean estimates of the model’s

parameters θ̂, and Σ the covariance matrix built from
Markov Chain Monte Carlo (MCMC) samples of the pos-
terior distribution. From this expression, a second-order
approximation to the model evidence, z0, is given by

z0 = q(θ̂)
√

det(2πΣ−1), where det(·) denotes the deter-

minant of the matrix.
For each model pair, Bayes factors were computed from

the marginal likelihoods. Considering two modelsMi and
Mj , the Bayes Factor (BF) is

Bij =
z(y|Mi)

z(y|Mj)
, (6)

where z(y|Mi) is the evidence of model Mi given y. If
Bij > 1, the evidence is in favour of model Mi. Here, for
readability we will report the Bayes Factors as 2 log(Bij)
following Kass and Raftery notation.[35]

The sensitivity of our model evidence is tested with
respect to the choice of hyperprior distribution, and sec-
ondly with respect to the use of the approximate second-
order density q0. In the latter instance this is done by
performing thermodynamic integration[21–23] between
q0 and the true density q in order to obtain an asymp-
totically exact estimate of the marginal model evidence,

z = z0 exp
(∫ 1

0
Eθ∼q(θ;λ) [log q − log q0] dλ

)
. (7)

The right hand term corrects the z0 approximation to
the exact Bayesian evidence by a path integral evaluated
with respect to a sampling distribution that interpolates
between the two densities as q(θ; λ) = q(1−λ)qλ0 in terms
of the auxiliary coordinate λ.
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Table IV. Probability density functions with analytical formulae for mean and variance. y denotes the data, Γ(·) is a gamma
function. GG – generalised gamma, GLN – generalised log-normal.

PDF Mean Variance

Gamma(y|α, β) = βα

Γ(α)
yα−1 exp(−βy) α

β
α
β2

Weibull(y|α, σ) = α
σ

(
y
σ

)α−1
exp

(
−
(
y
σ

)α)
σΓ
(
1 + 1

α

)
σ2
(
Γ
(
1 + 2

α

)
− Γ2

(
1 + 1

α

))
Log-normal(y|µ, σ) = 1√

2πσ

1
y

exp
(
− 1

2

(
log y−µ

σ

)2)
exp

(
µ+ σ2

2

) (
exp

(
σ2
)
− 1
)

exp
(
2µ+ σ2

)
GG(y|a, d, p) = 1

Γ
(
d
p

) ( p
a

)d
xd−1 exp

(
−
(
y
a

)p)
aΓ((d+1)/p)

Γ(d/p)
a2

[
Γ((d+2)/p)

Γ(d/p)
−
(

Γ((d+2)/p)
Γ(d/p)

)2
]

GLN(y|µ, σ, s) = 1
y

s

2
s+1
s σΓ( 1

s )
exp

(
− 1

2
| log y−µ

σ
|s
) exp(µ)

[
1 + 1

2Γ(1/s)
· S
]
,

S =
∑∞
j=1 σ

j
(

1 + (−1)j
)

2j/s
Γ( j+1

2 )
Γ(j+1)

exp(2µ)
[
1 + 1

2Γ(1/s)
· S
]
-[Mean]2,

S =
∑∞
j=1 2σj

(
1 + (−1)j

)
2j/s

Γ( j+1
2 )

Γ(j+1)

Table V. Bayes Factors (BFs) for the analysed distributions and models. For each distribution (rows), the values represent BF
for the best fitting model against other models. Value of 0 indicates the model that fits the data the best. Value > 10 indicates
a very strong evidence against given model compared to the best one. GLN - generalised log-normal, GG - generalised gamma.
NA - not analysed. The BF values are reported here as 2 log(Bij) following Kass and Raftery notation.[35]

Gamma Weibull Log-normal GLN GG
Onset-to-death 0 2156 2208 198 301
Admission-death 0 195 4349 3096 188
ICU stay 0 231 588 607 352
Onset-to-hospital-admission 4000 17073 494 0 NA
Onset-to-hospital-discharge 2819 8346 6079 0 3087
Onset-to-ICU-admission 798 4359 142 0 1244
Onset-to-diagnosis (PCR) 1111 10400 13882 0 1257
Onset-to-diagnosis (non-PCR) 578 793 4340 0 461

Table VI. State-level onset-to-death estimates for gamma PDF: mean, variance, parameters values, with 95% confidence inter-
vals. The parameters p1 and p2 are given in the form Gamma(x|p1, p2) = Gamma(α, β). The full PDFs for other distribu-
tions are available at https://github.com/mrc-ide/Brazil_COVID19_distributions/blob/master/results/results_full_

table.csv.

State Mean (days) Variance (days2) p1 p2

AC 17.4 (16.1, 18.8) 119.4 (98.8, 143.6) 2.6 (2.2, 2.9) 0.1 (0.1, 0.2)
AL 14.0 (13.4, 14.5) 82.5 (74.3, 91.9) 2.4 (2.2, 2.5) 0.2 (0.2, 0.2)
AM 15.6 (15.3, 16.0) 95.3 (89.1, 102.1) 2.6 (2.4, 2.7) 0.2 (0.2, 0.2)
AP 14.5 (13.2, 16.0) 99.1 (79.8, 122.7) 2.1 (1.9, 2.4) 0.1 (0.1, 0.2)
BA 15.1 (14.7, 15.6) 116.6 (107.9, 126.1) 2.0 (1.9, 2.1) 0.1 (0.1, 0.1)
CE 16.1 (15.8, 16.4) 116.4 (111.1, 122.0) 2.2 (2.2, 2.3) 0.1 (0.1, 0.1)
DF 16.4 (15.6, 17.2) 105.0 (92.7, 119.0) 2.6 (2.3, 2.8) 0.2 (0.1, 0.2)
ES 17.0 (16.4, 17.5) 107.8 (98.2, 118.1) 2.7 (2.5, 2.9) 0.2 (0.1, 0.2)
GO 14.5 (13.8, 15.2) 87.9 (77.9, 99.1) 2.4 (2.2, 2.6) 0.2 (0.2, 0.2)
MA 15.0 (14.6, 15.4) 89.4 (82.7, 96.5) 2.5 (2.4, 2.7) 0.2 (0.2, 0.2)
MG 15.1 (14.6, 15.7) 95.1 (86.3, 104.7) 2.4 (2.2, 2.6) 0.2 (0.1, 0.2)
MS 14.8 (13.3, 16.4) 93.9 (74.8, 116.8) 2.4 (2.0, 2.7) 0.2 (0.1, 0.2)
MT 14.1 (13.1, 15.1) 80.6 (67.2, 96.4) 2.5 (2.2, 2.8) 0.2 (0.2, 0.2)
PA 14.7 (14.5, 15.0) 90.2 (85.7, 94.9) 2.4 (2.3, 2.5) 0.2 (0.2, 0.2)
PB 14.0 (13.4, 14.5) 78.7 (71.2, 87.3) 2.5 (2.3, 2.7) 0.2 (0.2, 0.2)
PE 13.0 (12.7, 13.2) 89.7 (84.6, 95.1) 1.9 (1.8, 1.9) 0.1 (0.1, 0.2)
PI 16.5 (15.6, 17.4) 114.8 (99.4, 131.7) 2.4 (2.1, 2.6) 0.1 (0.1, 0.2)
PR 15.7 (15.1, 16.4) 91.9 (81.8, 102.7) 2.7 (2.5, 2.9) 0.2 (0.2, 0.2)
RJ 14.2 (14.0, 14.4) 103.3 (99.5, 107.3) 2.0 (1.9, 2.0) 0.1 (0.1, 0.1)
RN 15.2 (14.6, 15.9) 91.9 (81.8, 103.0) 2.5 (2.3, 2.7) 0.2 (0.2, 0.2)
RO 14.7 (13.6, 15.8) 92.1 (76.4, 110.0) 2.3 (2.1, 2.6) 0.2 (0.1, 0.2)
RR 11.2 (10.2, 12.1) 68.1 (55.9, 83.0) 1.8 (1.6, 2.1) 0.2 (0.1, 0.2)
RS 15.4 (14.7, 16.2) 116.0 (103.0, 130.8) 2.1 (1.9, 2.2) 0.1 (0.1, 0.1)
SC 17.8 (16.7, 19.0) 146.8 (125.1, 173.5) 2.2 (1.9, 2.4) 0.1 (0.1, 0.1)
SE 13.4 (12.2, 14.5) 112.5 (91.4, 138.6) 1.6 (1.4, 1.8) 0.1 (0.1, 0.1)
SP 16.2 (16.0, 16.4) 114.8 (111.6, 118.0) 2.3 (2.2, 2.3) 0.1 (0.1, 0.1)
TO 14.8 (13.5, 16.2) 97.3 (79.1, 119.7) 2.3 (2.0, 2.6) 0.2 (0.1, 0.2)
Brazil 15.2 (15.1, 15.3) 105.3 (103.7, 106.9) 2.2 (2.2, 2.2) 0.1 (0.1, 0.1)
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Figure 4. Distribution of onset-to-death for Maranhão, Rio de Janeiro, São Paulo and Rio Grande do Sul. Anomalous spikes
for the first day can be observed for Maranhão and Rio de Janeiro, indicating they might be a reporting error.

Table VII. Pearson correlation coefficients for mean distribution times and socioeconomic indicators. Sample size was equal to
27 (number of states).

ICU-stay Onset-death Admission-death Onset-discharge
Onset-hospital

admission
Onset-ICU
admission

Onset-diagnosis
(PCR)

Education -0.32 -0.25 -0.62 0.41 0.48 0.39 0.34
Poverty -0.31 -0.31 -0.68 0.52 0.69 0.54 0.49

Deprivation 0.38 0.35 0.71 -0.49 -0.59 -0.49 -0.41
Wealth -0.08 0.26 0.37 -0.24 -0.07 -0.21 -0.17
Income 0.21 0.28 0.60 -0.35 -0.40 -0.33 -0.35

Segregation 0.40 0.35 0.62 -0.43 -0.57 -0.47 -0.30
Mean age 0.13 0.25 0.43 -0.45 -0.57 -0.68 -0.25
Urbanicity 0.12 0.11 0.43 -0.34 -0.52 -0.40 -0.19

Table VIII. Pearson correlation coefficients for mean distribution times. Sample size was equal to 27 (number of states).

Onset-death Admission-death Onset-discharge
Onset-hospital

admission
Onset-ICU
admission

Onset-diagnosis
(PCR)

Onset-death 1 0.69 -0.35 0.06 0.24 0.15
Admission-death 0.69 1 -0.52 -0.48 -0.20 -0.36
Onset-discharge -0.35 -0.52 1 0.39 0.43 0.40

Onset-to-hospital-admission 0.06 -0.48 0.39 1 0.72 0.53
Onset-to-ICU-admission 0.24 -0.20 0.43 0.72 1 0.50

Onset-to-diagnosis (PCR) 0.15 -0.36 0.40 0.53 0.50 1
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Figure 5. Posterior distribution of mean times (in days) for onset-to-death, hospital-admission-to-death, ICU stay and onset-
to-hospital-admission, sorted by mean value. Plots are colour-coded by the geographical region which the state belongs to:
North (yellow), Northeast (green), Central-West (orange), Southeast (purple), South (blue).
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Figure 6. Posterior distribution of mean times (in days) for onset-to-hospital-discharge, onset-to-ICU-admission, onset-to-
diagnosis (PCR) and onset-to diagnosis (non-PCR), sorted by mean value. Plots are colour-coded by the geographical region
which the state belongs to: North (yellow), Northeast (green), Central-West (orange), Southeast (purple), South (blue).
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Figure 7. Gamma PDF Gamma(α, β) fitted to the onset-to-death data for Brazil and five states of Brazil. The PDFs were fitted
with HMC partially pooling each state with the whole country. The red lines represent the model using the mean parameter
estimates. Individual PDFs selected during MCMC sampling are shown in yellow. Posterior mean and variance distributions
for each region are given in the middle and right hand side columns.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 24, 2020. ; https://doi.org/10.1101/2020.07.15.20154617doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.15.20154617
http://creativecommons.org/licenses/by-nc-nd/4.0/


16

8 10 12 14

Hospital-admission-to-death

Onset-to-ICU-admission

Onset-to-death

Onset-to-hospital-admission 1st day removed
1st day not removed

9 10 11 12 13 14 15 16
Days

Hospital-admission-to-death

ICU-stay

Onset-to-death

Censoring
Censoring corrected

Figure 8. Estimated mean per distribution in different scenarios: excluding 1st day data points (top) and censoring correcting
(bottom). The credible intervals were not shown as due to the large amount of data available they were negligible.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 24, 2020. ; https://doi.org/10.1101/2020.07.15.20154617doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.15.20154617
http://creativecommons.org/licenses/by-nc-nd/4.0/


17

Table IX. Number of datapoints per state for each of the datasets analysed in the study. Acre (AC), Amazonas (AM), Amapá
(AP), Pará (PA), Rondônia (RO), Roraima (RR), Tocantins (TO), Alagoas (AL), Bahia (BA), Ceará (CE), Maranhão (MA),
Paráıba (PB), Piaúı (PI), Pernambuco (PE), Sergipe (SE), Rio Grande do Norte (RN), Distrito Federal (DF), Goiás (GO),
Mato Grosso do Sul (MS), Mato Grosso (MT), Esṕırito Santo (ES), Minas Gerais (MG), Rio de Janeiro (RJ), São Paulo (SP),
Paraná (PR), Rio Grande do Sul (RS), Santa Catarina (SC).

Onset-death Admission-Death ICU-stay
Onset-hospital

admission
Onset-hospital

discharge
Onset-ICU
admission

Onset-diagnosis
(PCR)

Onset-diagnosis
(non-PCR)

AC 239 115 2 225 4 9 345 1
AL 1040 894 680 1600 629 859 1344 416
AM 2736 2403 1010 5971 2573 1323 4502 1604
AP 181 175 68 299 136 80 183 153
BA 2241 2013 982 4563 1338 2300 5266 352
CE 5801 4905 1534 9685 4536 2768 8286 1749
DF 662 655 499 2687 1415 1198 2864 311
ES 1292 1023 589 1409 507 778 1774 321
GO 698 637 375 1813 783 819 2018 122
MA 1950 1097 197 1485 247 341 1562 821
MG 1223 1176 603 4782 2210 1521 4910 604
MS 131 124 46 723 417 171 764 126
MT 286 248 83 1347 2191 384 4695 2175
PA 4727 3934 1270 8226 3034 1993 6921 1351
PB 1136 1037 349 1992 508 740 1584 644
PE 4408 3284 311 6574 1888 1566 9745 190
PI 515 497 139 2161 341 490 2314 240
PR 793 773 898 3174 1952 1168 3490 124
RJ 9750 9068 1490 18019 7438 7165 21159 1446
RN 876 821 337 1878 664 693 1517 544
RO 254 238 180 554 180 284 488 293
RR 270 265 53 98 51 56 200 92
RS 790 770 971 3565 2328 1277 4144 477
SC 408 389 291 1600 777 599 1634 343
SE 303 295 193 938 181 306 1116 117
SP 16348 15808 8515 55735 32937 17642 63184 4769
TO 213 177 44 515 213 87 549 53
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